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Exploring exotic configurations with anomalous features with deep learning:
Application of classical and quantum-classical hybrid anomaly detection
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We present the application of classical and quantum-classical hybrid anomaly detection schemes to explore
exotic configurations with anomalous features. We consider the Anderson model as a prototype, where we define
two types of anomalies—a high conductance in the presence of strong impurity and a low conductance in the
presence of weak impurity—as a function of random impurity distribution. Such anomalous outcome constitutes
an imperceptible fraction of the data set and is not a part of the training process. These exotic configurations,
which can be a source of rich new physics, usually remain elusive to conventional classification or regression
methods and can be tracked only with a suitable anomaly detection scheme. We also present a systematic study
of the performance of the classical and the quantum-classical hybrid anomaly detection method and show that the
inclusion of a quantum circuit significantly enhances the performance of anomaly detection, which we quantify
with suitable performance metrics. Our approach is quite generic in nature and can be used for any system that
relies on a large number of parameters to find their new configurations, which can hold exotic new features.
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I. INTRODUCTION

In recent years, machine learning has become an integral
part of different branches of physics to explore their quan-
tum nature [1–3]. It has shown impeccable performance is
dealing with a problem with large degrees of freedom, where
extracting an effective model is practically impossible. It has
been adopted as a viable alternative for exploring electronic
properties [4–7] as well as transport properties [8–11]. Its
inherent ability to deal with a high-level nonlinearity makes
it quite successful in a highly nontrivial physical problem,
such as predicting different phases of matter [12,13] and their
topological characterization [14–16]. In addition to playing
a crucial role in discovering new materials as well as map-
ping their quantum features [17], this has been instrumental
in designing new experiments to unravel their quantum na-
ture [18]. Although such automatization makes it possible to
scan through a huge configuration space, it also has a risk
of missing exotic configurations containing significantly new
physics. The occurrence of such configurations is statistically
insignificant and can be easily overlooked in a learning pro-
cess. Identifying these rare configurations therefore can hold
a key to discovering new physics.

In this article, we present an alternative paradigm, namely,
anomaly detection [19–22], which is particularly suitable for
detecting such special configurations. The main advantage of
anomaly detection with respect to conventional classification
schemes is that here one does not need the a priori knowledge
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of the data points that are uncharacteristic for a specific data
set, namely, anomaly. The training is done with normal data.
The anomalies are heterogeneous and remain unknown until
their occurrence. For example, consider the ECG of a regular
heart beat which shows a periodic pattern. An anomaly detec-
tion algorithm trained with the normal heart beat can identify
the irregularities which have not been observed before and can
predict signatures of heart problems [23,24]. Due to the rarity
of anomalous events, anomaly-detection data sets are heavily
imbalanced. It is, therefore, a highly complex task to formally
describe an anomaly [25].

In this work, we demonstrate how anomaly detection can
be exploited to reveal subtle features of a condensed matter
system which can remain hidden from any conventional re-
gression or classification scheme. We consider the Anderson
model, where the distribution of the random impurity consti-
tutes the input parameter space. The output is the conductance
of the system which falls down significantly for strong impu-
rity strength. However, for a certain distribution, the system
might achieve a significantly larger transmission, which we
call anomaly. Such occurrence is statistically insignificant and
therefore almost impossible to anticipate beforehand. How-
ever, a configuration which can provide large conductance in
the presence of strong impurity can be quite useful in device
design. For example, disorder can enhance dampinglike spin-
orbit torque, which is responsible for electrical switching of
magnetization [26], or it can enhance the superconducting
nature [27] as well. On the other hand, for a weak impurity
strength, when the system is expected to have a high trans-
mission, the anomaly is defined as the configuration which
suppresses the conductance significantly. Such anomalies can
pose a hurdle in quantum optimization, even in the presence
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of weak impurity [28]. The main objective of the present work
is to systematically identify these anomalies with a machine
learning algorithm which can be utilized to understand the
nature of such unusual configurations.

