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Charge-resolved entanglement in the presence of topological defects
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Topological excitations or defects such as solitons are ubiquitous throughout physics, supporting numerous
interesting phenomena like zero-energy modes with exotic statistics and fractionalized charges. In this paper, we
study such objects through the lens of symmetry-resolved entanglement entropy. Specifically, we compute the
charge-resolved entanglement entropy for a single interval in the low-lying states of the Su-Schrieffer-Heeger
model in the presence of topological defects. Using a combination of exact and asymptotic analytical techniques,
backed up by numerical analysis, we find that, compared to the unresolved counterpart and to the pure system,
a richer structure of entanglement emerges. This includes a redistribution between its configurational and
fluctuational parts due to the presence of the defect and an interesting interplay with entanglement equipartition.
In particular, in a subsystem that excludes the defect, equipartition is restricted to charge sectors of the same
parity, while full equipartition is restored if the subsystem includes the defect, as long as the associated zero
mode remains unoccupied. Additionally, by exciting zero modes in the presence of multiple defects, we observe a
significant enhancement of entanglement in certain charge sectors, due to charge splitting on the defects. The two
different scenarios featuring the breakdown of entanglement equipartition are underlied by a joint mechanism,
which we unveil by relating them to degeneracies in the spectrum of the entanglement Hamiltonian. In addition,
equipartition is shown to stem from an equidistant entanglement spectrum.
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I. INTRODUCTION

Interfaces between different phases of matter are a bounti-
ful hunting ground for interesting physical phenomena. These
can occur in parameter space, wherein by tuning a control
parameter such as temperature one can enter a critical re-
gion exhibiting universal properties and gapless excitations,
or in real space by joining systems with distinct properties.
An especially intriguing example of the latter is when the
systems are in different topological phases. In these cases
the interfaces can also host gapless excitations which endow
distinct universal properties on the system. For example, the
edges of topological insulators host metallic states resulting
in quantized transport properties [1]. This behavior is not
limited to boundaries and can also occur in the bulk through
the introduction of certain topological defects.

The archetypal example of this is given in the
Su-Schreiffer-Heeger (SSH) model [2] (see Ref. [3] for a
pedagogical review) or its field-theoretic counterpart, the
Jackiw-Rebbi (JR) model [4]. The SSH model describes free
fermions on a lattice with the intersite hopping alternating
between weak and strong, while the JR model can be viewed
as the low-energy, continuum limit of the SSH describing
a massive Dirac fermion [5]. A topological defect known
as a soliton can be introduced in the former by changing
the pattern of the hopping strengths from, e.g., weak-strong
to strong-weak at a certain lattice site, and in the latter by
tuning the mass of the fermion so that it changes sign at a
certain point. These solitons mark a transition between a
topological and a nontopological phase and accordingly have
a number of notable features. In particular, they host localized

zero-energy modes, which are characteristic of a transition
between topological and nontopological phases, and they also
carry fractional charges [6]. In the continuum limit, these
fractional charges can be understood as a fractionalization of
the charge symmetry due to the presence of the soliton, so
that the local charge operator carries fractional eigenvalues
rather than just fractional expectation values [7]. The zero
modes are zero-energy excitations above this fractionally
charged background which themselves do not carry fractional
charge. They are related to Majorana zero modes, which have
been the focus of much attention in the last two decades from
a fundamental physics perspective and for their potential
application to fault-tolerant quantum computing [8,9].

A key diagnostic tool used in studies of topological sys-
tems is the entanglement entropy between a subsystem and its
complement [10]. By examining the spectrum of the reduced
density matrix of this subsystem, one can determine whether
the system is in a topological or trivial phase. Aside from this,
the entanglement entropy provides key information on numer-
ous properties of a system both in and out of equilibrium.
Recently, the introduction of symmetry-resolved (either Rényi
or von Neumann) entanglement entropies (SREs) [11,12] al-
lowed to better investigate the interplay between entanglement
and symmetries, becoming the topic of several studies.

SREs allow to study how entanglement varies between
different symmetry sectors and by now have been studied
in many different scenarios leading to some notable results,
such as the equipartition of entanglement entropy and a time
delay for the spreading of entanglement after a quantum
quench [11–52]. The study of entanglement across defects in
low-dimensional systems has also become a topic of interest
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lately, with several studies exploring how the presence of
a defect can affect the equilibrium and nonequilibrium
properties of a system and how this is manifest in the
entanglement entropy [53–61].

In this work, we initiate a study at the intersection of these
topics and examine symmetry-resolved entanglement entropy
across topological defects. In particular, using a combination
of exact and asymptotic analytical techniques complemented
by numerical analysis, we study the charge-resolved entangle-
ment in the SSH model containing solitons. We compare the
cases where the subsystem of interest is located in the topo-
logical or trivial phases, and the case where it straddles the
defect. We find that the unresolved quantities display a rather
mundane picture for such defects: the total entropy seemingly
being obtained by counting the number of strong bonds that
are cut by the subsystem boundaries [62,63]. In contrast, the
charge-resolved quantities present a much richer structure
when the subsystem contains a soliton, with entanglement
redistributed between its configuration and fluctuation parts.

The soliton also exhibits an interesting interplay with the
equipartition of entanglement. Entanglement equipartition,
i.e., the phenomenon where SREs are independent (to a lead-
ing order in subsystem size) of the charge sector, is known to
occur with respect to a U(1) symmetry in critical ground states
[13,17,21,39] and in ground states of massive field theories
[18,23,34], but has been observed to break down in certain
gapped ground states of lattice systems [19,20].

For the ground state we consider here, we find that en-
tanglement equipartition is broken in a pure subsystem, yet
it can in fact be restored by the presence of the defect. We
also explore the effect of zero modes on SREs in the presence
of multiple defects. Upon charge resolution, we observe a
significant enhancement of the entanglement entropy in cer-
tain charge sectors due to degeneracies and level crossings of
the entanglement Hamiltonian. Entanglement equipartition is
therefore absent in this case also. As the precise conditions for
equipartition remain unclear, especially for massive theories,
we aim to shed light on this question by studying a model
where equipartition and its breakdown cohabit.

Our results highlight a hidden entanglement structure that
can arise in the presence of topological defects which is only
revealed upon symmetry resolution. Although we focus on the
SSH model, we expect similar results to hold also for the JR
model. Moreover, even though the SSH and JR models are
noninteracting and contain only static solitons, they might be
viewed as self-consistent mean field solutions of interacting
systems containing solitons as dynamical excitations. There-
fore, our results can provide useful insight for their analysis,
as argued below.

The remainder of the paper is structured as follows. In
Sec. II we briefly review the notion of symmetry-resolved
entanglement entropy and set up some basic notation. Follow-
ing this, in Sec. III we introduce the Hamiltonian and discuss
its properties. In Sec. IV we establish some basic intuition
for our results by examining the fully dimerized limit of the
model, after which in Sec. V we perform an analysis away
from it using a combination of asymptotically exact analytical
results backed up by numerics. In Sec. VI, we examine the
influence of the zero modes on the entanglement spectrum,
and in particular the way in which the results are modified if

the zero modes change from being localized on a single defect
to a two-defect localized mode, that is, when the zero mode
has (not necessarily equal) support on two defects. Finally, in
Sec. VII we comment on the applicability of these results to
other models, including interacting ones, and conclude.

II. SYMMETRY-RESOLVED ENTANGLEMENT

As is widely known, when a system is in a pure state, the
bipartite entanglement of a subsystem A and its complement
Ā can be quantified by the Rényi entanglement entropies
[16,64–66]

Sn = 1

1 − n
log Trρn

A = 1

1 − n
logZn , (1)

defined in terms of the reduced density matrix (RDM) ρA or
the partition function Zn = Trρn

A of the subsystem A. From
those, in the replica limit n → 1 the von Neumann entropy

S = −TrρA log ρA (2)

is obtained.
The idea of explicitly considering the internal structure of

entanglement associated with symmetry was introduced in
Refs. [11,12]. In a symmetric state, the conserved charge Q̂
corresponding to the symmetry commutes with the density
matrix. Under general circumstances, we may decompose
Q̂ = Q̂A ⊕ Q̂Ā, with Q̂B acting only in region B = A, Ā. From
this, one finds that Q̂A commutes with the RDM,

[ρA, Q̂A] = 0 . (3)

Such commutation implies that ρA is block diagonal, each
block corresponding to an eigenvalue of Q̂A. Consequently,
the Rényi and von Neumann entropies can be decomposed
according to the symmetry sectors of Q̂A. The symmetry-
resolved Rényi and von Neumann entropies can be eventually
defined as

Sn(qA) = 1

1 − n
log

[Zn(qA)

Zn
1 (qA)

]
(4)

and

S(qA) = − ∂

∂n

[Zn(qA)

Zn
1 (qA)

]
n=1

(5)

in terms of the symmetry-resolved partition functions (SRPFs)

Zn(qA) = Tr
[
ρn

AP (qA)
]
, (6)

where P (qA) is the projector onto the sector corresponding to
the eigenvalue qA of Q̂A. Herein Z1(qA) � 1 is the probability
that a measurement of Q̂A returns the value qA. It appears in
(4) and (5) so as to properly normalize the reduced density
matrix in each charge sector.