In this paper, we demonstrate the application of both a
classical [25] and quantum-classical hybrid anomaly detection
scheme [29–32] for physical problems that manifests anoma-
lous behavior as a complex function of a large number of vari-
ables. Taking the Anderson model as a prototype, we system-
atically show how an anomaly detection scheme can identify
the outliers without any prior knowledge of their existence.
We consider three methods, namely, isolation forest [33], au-
toencoder [34–36], and hybrid quantum-classical autoencoder
[32], and compare their performances in terms of suitable
performance metrics. Our analysis shows that the quantum
anomaly detection schemes perform better compared to their
classical counterpart due to their inherent ability to deal with
the complex feature mapping in the latent dimension. Note
that although the present work is focused on the anomalous
behavior of conductance due to impurity scattering, the frame-
work is applicable for detecting anomaly in any physical ob-
servable as a function of an arbitrarily large number of param-
eters and therefore would play an instrumental role in discov-
ering new exotic configurations for different physical systems.

II. MODEL AND METHOD

For our study, we consider the Anderson model given by

H = ε
∑

i

c†
i ci + t

∑

〈i, j〉
c†

i c j +
∑

i

Vic
†
i ci, (1)

where c†, c is the creation/annihilation operator. t is the
hopping parameter, which we choose to be −1. ε is the on-site
energy, which we choose as −4t . Vi in the on-site random
potential. For this study, we consider a 240 × 240 scattering
region and use it in a two-terminal device configuration
(Fig. 1). We choose a total of 80 impurities with the same
strength distributed within a 200 × 200 region in the center
[37]. We assign a constant negative value −V0 for all the
impurities. The Fermi level is kept at 0.0005t , which gives a
conductance of 1 in the clean limit. The zero bias conductance
of the system is given by

T = Tr[�1GR�2GA], (2)

where GR,A = [E − H − �R,A
1 − �R,A

2 ]−1 is the retarded/

advanced Green’s function of the scattering region.
�1,2 = i[�R

1,2 − �A
1,2], where �R,A

1,2 is the retarded/advanced
self-energy of the left/right electrode. For our calculation, we
use the tight-binding code KWANT [38], which uses scattering
wave function formalism to obtain these quantities. The local
density of states (LDOS) can be directly obtained from the
scattering wave function.

First we look at the variation of conductance with the
impurity strength. For that, we consider 2000 different im-
purity configurations (Fig. 1). From Fig. 1(a), one can see
that for a strong impurity strength, the conductance of the
system is more likely to be close to zero. The exact nature
of such a “far tail” can go beyond the log-normal distribution
[39] and depends on the material parameters. However, some
configurations can also give rise to a high value of conduc-
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FIG. 1. Distribution of conductance and schematic of the device
configuration. (a) Distribution of conductance for V0 = 0.9 (red) and
V0 = 0.3 (blue) for 2000 random configurations. Inset: the variation
of average conductance (solid black line, gray region shows the rms
deviation), with vertical red line denoting V0 = 0.3, 0.9. (b),(c) Two
configurations for V0 = 0.9, with LDOS (in gray scale) and con-
ductance (in legend). The green regions show the electrodes. The
red dots denote the impurities which are confined within the central
region marked by a black dashed line.

tance due to resonant scattering [40], although the probability
of such outcome is quite small. For strong impurity, we label
such outcome an anomaly. Similar behavior can be observed
with a weak impurity. The anomaly in this case is a configura-
tion that can completely suppress the current flow, resulting in
an insulating behavior. From Fig. 1, one can see that the impu-
rity configurations corresponding to a high (anomaly) and low
(normal) value of conductance do not have any characteristic
difference. It is therefore impossible to detect such anoma-
lous behavior with any conventional method only from the
knowledge of the distribution. In the following, we are going
to show how an anomaly detection algorithm can detect such
anomalies without any a priori knowledge of such outcome.

A. Classical anomaly detection

Here, we summarize two different classical machine learn-
ing methods that we use for anomaly detection. The first
method is called isolation forest (IF) [33], which is an unsu-
pervised anomaly detection algorithm that uses a random for-
est algorithm under the hood to detect outliers in the data set.
The algorithm tries to isolate the data points using decision
trees such that each observation gets isolated from the others.

The second method is called autoencoder (AE) [34–36],
which is a deep neural network architecture (Fig. 2). It aims
to learn a compressed representation for an input through
minimizing its reconstruction error [41,42]. It consists of two
parts—an encoder (e) and a decoder (d). The encoder learns a
nonlinear transformation e : X → Z , which projects the data
from the original high-dimensional input space X ≡ {x} to
a lower-dimensional latent space Z ≡ {z}. For our study, we
consider a latent space with four nodes. A decoder learns a
nonlinear transformation d : Z → X that projects the latent
vectors z = e(x) back into the original high-dimensional input
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FIG. 2. Schematic representation of an autoencoder. The input
data are compressed by the encoder and the decoder expands the
compress data to its original size. The intermediate space with com-
pressed dimension is called the latent space.

space X . This transforms the latent vector z = e(x) and recon-
structs the original input data as x̂ = d (z) = d[e(x)], where x̂
is the output corresponding to an input x. One can obtain a
more robust decoding of latent vectors with a variational au-
toencoder (VAE) [43], which is a neural network that unifies
variational inference approaches with autoencoders. For our
study, we focus only on IF and AE.

B. Hybrid quantum-classical autoencoder (HAE)

The quantum-classical hybrid anomaly detection scheme
[29–32] is the state-of-the-art approach which utilizes quan-
tum machine learning [44–48] along with its classical
counterpart. For our study, we use the hybrid classical-
quantum autoencoder (HAE) introduced by Sakhnenko et al.
in 2022 [32], which significantly enhances the performance
metrics of the anomaly detection compared to its fully clas-
sical counterpart. The HAE consists of a classical encoder,
a parameterized quantum circuit (PQC) [49], and a classical
decoder (Fig. 3). The input goes to the PQC via the encoder.
The PQC consists of quantum circuits containing different
rotation gates. After the blocks of quantum circuits, there are

FIG. 3. A schematic diagram of a hybrid classical-quantum
autoencoder (HAE) architecture [32]. The data coming from the clas-
sical encoder are embedded into the PQC. In PQC, the U1(θi j ) and
U2(φi j ) are the blocks of quantum circuits containing different rota-
tion gates with rotation parameters θ, φ. After the blocks of quantum
circuits, there are measurements followed by the postmeasurement
processing block (denoted as Post Process). After postprocessing, the
information is fed into the classical decoder.

measurements followed by the postmeasurement processing
block. After postprocessing, the information is fed into the
classical decoder.

It is worth mentioning that a PQC performs much better
compared to a classical circuit with equal dimension [32].
Schuld [50,51] showed a connection between the quantum
neural networks and kernel methods, where the quantum net-
works encode and process the data in a high-dimensional
Hilbert space through a highly nonlinear feature mapping.
This is classically intractable and only can be revealed
through the inner products and measurements of the quan-
tum states. In our case, the PQC in HAE also expands the
latent space into a higher-dimensional Hilbert space. There-
fore, its internal degrees of freedom increase, resulting in a
performance boost.

For HAE, we consider the same encoder and decoder as
the classical AE which is combined with a four-qubit PQC
(Fig. 3). The final quantum state is measured in the Pauli
Z basis, and the corresponding expectation value for each
qubit constructs the latent space for the anomaly detection.
This information is fed to the decoder via the postprocessing
module, which expands the compressed data to its original
size. The model is implemented using QISKIT [52] for our
analysis.