The calculation of these symmetry-resolved quantities
would require, in general, the diagonalization of ρA and the
resolution of the spectrum in the conserved charge. How-
ever, an ingenious way to circumvent this difficulty is the
introduction of the charged moments [11], defined for a U(1)
symmetry as

Zn(α) = Tr
(
ρn

AeiαQ̂A
)
. (7)
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These are nothing but the Fourier transform of the desired
partition functions, i.e. [11],

Zn(qA) =
∫ π

−π

dα

2π
Zn(α)e−iαqA . (8)

The charged moments can be readily determined using well-
established methods on Rényi entropies, and their Fourier
transform can be computed thereafter.

A notable feature of SREs is that, in the case of the
von Neumann entanglement measures, we can relate the
symmetry-resolved and the total (unresolved) quantities as

S =
∑

qA

Z1(qA)S(qA) −
∑

qA

Z1(qA) logZ1(qA) = Sc + S f .

(9)

The contribution Sc is called the configuration entanglement
entropy and amounts to the entropy due to each charge sector
weighted with the corresponding probability [67,68], and S f

denotes the fluctuation (or number) entanglement entropy,
which instead takes into account the entropy due to the fluctu-
ations of the value of the charge in the subsystem A [67,69,70].
Symmetry-resolved entanglement recently became accessible
in different experimental platforms (see, e.g., Refs. [71–74]).

III. PARADIGMATIC MODEL OF TOPOLOGICAL
PHASES: THE SSH CHAIN

The SSH model describes the hopping of spinless free
fermions on a lattice with an alternating pattern of hopping
strength. In terms of the c†

j , c j spinless fermion creation and
annihilation operators at a lattice site j, the Hamiltonian of the
SSH model is defined as follows:

H = −t
L∑

i=1

[(1 − δ)c†
2i−1c2i + (1 + δ)c†

2ic2i+1] + H.c. (10)

Here, the hopping strength alternates between being t (1 − δ)
and t (1 + δ) (for δ > 0 these are, respectively, a weak bond
and a strong bond, and vice versa for δ < 0). We call δ

the dimerization parameter, and refer to δ = ±1 as the fully
dimerized case. We set periodic boundary conditions (PBC)
on a finite system via 2L + 1 ≡ 1. Equivalently, one can also
define a three-site Hamiltonian density hi(t, δ), written as

hi(t, δ) = −t[(1 − δ)c†
2i−1c2i + (1 + δ)c†

2ic2i+1] + H.c.,

(11)

in terms of which the Hamiltonian (10) reads as

H =
L∑

i=1

hi(t, δ). (12)

The peculiar dimerized structure of the Hamiltonian (10) is
illustrated in Fig. 1. For the SSH chain, it is customary to
introduce the notion of a superlattice in the form of unit cells
encompassing two neighboring sites. Throughout the paper,
we shall label the cell index with m = 1, . . . , L, and denote
the total number of cells with L. For (elementary) lattice sites,
we shall instead use the letters “i” and “ j,” with N ≡ 2L
denoting the system size. Using the superlattice structure,

FIG. 1. Illustration of the SSH model: single and double lines
denote hopping amplitudes between neighboring sites of magnitude
1 − δ and 1 + δ, respectively (t = 1). Lattice sites are indexed by
j = 1, . . . , N (N is the system size), while we use the index m =
1, . . . , L ≡ N/2 to refer to “cells” comprising two consecutive sites.
The particular alignment of the cells corresponds to the topological
phase of the model for δ > 0.

one can easily and naturally distinguish between the trivial
and the topological phases of the system, that is, whether the
intracell hopping or the intercell hopping is stronger, respec-
tively. These correspond to a negative or positive value of the
dimerization parameter δ.

The spectrum of the model, when PBC are imposed, is
given in terms of the following dispersion relation, consisting
of two bands:

εk = ±2t

√
cos2

(
k

2

)
+ δ2 sin2

(
k

2

)
. (13)

We can label the single-particle energies in terms of the mo-
mentum k, and the corresponding single-particle states are
delocalized plane-wave eigenfunctions. Here, we note that the
system has a band gap of � = 4t |δ| at k = ±π and the spec-
trum is symmetric around ε = 0, due to the chiral symmetry of
the model. Notice that a well-known fingerprint of topological
phases is that a system with finite length hosts zero-energy
edge states. Accordingly, in the topological phase and when
open boundary conditions (OBC) are considered, the above-
mentioned zero modes are present in the spectrum and they
are localized at the edges of the system. The localization
length of these modes can be computed from the condition
ε(k∗) = 0, which gives k∗ = ± 2i artanh(δ) ± π . When k∗
is substituted into the plane-wave function, the localization
length is eventually given by

ξ−1 = 2 artanh(δ) , (14)

and the envelope of the wave function approximately reads as
exp(−m/ξ ). These states are mapped to themselves under the
chiral symmetry.

A defect in the SSH Hamiltonian can be realized by chang-
ing the dimerization pattern starting from a certain site. At
the defect, the phase changes from topological to trivial, and
the model hosts a zero-energy mode akin to the edge mode
described above. The localization length of such modes is
also given by ξ . However, because of the superlattice structure
imposed on the model, when using PBC, only an even number
of defects can be present in the system.

For concreteness, we assume without loss of generality
that δ > 0, and distinguish between one-site (1s) and three-
site (3s) defects, although both choices will lead to the same
physical results. A three-site defect (or trimer) is obtained by
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(a)

(b)

FIG. 2. (a) The cell structure superimposed on the SSH chain.
The example shown features a one-site (1s) defect and a three-site
(3s) defect. (b) The setup for the study of SREs in the SSH chain.
An interval [m, m + 
 − 1] consisting of 
 cells and an initial cell
index m making up the subsystem A is moved along the chain. The
interval is represented by a green rectangle with length 
 = 2 and its
initial index is m = 1, 3, and 5. It can be in the trivial (m = 5) or in
the topological phase (m = 1), or it can contain not more than one
defect (m = 3).

changing the dimerization pattern as

Hdef
3s =

∑
i� j

hi(t, δ) +
∑
i> j

hi(t,−δ), (15)

such that our Hamiltonian is made of three consecutive sites
connected by strong bonds. Its name is understood from the
fully dimerized limit, for which a 3s defect corresponds to
a chain of three connected sites. Note that in the above equa-
tion we only specified a segment of the Hamiltonian and hence
the lower and upper limits for the summation are not manifest.
The other type of defect is

Hdef
1s =

∑
i� j−1

hi(t, δ) − [t (1 − δ)c†
2 j−1c2 j + H.c.]

− [t (1 − δ)c†
2 jc2 j+1 + H.c.] +

∑
i� j+1

hi(t,−δ), (16)

consisting of three consecutive sites connected by weak
bonds. We refer to it as a one-site (1s) defect, given that
the corresponding configuration in the fully dimerized limit
contains a single site. Similarly, the lower and upper limits for
the summation in Eq. (16) are not specified. An illustration
of the two types of defects for the SSH chain is shown in
Fig. 2(a). Regardless of the type of defect considered, each
one hosts exactly one zero-energy mode. In addition, the
trimer introduces two other modes whose energies are above
and below the two bands, forming a particle-hole pair.

IV. SYMMETRY-RESOLVED ENTROPIES FOR THE SSH
CHAIN: THE FULLY DIMERIZED LIMIT

Since the SSH chain describes a noninteracting system
of spinless fermions, the computation of the reduced density
matrices for states in the form of a Slater determinant can
be obtained by considering the correlation matrix Ci j [75],
defined as

Ci j = 〈�|c†
i c j |�〉, (17)

where the indices i, j ∈ A refer to (elementary) lattice sites
in the subsystem, and |�〉 is the many-body wave function
of the system. Due to the Slater determinant form, the above
formula can be rewritten in terms of the wave functions φk of
the single-particle states that are occupied within the many-
body ground state,

Ci j =
∑

k

〈φk|i〉〈 j|φk〉, (18)

where |i〉 = c†
i |0〉. Crucially, the single-particle eigenval-

ues εi of the entanglement Hamiltonian ĤA = − log ρA and
the eigenvalues λi of the correlation matrix are related by
Peschel’s formula [75]

λi = 1

exp (εi ) + 1
, (19)

and the conventional Zn partition function can be written in
terms of the eigenvalues of the correlation matrix as

Zn =
∏

i

[
λn

i + (1 − λi )
n
]
. (20)

Regarding the symmetry-resolved quantities, a similar expres-
sion can be written for the charged moments defined in Eq. (7)
[11], namely,

Zn(α) =
∏

i

[
λn

i eiα + (1 − λi )
n
]
. (21)

The number of terms in the product equals the length of the
subsystem size if the cell structure is not considered, other-
wise, it is twice the length of the subsystem with respect to the
cells. We recall that the SRPFs Zn(qA), defined in Eq. (6), are
obtained from the charged moments via a Fourier transform
[see Eq. (8)].

In the following, we consider the total and symmetry-
resolved entropies for the single interval

A = [m, m + 
 − 1], (22)

which begins at the mth unit cell and contains 
 cells. For
transparency, we consider systems with only two defects, and
assume throughout the paper that the subsystem A never con-
tains more than one defect. We illustrate this in Fig. 2(b).

In the fully dimerized limit of the SSH chain (δ = 1),
the expressions for the SREs greatly simplify. Although the
calculation at δ = 1 is somewhat straightforward, we find it
instructive as it highlights some of the key insights that were
used to tackle the problem when δ 	= 1. This holds true also in
the presence of defects as long as the system is at half-filling
or slightly below it, i.e., when either only one or none of the
zero-energy modes are excited. The discussion of the model
in the presence of excited zero modes is, however, postponed
to Sec. VI.

A. Correlation matrices

In the fully dimerized limit, the properties of the correla-
tion matrix do not depend on m, i.e., on the particular starting
point of the interval (22), but only on its length 
 and on
whether A cuts a portion of the trivial phase (triv), of the
topological phase (top), or a change between the two by strad-
dling a defect (def). Irrespective of which of these cases is
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considered, the correlation matrix is a 2
 × 2
 matrix and can
be simply written in terms of block matrices. We distinguish
these cases by denoting the corresponding matrices as Ctriv,
Ctop, and Cdef, whose explicit expressions can be found in
Appendix A. Given the results for the correlation matrices,
it is easy to determine their eigenvalues and hence various
entanglement measures. The eigenvalues (with the associated
degeneracy) are

spect(Ctriv) =
{

0, deg : 


1, deg : 


spect(Ctop) =

⎧⎪⎨⎪⎩
0, deg : 
 − 1
1/2, deg : 2
1, deg : 
 − 1

spect(Cdef) =

⎧⎪⎨⎪⎩
0, deg : 


1/2, deg : 1
1 deg : 
 − 1.

(23)

We can see that the two types of defect give rise to the same
multiplicities (see Appendix A).

B. Total entropies

Given the eigenvalues of the correlation matrices, the par-
tition functions Zn for the interval A can be written as

Zn =

⎧⎪⎨⎪⎩
0, triv(

1
2

)2n−2
, top(

1
2

)n−1
, def.

(24)

From here we easily obtain

Sn =
⎧⎨⎩0, triv

2 log 2, top
log 2, def

(25)

that is, the von Neumann entropy and all the Rényi entropies
exhibit the same behavior. This result is very natural, as is
its physical interpretation: the entropy of an interval can be
obtained by counting cut (strong) bonds, and each such bond
contributes with a log 2. In the topological phase, two bonds
are cut, while in the trivial phase no bond is cut. When the
defect is contained in the interval, the dimerization pattern
changes between the two boundaries of the interval, and there-
fore only one bond is cut.

Therefore, the total entropy of an interval with a defect
is essentially the average of the corresponding entropies in
the trivial and topological phases. From the point of view
of the total entropies, the defect is thus a rather mundane
object. This finding shall be demonstrated to hold also away
from the fully dimerized limit in the subsequent section.
Despite this, as we shall shortly discuss, the symmetry-
resolved versions of the entropies display a refined (and
more illuminating) structure depending on the location of the
subsystem.

C. Symmetry-resolved entropies

We start our analysis by computing the charged moments,
which are

Zn(α) =

⎧⎪⎪⎨⎪⎪⎩
eiα
, triv

eiα

(

1
22n eiα + 1

22n−1 + 1
22n e−iα

)
, top

eiα(
−1/2) 1
22n (eiα/2 + e−iα/2), def.

(26)

From these, the SRPFs are obtained as follows. First, recall
that the average charge 〈Q̂A〉 in the subsystem is essentially

 because the system is (slightly below) half-filling. More
precisely,

〈Q̂A〉 =
⎧⎨⎩
, top


, triv

 − 1/2, def.

(27)

The SRPFs are given by

Z triv
n (qA) =

{
1 for qA = 
,

0 otherwise (28)

for the trivial phase,

Z top
n (qA) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

22n for qA = 
 − 1,
1

22n−1 for qA = 
.
1

22n for qA = 
 + 1,

0 otherwise

(29)

for the topological phase, and

Zdef
n (qA) =

⎧⎪⎨⎪⎩
1
2n for qA = 
 − 1,

1
2n for qA = 
,

0 otherwise,

(30)

when the defect is contained in the interval. In particular,
substituting n = 1 in the SRPFs, we obtain the probability
distributions for the expectation value of the restricted charge
operator Q̂A. Namely, in the trivial phase qA = 
 with no
other possibilities, while in the topological phase qA = 
 with
probability 1

2 and qA = 
 ± 1 with probability 1
4 each. For the

case of a defect without an occupied zero mode, we find that
qA = 
, 
 − 1 with equal probability 1

2 .
Combining these together and using Eq. (4), we find the

symmetry-resolved entropies:

Striv
n (qA) = 0 ∀ qA (31)

for the trivial phase,

Stop
n (qA) =

{
log 2 for qA = 
,

0 otherwise (32)

for the topological phase, and finally

Sdef
n (qA) = 0 ∀ qA. (33)

Based on these formulas, it can be seen how the SREs for the
interval give a refined information on the topology and on the
defect content of the subsystem. Indeed we have arrived at a
somewhat unexpected result: whereas to calculate the unre-
solved entropies we only count the cut bonds and we obtain
that the defect result is half of the topological result, this is not
the case for SREs since Sdef

n (
) = 0 while Stop
n (
) = log 2.
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FIG. 3. Total (S), configuration (Sc) and fluctuation (Sf ) en-
tropies for the interval A in Eq. (22), shown as function of the interval
position m along the chain. We consider the fully-dimerized limit
δ = 1 of a SSH chain of length N = 2L = 400 and hopping t = 1,
and we set the subsystem size to 
 = 20. PBC are imposed such that
the model contains two 1s defects at distance L (red dashed vertical
lines). The system has L − 1 excitations, such that the two-fold
degenerate zero modes are not occupied.

To understand this further, we specialize to the von Neu-
mann entropy and we recall its decomposition given in
Eq. (9). From this we see how the fluctuation and con-
figuration entropies give different contributions and play
a different role in the makeup of the total entropy.
Specifically,

Striv
f = Striv

c = 0 (34)

for the trivial phase,

Stop
f = 3

2 log 2, Stop
c = 1

2 log 2 (35)

for the topological phase, and finally

Sdef
f = log 2, Sdef

c = 0. (36)

In particular, the configuration entropy is nonvanishing only
in the topological phase of the model. This means that the
nonvanishing value of the total entropy with the defect must
originate from the fluctuation part only. These findings are
confirmed by the numerical results shown in Fig. 3.