C. Training and testing of IF, AE, and HAE
for the anomaly detection

For the isolation forest (IF), we choose a training data set
with nominal data points only. After training the model, we
apply the trained IF model on the testing data and obtain
the predicted labels. For the AE and HAE, we first train the
networks with the above training data for 50 epochs with
batch size of 16 and learning rate 0.001, and then compute the
losses during training. We compute the mean-squared-error
loss (MSE), defined as

MSE = 1

n

n∑

i=1

(xi − x̂i )
2, (3)

where x and x̂ are the original and the predicted values of
the data points, respectively. By minimizing the above losses
for the training data, we search for a suitable threshold with
extensive empirical trials. Then we predict the outputs with
respect to this threshold from the training data and com-
pute the MSEs with respect to the actual training data. The
threshold is then defined by the ratio between the mean and
standard deviation of the MSEs. After defining the thresh-
old, we apply the trained model over the testing data and
predict the outputs. We compute the MSEs with the pre-
dicted data and the actual test data. For each prediction, if
the MSE is greater than the threshold, then we label it as an
anomaly/outlier; otherwise, it is labeled as a nominal/normal
data point. With the above training and testing procedure,
we finally compute the precision, recall, and F1 scores by
comparing the predicted labels and the actual labels of the
testing data.
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TABLE I. Performance metrics for anomaly detection IF, AE,
and HAE using two data sets (V0 = 0.3 and V0 = 0.9). Each value
shows the mean of the corresponding metric with their standard
deviations denoted in parentheses.

Set Metric IF AE HAE

Precision 0.474 (0.013) 0.494 (0.018) 0.484 (0.021)
V0 = 0.9 Recall 0.675 (0.067) 0.715(0.064) 0.748 (0.071)

F1 score 0.556 (0.029) 0.583 (0.032) 0.588 (0.037)

Precision 0.431 (0.015) 0.436 (0.009) 0.432 (0.008)
V0 = 0.3 Recall 0.497 (0.053) 0.595 (0.015) 0.618 (0.026)

F1 score 0.461 (0.031) 0.503 (0.008) 0.509 (0.014)

D. Performance measures of the model:
Precision recall and F1 score

A reliable metric is necessary for measuring the perfor-
mance of an anomaly-detection model, which should describe
the fractions of uncovered anomalies from a mixture of nom-
inal data and outliers. This is usually described by precision
(fraction of true anomalies of all discovered instances), recall
(fraction of true anomalies that were discovered), and their
harmonic mean F1 score [53,54], which are computed based
on the counts of true positives (TP), false positives (FP), and
false negatives (FN ), are defined as follows:

precision = TP

TP + FP
, recall = TP

TP + FN
,

F1 score = 2 × precision × recall

precision + recall
. (4)

An outcome with high recall and low precision contains more
results, but most of them would be wrong (FP). A low recall
and high precision, on the other hand, correspond to less
results, but most of them would be right (TP). The most desir-
able outcome is one with both high recall and high precision,
which in turn gives a high F1 score.

III. RESULTS

For our study, we consider a two-terminal device con-
figuration with randomly distributed 80 impurities (Fig. 1)
distributed over a 200 × 200 region. We use their coordinates
(x1, y1, x2, y2, . . . , total of 160 features) as the input and the
resulting conductance (T ) as the output. We consider two
magnitudes of the impurity (V0 = 0.3, 0.9) and calculate the
transmission of 5000 different configurations. The nominal
(0) and anomalous (1) data are identified with respect to the
dominant behavior. Considering the distribution of conduc-
tance in these two cases (Fig. 1), for V0 = 0.9, T > 0.5 is
considered as an anomaly, whereas for V0 = 0.3, T < 0.5 is
considered as an anomaly. In both cases, the total number
of anomalies is less than 10% of the entire data set. From
each data set, we prepare four different train-test samples
by randomly choosing 900 nominal and 100 anomalous data
points. Note that for anomaly detection, the training is done
only with nominal data. After training and testing with four
different sets, we compute the individual performance metrics
(precision, recall, F1 score) and present their respective mean
values and standard deviations in Table I.

V
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FIG. 4. Visualization of anomalies (red) and nominal data (light
blue). (a)–(d) V0 = 0.9 and (e)–(h) V0 = 0.3 data sets with respect to
two arbitrary input dimensions. (a) and (e) show the original input
data. (b) and (f) show the PCA of the original data. (c) and (g) show
the output from the classical encoder, and (d) and (h) show the output
from the PQC.