V. AWAY FROM THE FULLY DIMERIZED
LIMIT OF THE SSH CHAIN

We now move on to considering the SSH model when the
Hamiltonian of the model (10) involves generic values of the
dimerization parameter δ, away from the fully dimerized limit.
Without loss of generality, we restrict our discussion to the
regime 0 < δ < 1. First, in Sec. V A, we derive analytical
expressions for the charged moments and SREs, and test them
against numerical results. Aiming to put these results in a
more general context, in Sec. V B we present an argument
motivated by a statistical mechanics perspective, which re-
lates general properties of the entanglement spectrum to the
observation of entanglement equipartition or its breakdown.

A. Charged moments and SREs: Analytical results

In this subsection, we derive asymptotically exact formulas
for the charged moments and for the SREs of the interval

A defined in Eq. (22), valid when the length 
 (in terms of
unit cells) of A is large. The system is again slightly below
half-filling, that is, zero modes associated with defects are
not yet excited. Our derivation is based on exact results for
the entanglement spectrum [76] which have been obtained for
half-infinite subsystems via corner transfer matrix methods.
Similar to the unresolved entropy calculation performed in
Ref. [76], here the charged moment for a finite interval is
readily obtained by combining the contributions from the two
edges of the interval, where the contribution of each edge
is related to the charged moment of a half-infinite subsys-
tem embedded in an infinite SSH chain. The legitimacy of
this procedure is based on the gapped nature of the model
and on the consequence that the entanglement quickly sat-
urates to a constant with increasing 
. Accordingly, for a
large subsystem, entanglement is attributed to the two edges,
whose contributions are independent from one another when

 → ∞. It also follows that, for finite subsystems, the fol-
lowing results are exponentially accurate due to the finite
correlation length � of the ground state.

The essential steps in our derivation are thus to first identify
the individual contributions of cut weak and strong bonds,
appropriately combine them, and finally attribute the obtained
quantities to intervals in the topological and in the trivial
phases of the model, or to intervals containing a defect (hence
involving spatial regions both in the topological phase and in
the trivial phase).

Given the single-particle eigenvalues {εi} of the entangle-
ment Hamiltonian associated with A, the charged moments
correspond to

Zn(α) =
∏

i

(1 + e−nεi+iα )

(1 + e−εi )n
, (37)

as can be readily verified from Eqs. (19) and (21). The ques-
tion of calculating the charged moments therefore boils down
to an exact computation of the single-particle entanglement
spectrum together with an asymptotic analysis of the product
appearing in Eq. (37).

In Ref. [76] it was shown that the entanglement spectrum
for a large but finite interval can be expressed as the direct
combination of the entanglement spectra of two half-infinite
subsystems, namely, the subsystem obtained by fixing the
right boundary of the interval and taking the left bound-
ary to −∞ and the subsystem obtained by fixing the left
boundary and taking the right one to ∞. In other words,
the charged moment can be decomposed into two indepen-
dent contributions arising from its left and right boundaries,
Zn(α) = Z left

n (α)Z right
n (α), and each of the two contributions

can be expressed through Eq. (37) by plugging in the spectrum
associated with the appropriate half-infinite subsystem.

The entanglement spectrum for a half-infinite subsystem
can obviously depend only on the type of bond that is cut by
its boundary, meaning that it comes in two possible forms. In
particular, for a cut at a strong bond we have the (nondegen-
erate) spectrum [76]

εl = 2lε, l = 0,±1,±2, . . . (38)

while for a cut at weak bond we have

εl = (2l − 1)ε, l = 0,±1,±2, . . . (39)
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again with no degeneracy. The level separation is set by ε =
π I (k′)/I (k), where k = (1 − δ)/(1 + δ) and k′ = √

1 − k2,
and where I (k) is the complete elliptic integral of the first
kind,

I (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

. (40)

In what follows, we will also use the Jacobi theta functions
[77] θ2(ω|ζ ) and θ3(ω|ζ ) (their explicit definitions are given
in Appendix B 1), as well as the notation θ j (ζ ) = θ j (0|ζ ).

In Appendix B 1, we derive the contribution of each type
of boundary to the overall charged moment of the interval,
using the entanglement spectra given in Eqs. (38) and (39).
The contribution of a boundary located at a strong bond is
found to be

Zstrong
n (α) ∝ 1

2(n−1)/3

(
k′n

knk′
nk2n

)1/6 θ2
(

α
2 |e−nε

)
θ3(e−nε )

, (41)

while the contribution of a boundary located at a weak bond
is

Zweak
n (α) ∝ 1

2(n−1)/3

(
knk′n

knk′
n

)1/6 θ3
(

α
2 |e−nε

)
θ3(e−nε )

, (42)

where we defined kn and k′
n =

√
1 − kn

2 through the relation
nε = π I (k′

n)/I (kn). In both cases, the proportionality constant
is a phase factor of the form eiα� , where � effectively counts
the number of negative pseudoenergies of the entanglement
Hamiltonian, and is thus related to the finite length 
 of the
subsystem (see Appendix B 1). This phase factor is therefore
ill defined when considering the independent contribution of
each boundary, but its overall contribution to the charged
moment can be determined simply by observing that it sets
the value of the average charge in the subsystem.

More precisely, in order to determine the charged moment
of the subsystem, we need to multiply the two boundary
contributions [given by Eqs. (41) and (42)] according to the
type of bonds that these boundaries cut, and then multiply this
product by exp(iα〈Q̂A〉) to obtain the exact asymptotic result.
The average charge 〈Q̂A〉 is given in Eq. (27). This procedure
can also be seen as one that arises from the requirement that
the following results for the charged moments converge to
those derived for the fully dimerized limit [Eq. (26)] in the
limit δ → 1 (corresponding to ε → ∞).

In total, when the subsystem does not contain a defect, for
the trivial and the topological phase the calculation simply
amounts to squaring the boundary contribution of a weak bond
or a strong bond (respectively), and setting the multiplicative
phase factor to eiα
. If the subsystem does contain a defect,
we need to multiply the contributions of a strong bond and a
weak bond, with the phase factor set to eiα(
−1/2). Therefore,
we obtain

Z top
n (α) = eiα


4(n−1)/3

(
k′n

knk′
nk2n

)1/3
[

θ2
(

α
2 |e−nε

)
θ3(e−nε )

]2

,

Z triv
n (α) = eiα


4(n−1)/3

(
knk′n

knk′
n

)1/3
[

θ3
(

α
2 |e−nε

)
θ3(e−nε )

]2

,

Zdef
n (α) = eiα(
−1/2)

4(n−1)/3

(
k′n

knk′
nkn/2

)1/3

× θ2
(

α
2 |e−nε

)
θ3

(
α
2 |e−nε

)
[θ3(e−nε )]2 . (43)

A noteworthy observation is that the logic leading to the for-
mula for charged moments for an interval containing a defect
also implies that the corresponding entanglement spectrum, in
the asymptotic limit, can be simply written as

εl = lε, l = 0,±1,±2, . . . (44)

as it is a direct combination of the spectra in Eqs. (38) and
(39). The spectrum in Eq. (44) is a simple modification of
Eq. (38), the spectrum arising from a single boundary at a
strong bond. This finding is also confirmed numerically in
Sec. VI.

We can now determine the SREs away from the dimerized
limit by performing the Fourier transform of the charged
moments in Eq. (43). In Appendix B 2, we explain how the
Fourier transform of Eq. (8) can be computed analytically in
this case. Defining �q = qA − 
, for both the topological and
the trivial cases, we find that the SRPFs depend only on the
parity of �q, apart from an overall Gaussian multiplicative
factor (centered at �q = 0). Namely, our computation yields

Z top
n (qA) = e− 1

2 nε (�q)2

4(n−1)/3[θ3(e−nε )]2

(
k′n

knk′
nk2n

)1/3

×
{

θ3(e−2nε ), �q is odd

θ2(e−2nε ), �q is even

Z triv
n (qA) = e− 1

2 nε (�q)2

4(n−1)/3[θ3(e−nε )]2

(
knk′n

knk′
n

)1/3

×
{

θ2(e−2nε ), �q is odd

θ3(e−2nε ), �q is even.
(45)

In contrast, when the subsystem contains a defect, the sectors
do not split according to their parity, and the SRPFs are
given by

Zdef
n (qA) = e− 1

2 nε (�q+ 1
2 )2

θ2(e−nε/2)

4(2n+1)/6[θ3(e−nε )]2

(
k′n

knk′
nkn/2

)1/3

. (46)

The SRPF therefore simply corresponds to a Gaussian distri-
bution function centered at �q = − 1

2 .
The results of Eqs. (45) and (46) allow us to directly write

down the Rényi SREs for all cases:

Stop
n (qA) = σn + 1

1 − n

⎧⎨⎩log
[

θ3(e−2nε )
[θ3(e−2ε )]n

]
, �q is odd

log
[

θ2(e−2nε )
[θ2(e−2ε )]n

]
, �q is even

Striv
n (qA) = σn + 1

1 − n

⎧⎨⎩log
[

θ2(e−2nε )
[θ2(e−2ε )]n

]
, �q is odd

log
[

θ3(e−2nε )
[θ3(e−2ε )]n

]
, �q is even ,

Sdef
n (qA) = σn + 1

1 − n
log

[
2n−1θ2(e−nε/2)

[θ2(e−ε/2)]n

]
,

(47)

165406-7



HORVÁTH, FRAENKEL, SCOPA, AND RYLANDS PHYSICAL REVIEW B 108, 165406 (2023)

where we introduced the notation

σn = 1

1 − n
log

[
[θ3(e−ε )]2n

[θ3(e−nε )]2

(
knk′n

4n−1knk′
n

)1/3
]
. (48)

An analytic continuation to n = 1, which produces the von
Neumann SRE, can in principle be done using the identity
kn = [θ2(e−nε )/θ3(e−nε )]2 [77].

Based on the exact results for the SREs in Eq. (47),
we observe the emergence of novel features that were ab-
sent in the δ = 1 case since more than one charge sector
has non-vanishing contributions. In particular, an interesting
connection can be made between the topological phase and
the trivial phase. In the trivial phase, we find that charge
sectors with 〈Q̂A〉 ± (2q − 1) for q ∈ N all have an equal
contribution, which is much larger than the equal contri-
bution of sectors with 〈Q̂A〉 ± 2q, while in the topological
case the opposite is true. That is, we can observe that, in
the topological and trivial phases, the overall entanglement
equipartition is broken, but there is exact equipartition within
each charge-parity sector. Moreover, the value of an even-
charge SRE in the topological phase is equal to that of an
odd-charge SRE in the trivial phase, and vice versa. Interest-
ingly, in the presence of the defect, all charge sectors have
an equal contribution, that is, the conventional equipartition
of entanglement is found. This fact is worth stressing since
it means that for the SSH model, the entanglement equipar-
tition in the usual sense is only present if the subsystem
includes a defect (as long as the associated zero mode is
not excited).

The exact results for the SREs in Eq. (47) are visualized
in Fig. 4. We cross-checked these results, along with the
results for the total entropies [obtained from (43) at α =
0 and from (1) and (2)], against exact numerical compu-
tations of the correlation matrix after determining first the
single-particle eigenstates of the Hamiltonian numerically and
applying Eq. (18). As shown in Fig. 4, the agreement is excel-
lent thereby justifying our expressions for the charge moments
and the SREs. For a simplified presentation, we only dis-
play the analytical predictions for the entropies, although our
analytical results nicely agree with the numerically obtained
probability distribution as well.

From these results, we once again observe a finer struc-
ture of the entanglement which is revealed when considering
symmetry resolution. In particular, the total entropy of the
interval with a defect is again simply the sum of the
contributions of a weak and a strong bond. However, we
observe that, as in the fully dimerized case, the entropy
redistributes between its configuration and fluctuation parts
in the different regimes. Indeed, even though for 0 < δ <

1 we find a nonvanishing configuration entropy when the
defect is included in the interval, its value is strongly sup-
pressed compared to the fluctuation entropy. This suppression
is more significant in the trivial phase and it turns out
to give a considerable contribution only in the topological
phase.

Additionally, we mention that the behavior of the SRPFs
Zn(qA) remains qualitatively very similar to the case of the
fully dimerized limit. In particular, the probabilities of the

 ± �q charge components without the defect are strongly

FIG. 4. (a) Total (S), configuration (Sc), and fluctuation (Sf )
entropies for the interval A in Eq. (22), shown as function of the
interval position m along the chain. We set up the system as in Fig. 3
but with dimerization parameter δ = 0.3. (b) Symmetry-resolved
entanglement for different values of charge �q = qA − 
 for the
interval A in Eq. (22), shown as function of the interval position
m along the chain. In both panels, horizontal dashed lines show the
asymptotically exact values of the entropies. The red dashed vertical
lines mark the location of the 1s defects.

suppressed for �q � 2, although nonzero. Similarly, in the
presence of the defect, the dominant contributions are at-
tributed to the sectors with charge 
 and 
 − 1.

B. Statistical mechanics perspective
on entanglement equipartition

It is illuminating to note that the source of the parity
patterns that were observed in Sec. V A can be understood
through a relatively simple statistical mechanics argument,
applied to the entanglement Hamiltonian and to its single-
particle pseudoenergies. The basic rationale behind this
argument is that the projection of the entanglement Hamil-
tonian onto a specific charge sector may be regarded as the
imposition of a constraint on the average charge, provided that
the ensuing charge fluctuations are very small.

This constraint amounts to replacing the entanglement
Hamiltonian ĤA = − log ρA with ĤA − μQ̂A, where μ is the
Lagrange multiplier associated with the constraint. This yields
the modified RDM

ρ̃A = 1

Nμ

exp(−ĤA + μQ̂A), (49)

where Nμ = Tr[e−ĤA+μQ̂A ]. μ can be thought of as a fictitious
chemical potential, which induces an effective shift of the
single-particle spectrum of ĤA. Namely, if {εi} is the original
single-particle entanglement spectrum, then under the con-
straint of an average charge equal to qA it becomes {εi − μ},
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with μ determined self-consistently through

qA =
2
∑

i=1

1

eεi−μ + 1
. (50)

If we now let S̃(qA) denote the entropy of ρ̃A, it is simply
given by

S̃(qA) = −
2
∑

i=1

1

eεi−μ + 1
log

(
1

eεi−μ + 1

)

−
2
∑

i=1

eεi−μ

eεi−μ + 1
log

(
eεi−μ

eεi−μ + 1

)
, (51)

which implies, in particular, that a certain pseudoenergy εi

will have a larger entropy contribution if it is closer to μ. As
the constraint on the average charge still allows charge fluc-
tuations, this entropy can be decomposed into contributions
from exact charge sectors in analogy to Eq. (9). That is, we
may write

S̃(qA) =
∑

q′
A

Z ′
1(q′

A)S(q′
A) −

∑
q′

A

Z ′
1(q′

A) logZ ′
1(q′

A). (52)

Here the primed notation Z ′
1 emphasizes that the charge dis-

tribution is not the same as in Eq. (9), but is rather modified
according to the average charge constraint.

Crucially, the SREs S(q′
A) in Eq. (52) are the same as those

that appear in Eq. (9). This can be seen by considering two
(many-body) eigenstates of ĤA, |φ1〉 and |φ2〉, that are within
the same charge sector, with charge q′

A. The probabilities
associated with these eigenstates then satisfy

〈φ j |̃ρA|φ j〉 = eμq′
A

Nμ

〈φ j |ρA|φ j〉, (53)

meaning that the chemical potential affects the probabilities of
states within the same charge sector by multiplying them by
the same factor, thus making the distribution (and hence also
the entropy) within each charge sector independent of μ.

Note that, in Eq. (52), the probability Z ′
1(qA) for measuring

the average charge should typically be dominant among the
modified charge distribution, thus facilitating the extraction of
S(qA) from Eq. (52), provided that one has proper knowledge
of all other terms appearing there. This becomes particularly
simple if charge fluctuations are negligible, entailing that
Z ′

1(qA) ≈ 1. This requires that μ would be sufficiently far
from any pseudoenergy level εi, so that any such level can
be approximately regarded as either fully occupied (if μ > εi)
or completely empty (if μ < εi).

To showcase the strength of this statistical mechanics pic-
ture, let us consider first the case of the trivial phase, where
the entanglement spectrum is the combination of two identical
edge contributions, given by Eq. (39). This doubly degenerate
spectrum is centered around 0, and it is easy to check that
in the case qA = 
, Eq. (50) necessarily gives μ = 0. Thus,
the chemical potential μ resides at the middle of a gap of
size 2ε in the spectrum. For larger ε (which is equivalent
to δ being closer to 1), the entropy contribution of each
pseudoenergy level diminishes according to Eq. (51), yet
charge fluctuations also become more suppressed and thus the

approximation S(qA = 
) ≈ S̃(qA = 
) for the SRE becomes
exact as δ → 1.