For AE, the input size is 160 (the original data size), which
is followed by the encoder containing three layers with 106,
56, and 4 nodes, respectively. The decoder is the mirror im-
age of the encoder, followed by the output layer of size 160
(Fig. 2). The latent size of our AE model is equal to 4 (Fig. 3).
The same classical encoder and decoder are used for HAE
with a four-qubit PQC. A bigger latent dimension could im-
prove the outcome; however, due to the limitation of compu-
tational resources, we cannot consider more than four qubits,
which also restricts the latent dimension of classical AE.

Figure 4 shows two data sets with respect to two arbitrary
features. Figures 4(a) and 4(e) show the original data where
the normal data (light blue) and anomalies (red) are uniformly
distributed over the whole space. Figures 4(b) and 4(f) show
the output from principal component analysis (PCA) [55],
which shows some clustering. This clustering is enhanced
with a classical AE [Figs. 4(c) and 4(g)] and even more with
a HAE [Figs. 4(d) and 4(h)]. In a higher-dimensional space,
such clustering leads to a better isolation of anomalies from
the normal data, which is also reflected in their individual
performance metric (Table I).

Note that the data set corresponding to V0 = 0.9 shows
better performance compared to the data set corresponding
to V0 = 0.3. This can be understood from the physical nature
of the problem as well. For V0 = 0.9, most of the configu-
rations lead to a localization reducing the conductance. This
is reflected in the large occurrence of zero conductance in
Fig. 1(a). Consequently, the anomaly is very well defined
since the majority of the data has the same characteristics.
Compared to that, the distribution due to V0 = 0.3 is rela-
tively flat, which makes the boundary between the nominal
and anomalous data more smudged. Nevertheless, both AE
and HAE show exceptional performance in both cases. To
benchmark our results, we compare them with the results
obtained with other data sets. We find that the performance
metrics obtained in Table I are comparable to what is observed
with standard publicly available data sets, and are even better
than the dataset used to detect anomaly for a gas turbine using
the same models [32]. From Table I, we see that the HAE is
performing better in terms of recall and the F1 scores keeping
the precision comparable to the other models. This is expected
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due to the inclusion of PQC, as we discussed previously. Due
to the limitation of computational resource, we are limited to
a four-qubit PQC, where the distinction between the perfor-
mance of AE and HAE is not very prominent. By increasing
the dimension of the PQC and the latent space, one can further
enhance the performance of the HAE.

IV. CONCLUSION

In this paper, we demonstrate the application of anomaly
detection to reveal exotic features of a condensed matter
system. We consider an Anderson model which shows two
kind of anomalies, i.e., a high transmission at strong impurity
strength and a low transmission at weak impurity strength.
Here we focus on three different approaches: isolation forest
(IF), which is based on the classification scheme random
forest; autoencoder (AE), which is based on a classical neu-
ral network; and the hybrid classical-quantum auto encoder
(HAE), which is a combination of a classical neural network
and a parametric quantum circuit. Unlike the classification
scheme, here the training is done only on the normal data and
the learning algorithm detects the anomalous outcome without
any prior knowledge of the anomaly class. The performance
of these algorithms is quantified with three different scores,
namely, precision, recall, and F1 score. Predicting such high
level of nonlinear outcome is only possible via a neural net-

work, which is also reflected in their individual scores. We
also demonstrate that the HAE performs better compared to
its classical counterpart (AE) due to its inherent ability to
deal with highly nonlinear feature mapping [50,51], which
cannot be achieved with a classical circuit with the same
dimension.

In the context of quantum transport, these anomaly de-
tection schemes can be instrumental in understanding the
behavior of Anderson localization, as well as the formation
of solitons in a disordered system. The method we present
here is quite generic and can be extended to other systems.
For example, in the case of optical lattices, this formalism can
be exploited to investigate the Anderson localization of light
[56]. For an abstract higher-dimensional phase space, where
the input parameters are made of different physical observable
such as electronic or chemical properties of a system, this
approach can reveal new exotic configurations which cannot
be explored with any conventional methods, and thus would
be instrumental in new physics hidden in remote corners of
complex phase space.
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