In contrast, if we choose to set the average charge to
qA = 
 + 1, then Eq. (50) states that μ should coincide with
the doubly degenerate level ε1, that is, μ = ε. The two lev-
els induce significant charge fluctuations, as each of them is
occupied with probability 1

2 . Assuming that all levels other
than the two at ε1 are either almost empty or almost full
(which becomes exact as δ → 1), we have Z ′

1(
 + 1) ≈ 1
2 and

Z ′
1(
) ≈ Z ′

1(
 + 2) ≈ 1
4 , while the latter two charge labels are

associated with negligible entropy. Plugging this into Eq. (52),
we find

S(qA = 
 + 1) ≈ 2S̃(qA = 
 + 1) − 3 log 2. (54)

In particular, since S̃(qA = 
 + 1) ≈ 2 log 2 given that the two
levels coinciding with μ have a maximal entropy contribution,
we observe that S(qA = 
 + 1) ≈ log 2, an enhanced value of
the entropy compared to S(qA = 
). Note that in Fig. 4, the
value of S(qA = 
 ± 1) in the regions corresponding to the
trivial phase is indeed very close to log 2, even though it was
computed for δ = 0.3, i.e., not particularly close to the fully
dimerized limit.

Since the entire single-particle spectrum is doubly degener-
ate, it is now straightforward to deduce the general rule stating
that S(qA) is enhanced for odd values of �q and diminished
for even values of �q. Furthermore, given that the spectrum is
also equidistant (referring to the distance between degenerate
pairs), indeed the entropies should be equal within each parity
sector, in agreement with our analytical result in Eq. (47). The
last observation is not exact for finite 
 even if we assume that
the finite entanglement spectrum remains equidistant (e.g.,
for even �q 	= 0, the average charge constraint will not fix
μ exactly at the center of the gap as it does for �q = 0),
but these effects arising from the spectrum edges should be
very weak, by the same reasoning that allowed us to compute
the finite-interval spectrum from the spectra of half-infinite
subsystems.

This argument applies by extension to the case of the topo-
logical phase, when considering that the doubly degenerate
entanglement spectrum of Eq. (38) is centered around two
levels at ε0 = 0, which both have a maximal entropy contri-
bution for qA = 
, as the corresponding chemical potential is
set to μ = 0. The same logic that was applied for the trivial
phase then dictates the opposite dependence on charge parity
for the topological phase. For the case where the subsystem
contains a defect, the exact equipartition simply stems by the
same logic from the fact that the entanglement spectrum {εl}
of Eq. (44) is nondegenerate and equidistant: for each choice
of qA, μ is set inside a different gap in the spectrum, but the
shifted spectrum {εl − μ} is always the same.

VI. EXCITING THE ZERO MODES OF THE DEFECTS

In the previous sections, we focused on cases where the
zero modes localized at the defects were not included in the
ground state, that is, the system was slightly below half-filling.
Here, we elaborate on the behavior of entropies when zero
modes are excited as well. The quantities we computed so far
remain essentially unaltered if the interval does not include a

165406-9



HORVÁTH, FRAENKEL, SCOPA, AND RYLANDS PHYSICAL REVIEW B 108, 165406 (2023)

defect supporting an excited zero mode. This is a consequence
of the fact that the zero modes are always exponentially lo-
calized and, hence, if the interval making up the subsystem
is far away from the defects, the impact of a zero mode is
exponentially small.

The main focus of our discussion below will therefore be
on the case where the subsystem contains a defect. The situa-
tion remains relatively simple when the zero mode associated
with the defect is fully occupied. In the fully dimerized limit,
all the formulas presented in Sec. IV C remain unchanged,
apart from those regarding the case of the defect: here
one simply has to substitute 
 → 
 + 1 in the equations of
Sec. IV C. Since the formulas for the charged moments and
partition functions (including the charge probability distribu-
tion) undergo a simple shift in the charge sector labeling, it
follows that the total and symmetry-resolved entropies remain
unaltered.

This statement holds true even away from the fully dimer-
ized limit, apart from exponentially small spatial regions in
which the support of the zero modes is split, so that they have
weight both inside and outside the interval. Apart from this,
once again the substitution 
 → 
 + 1 in Zdef

n (α) appearing
in Eq. (43) gives the correct result. The total and resolved
entropies remain again unaltered.

The situation becomes more intricate when the chain hosts
two defects, one inside the subsystem and the other outside
of it, and only a single zero mode is excited. A crucial phys-
ical feature is the fact that zero modes can be localized on
several defects. In particular, when we consider systems with
two defects that are away from the fully dimerized limit, the
two zero modes associated with the defects can be regarded
as localized wave functions denoted as |�1〉 and |�2〉. They
can be constructed following a similar logic to the treatment
of edge modes in Ref. [3]. The localization length of these
wave functions is given by Eq. (14), that is, they have a e−d/ξ

support on the other defect at distance d , which is negligible
for sufficiently large separation d , and which vanishes in the
thermodynamic limit.

However, for a finite-size system, the zero modes exhibit
a nonvanishing overlap with each other, and are related by
a nonzero matrix element of the Hamiltonian. This means
that their hybridization always yields an energetically more
favorable state, and the true eigenstates are always hy-
bridized states of |�1〉 and |�2〉. The energies of either
the truly localized or the hybridized states, however, are
exactly zero in the fully dimerized limit, or away from it
in the thermodynamic limit and for an infinite separation.
Otherwise, in general, these energies are found to be ex-
ponentially small when d � 1. This means that we can
eventually consider any superposition of the two zero modes,
either using the truly localized modes or the hybridized
ones. Such superpositions are exact eigenstates in the ther-
modynamic limit and in the fully dimerized case, and they
give an exponentially accurate O(e−d/ξ ) approximation of
them for large (but finite) systems with largely separated
defects.

Therefore, below we investigate the impact on SREs orig-
inating from the excitation of a generic superposition of the
two zero modes. In particular, we introduce the hybridization
parameter 0 � p � 1 such that the (approximate) zero mode

we excite is in the form

|�p〉 =
√

1 − p |�1〉 + eiφ√
p |�2〉. (55)

The wave function |�p〉 is then a superposition of the truly
localized zero modes with probability 1 − p on the first defect
and p on the second and eiφ is a phase factor that has no
effect on the quantities in which we are interested. By tuning
the parameter p, one can interpolate between a truly local-
ized mode (p = 0, 1) and a two-defect localized (with equal
weights) state (p = 0.5). It is useful to clarify that in reality
such hybridized zero modes, in the case of the SSH chain,
are known to be sensitive to the environment and in practice
only a truly localized state can be stable. Additionally, even if
we assume extreme isolation of the system as well as a very
fine-tuned chemical potential, preparing states like (55) can be
nontrivial: for two localized zero modes, their finite (though
exponentially small) overlap will result in the true ground
state having an equal support on the two defects. However, if
the chain contains more than two interfaces (defects and/or
edges) whose relative distances are not equal, their uneven
separations can generally result in the support of the ground
state on a certain defect being equal to any value between
0 and 1. In other words, the localization probability p can
be regarded as a truly physical parameter, at least from the
viewpoint of preparing nontrivial zero-mode states. For the
sake of simplicity and transparency, nevertheless, we continue
our investigations with a chain hosting only two defects, and
regard (55) as a given quantum state.

In the fully dimerized limit of the SSH chain, the excitation
of |�p〉 leads to one zero eigenvalue of the correlation matrix
Cdef, associated with, e.g., defect 1, changing to 1 − p and,
accordingly, the SRPFs change to

Z (p)
n (qA) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pn

2n for qA = 
 − 1,

(1−p)n+pn

2n for qA = 
,

(1−p)n

2n for qA = 
 + 1,

0 otherwise ,

(56)

from which the charge probability distributions are easy to
recover as well. The SREs read as

S(p)
n (qA) =

{
1

1−n log[(1 − p)n + pn] for qA = 
,

0 otherwise ,
(57)

and, taking n → 1,

S(p)(qA) =
{−p log p − (1 − p) log(1 − p) for qA = 
,

0 otherwise .

(58)

As we can see, the charge fluctuations behave in a natural way,
and the resolved and total entropies acquire an excess contri-
bution �S(p)

n = S(p)
n − S(p=1)

n compared to the p = 1 case (i.e.,
when the zero mode is empty), which reads as

�S(p)
n = �S(p)

n (qA = 
) = 1

1 − n
log[(1 − p)n + pn],

�S(p) = �S(p)(qA = 
) = −p log p − (1 − p) log(1 − p).

(59)
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FIG. 5. (a), (b) The charge-resolved partition functions Z1(qA)
for the interval A in Eq. (22) for different values of �q = qA − 
,
with p = 0.1 (a) and p = 0.5 (b), shown as function of the interval
position m. (c), (d) The corresponding total (S), configuration (Sc),
and fluctuation (Sf ) entropies. In all panels, we consider the same
setup of Fig. 3, but we excite L modes such that one of the twofold-
degenerate zero modes is occupied. The parameter p controls the
weight of the zero mode on the two 1s defects [see Eq. (55)].

In Fig. 5, we show the numerical results for the SRPFs
[Figs. 5(a) and 5(b)] and for the entropies [Figs. 5(c) and
5(d)] for two different values of p. Regarding the Z1 SRPFs,
we can observe natural changes in the probabilities of the
�q = ±1 sectors if the defect is included in the subsystem.
In particular, when p = 0.5 we can notice that the behavior
of the topological phase is extended also to the region where
the interval contains the defect. The features of the topolog-
ical phase originate from two cut bonds, whereas those of
the interval including a defect stem from one cut bond and
a “cut” zero mode or, in other words, from the fluctuation
of the two-defect localized zero mode through its nontrivial
RDM as a consequence of the spatial partitioning. When
the localization of the zero mode becomes asymmetric, this
fluctuation contribution alters and eventually vanishes, and
features similar to the trivial phases become prevalent. The
behavior of the SREs is also easy to interpret. The either
symmetrically or asymmetrically localized two-defect mode
has an additive and independent excess entropy contribution
dictated by Eq. (59). This contribution affects only an interval
containing the defect, that is, when the zero mode is cut by
the spatial partitioning, and it depends on the parameter p in a
simple fashion (in particular, it is maximal when p = 0.5).

Notice that, according to Eq. (59), when a zero mode is
close to being fully localized on one defect (p = 1 or 0), any
additional contribution in the entropies vanishes. Importantly,
charge sectors other than qA = 
 have no SRE contribution

at all. This latter statement is in sharp contrast with the results
found when the system is away from the fully dimerized limit,
which we now discuss.

We shall now demonstrate that, away from the fully dimer-
ized limit, the SREs very sensitively detect charge imbalance
on the two defects. In particular, if the zero-mode wave func-
tion only mildly deviates from a truly localized state, the SRE
always has a component (up to the maximum charge value
allowed in the subsystem) which is significantly enhanced,
even while the total entropy changes only negligibly. This
corresponds to a significant breaking of entanglement equipar-
tition.

More precisely, in Fig. 6 we observe a systematic redistri-
bution among charge sectors of the contribution coming from
the excited zero mode |�p〉. The farther the parameter p is
from 1

2 , the larger is the difference |�q| between the average
charge inside the interval and the charge label of the enhanced
SRE component. Based on the analytical argument below, we
expect that all Rényi entropies show an analogous behavior.

The aforementioned behavior originates in the simple man-
ner in which the two-defect zero mode |�p〉 modifies the
spectrum of the correlation matrix. Letting PA denote the
projection operator onto subsystem A, the correlation matrix
of Eq. (18) becomes

C(p) = PA

[∑
k

|φk〉〈φk| + |�p〉〈�p|
]
PA

= C(p=1) + (1 − p)|�1〉〈�1|, (60)

where |φk〉 are the extended lower-band single-particle eigen-
states that are all fully occupied at the ground state, and
where we used the fact that PA|�1〉 = |�1〉 and PA|�2〉 = 0,
up to exponentially small corrections. This latter property of
the localized zero modes, along with the fact that they are
orthogonal to all extended eigenstates |φk〉, also implies that
[C(p=1), |�1〉〈�1|] = 0 and C(p)|�1〉 = (1 − p)|�1〉.

In total, we conclude that the effect of the two-defect
localized mode amounts to the addition of an independent
level, with eigenvalue 1 − p, to the spectrum of the correlation
matrix, while all of its other eigenvalues do not change as
the parameter p is tuned. This is confirmed by examining
the bottom row of Fig. 6, where we plot the correlation
matrix spectrum for different values of p. For convenience,
we introduced the function − log sin(πλi), which resolves the
eigenvalues λi close to 1 and 0, allowing us to better visualize
the spectrum.

Equivalently, the single-particle spectrum of the entangle-
ment Hamiltonian features an additional pseudoenergy level
εzero = log[p/(1 − p)], which is determined by the value of
p, while all the other pseudoenergies are independent of it.
According to Eq. (37), this modifies the charged moments of
the subsystem into

Z (p)
n (α) = [pn + (1 − p)neiα]Zdef

n (α), (61)

where Zdef
n (α) is the exact result reported in Eq. (43). The ef-

fect on the SRPFs can then be deduced from Eq. (8), yielding

Z (p)
n (qA) = pnZdef

n (qA) + (1 − p)nZdef
n (qA − 1). (62)
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FIG. 6. Top row: total (S), configuration (Sc), and fluctuation (Sf ) entropies. Middle row: corresponding symmetry-resolved entanglement
for various �q = qA − 
. In both the first and the second rows, we consider a subsystem A = [m, m + 
 − 1] of size 
 = 20 and position m
varied along the chain. The data are obtained for the SSH model with PBC, system size N = 2L = 400, hopping t = 1, dimerization parameter
δ = 0.3, and two 1s defects located at sites L/4 and 3L/4. The spectrum contains L modes, i.e., it includes a linear combination of the two zero
modes localized at the defects, weighted by p [cf. Eq. (55)]. Different columns show the behavior upon varying of p. Bottom row: analytical
[diamonds, cf. Eqs. (19) and (44)] and numerical (circles) spectrum of the correlation matrix λi when the interval is centered around the
first defect, displayed using the function − log[sin(πλi )]. The horizontal gray line corresponds to the analytical prediction for the eigenvalue
associated with the zero mode − log[sin π (1 − p)].

Note that this indeed reduces to the result in Eq. (56) derived
in the fully dimerized case. Plugging in the result of Eq. (46),
we find that the SREs are given by

S(p)
n (qA) = Sdef

n (qA) + 1

1 − n
log

[
pn + (1 − p)nenε�q

(p + (1 − p)eε�q)n

]
= Sdef

n (qA) + 1

1 − n
log

[
1 + en(εzero−ε�q)

(1 + e(εzero−ε�q) )n

]
, (63)

and, taking the n → 1 limit,

S(p)(qA) = Sdef(qA) − 1

1 + eεzero−ε�q
log

(
1

1 + eεzero−ε�q

)
− eεzero−ε�q

1 + eεzero−ε�q
log

(
eεzero−ε�q

1 + eεzero−ε�q

)
. (64)

We remind the reader that the SREs Sdef
n (qA) and Sdef(qA) are,

in fact, independent of qA. Equations (63) and (64) show that,
for any n and within any charge sector, the two-defect zero
mode can lead to a maximal excess entropy of log 2. For a
certain value of p, the SRE S(qA) in a certain charge sector qA

can thus reach a maximal value that exceeds the SREs of the
other sectors. Moreover, for any choice of qA, this maximal

breaking of entanglement equipartition occurs exactly for the
value of p such that εzero = ε�q, that is, when εzero is de-
generate with another (p-independent) single-particle level of
the entanglement Hamiltonian. This behavior is illustrated in

FIG. 7. Asymptotically exact predictions for the SRE of the first
few charge sectors for an interval containing a defect, and in the
presence of an excited asymmetrically localized zero mode, based
on Eq. (64). Different colors correspond to different charge sectors;
vertical dotted lines indicate the values of p where the level crossings
occur, which indeed correspond to the maxima of the SREs.
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Fig. 7, and is confirmed numerically by the results presented
in Fig. 6.

This phenomenon may again be intuitively understood
through the statistical mechanics perspective introduced in
Sec. V B. There, we showed how the addition of an average
charge constraint to the RDM can turn the SRE of any charge
sector into the dominant contribution to the total entropy of
the constrained RDM [recall Eq. (52)]. This provides a way to
analyze the SRE in terms of the single-particle entanglement
spectrum {εi} and of a fictitious chemical potential μ set by
the constraint.

In the presence of the excited zero mode, the spectrum εi is
comprised of the pseudoenergies

εl = εl − ε
, 1 � l � 2
 − 1 (65)

which constitute the “bulk” spectrum, along with the single
independent level εzero. The “bulk” spectrum in Eq. (65) was
inferred from the (in principle infinite) spectrum of Eq. (44),
by taking into account the appropriate dimension of the
entanglement Hamiltonian (which should correspond to 2


single-particle modes in total). It is therefore important to note
that Eq. (65) correctly captures the pseudoenergies away from
the edges of the spectrum, where deviations are expected to
be observed (see Ref. [76] and Fig. 6). As p can be modified
freely in the ground state, we may think of εzero as a free
parameter that can be varied between −∞ (corresponding
to p = 1) and ∞ (corresponding to p = 0). Hence, given a
specific choice of an average charge qA, the choice of εzero

will obviously determine the value of μ through Eq. (50), as
the only free parameter left.

In Appendix C we show that, for any choice of εzero, we
have εqA−1 < μ < εqA+1, and that a significant entropy con-
tribution [according to Eq. (51)] comes from the levels εzero

and εqA if εzero ≈ εqA ≈ μ. Looking in the vicinity for a value
of εzero that maximizes the SRE S(qA), we then find that such
a maximum is reached when εzero = εqA = ε�q, showing the
correspondence between the entanglement spectrum degener-
acy and the breaking of entanglement equipartition.

It should be noted that this argument holds only when ε is
finite, and it therefore applies only away from the fully dimer-
ized limit. In particular, when δ → 1, the bulk eigenvalues of
the RDM approach either 0 or 1, and the corresponding pseu-
doenergies approach ±∞, which are to be compared against
εzero. This means, that as δ approaches 1, the maxima in the
charge sectors will appear at smaller (or closer to 1) values
of p, and when δ = 1 only one maximum corresponding the
qA = 
 sector can appear, namely, for p = 1

2 .
We also reiterate the fact that Eq. (65) fails to capture the

edges of the entanglement spectrum in a finite interval. Our
analysis of the equipartition breaking phenomenon should be
therefore seen as restricted to values of qA that are not near the
extremal possible values of the charge, namely, qA = 0, 2
.

Finally, we find it important to stress that the enhancement
for sectors with far-from-the-average charges are only present
in the SREs, and not in the SRPFs. In particular, the prob-
abilities for the charge fluctuations remain suppressed when
the deviation from the average charge value is large. This
guarantees that the total, fluctuational, and configurational
entropies do not change when p is very close to 0 or 1, even if
a certain SRE component is enhanced.

To summarize, in this section we treated the possibility of
the zero modes, which are localized at the topological defects,
being excited, and studied the effects of such excitations on
the SREs. We focused our analysis on an excited zero mode
that is supported on two defects, of which the subsystem
contains only a single defect [see Eq. (55), after which we
also briefly comment on the realization of such a state]. As
the main results of this section, Eqs. (63) and (64) show that in
this case entanglement equipartition is broken by an enhanced
entropy of a particular charge sector. The charge label of
this sector is not necessarily close to the average subsystem
charge, and is determined by the relative probability weight
of the zero mode on the two defects. We observed that the
enhanced SRE reaches a maximum exactly when the relative
weight is such that a degeneracy occurs in the entanglement
spectrum, thus relating these results to the findings of Sec. V.

VII. CONCLUSIONS AND OUTLOOK

Topological defects like solitons appear in many different
areas of physics, from gauge theories [78] and polymers [79]
to solid state physics [80] and quantum simulation [81–83].
In this work we have investigated such defects through the
lens of symmetry-resolved entanglement measures using the
paradigmatic example of the SSH model. We have seen, using
a combination of analytical techniques backed up by numer-
ical computations, that they support a hidden entanglement
structure which is unveiled by considering their interplay with
charge. In particular, while the total entropy only provides a
mundane viewpoint on the physics of the defects, we observe
a redistribution of the entanglement entropy between its con-
figurational and fluctuational components due to the presence
of the defect.

The symmetry-resolved entropies also unveil an unex-
pected connection between the entanglement properties of the
trivial and topological phases of the SSH chain. Namely, in
both phases all charge sectors of the same parity have an
equal entropy contribution, but the contributions of sectors
of the opposite parity differ (note that a similar behavior was
observed in the gapped XXZ chain for a subsystem with an
odd number of sites [20]). Thus, the conventional entangle-
ment equipartition is broken into an alternating pattern of two
possible values of the symmetry-resolved entropy. Moreover,
exactly the same two values appear in both phases, only the
alternating pattern is flipped. Intriguingly, the equipartition of
entanglement is recovered only when the defect is included in
the subsystem.

Furthermore, upon exciting the zero modes which are
localized on various defects, we can find a significant en-
hancement of the entanglement also in charge sectors which
are far from the average charge value. That is, the systematic
breaking of entanglement equipartition can be observed for a
subsystem with a defect and it is triggered by the asymmetric
localization of zero modes on topological defects. Keeping in
mind the fragile nature of these excitations, a simple physical
setup is also proposed in Sec. VI in which such asymmet-
rically localized modes can be present [see the discussion
following Eq. (55)].

Through a general argument inspired by statistical mechan-
ics, we were able to relate these instances of equipartition
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breakdown to degeneracies in the spectrum of the entangle-
ment Hamiltonian. More concretely, the entropy of a certain
charge sector is enhanced when a degeneracy appears in the
single-particle pseudoenergy that matches the charge value
within that sector (when counting the pseudoenergies from
the bottom of the entanglement spectrum). This suggests a
mechanism that could lead to similar phenomena occurring
in a wider class of physical models.

For convenience, throughout our calculations we assumed
PBC and investigated the case of only two defects. Nev-
ertheless, our results straightforwardly generalize to other
setups, including chains with more than two defects and
finite-size chains with edge modes at the boundaries. In par-
ticular, in the latter case and with no excited zero modes,
it is easy to see that if the subsystem contains one edge
of the chain (e.g., A = [1, 
]), entanglement equipartition
holds in both the trivial phase and the topological phase.
Furthermore, the values of the SREs are independent both
of whether the subsystem boundary that is in the interior of
the system cuts a strong or a weak bond, and of whether
or not the subsystem contains defects. This is due to the
fact that the entanglement spectrum is determined only by
the interior subsystem boundary (i.e., it is the spectrum of
a half-infinite subsystem), and this spectrum is in any case
nondegenerate and equidistant. In the topological phase when
zero-energy edge modes are excited, the mechanism of eigen-
value crossing can lead to the same enhancement in the
SREs as the one observed for excited zero modes localized
at defects, with the same functional expression for the excess
entropy.

Our findings are based on the analysis of a noninteracting
model; however, both the SSH model and its continuum coun-
terpart can be viewed as describing the fermionic fluctuations
about topological excitations in interacting systems. In these
systems, the solitons are dynamical, semiclassical solutions of
the many-body problem, and our results can therefore provide
the leading contribution to their entanglement too [cf. calcula-
tions of the entanglement in the theory of quantum generalized
hydrodynamics (see, e.g., [84–87])].

One could also consider topological defects in genuinely
interacting models. Obvious candidates for this study are car-
bon nanotubes [88] or the spin-1 Heisenberg chain in the
presence of topological defects. In this case, one can first
investigate the system in the Affleck-Kennedy-Lieb-Tasaki
(AKLT) limit [89] and consider a defect which causes the
system to be in the AKLT ground state to one side, and a ferro-
magnetic ground state (or any other product state) to the other.
We report preliminary results on this in Appendix D. Our
calculation shows a similar structure of symmetry-resolved
entanglement (where the symmetry considered is the conser-
vation of the spin z component) compared to what we found
for the fully dimerized SSH chain. The investigation of these
models is ongoing, and further results will be deferred to
subsequent publications.
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APPENDIX A: FULLY DIMERIZED
LIMIT OF THE SSH CHAIN

In the fully dimerized limit of the SSH chain, the correla-
tion matrix of a single interval of length 
 is a 2
 × 2
 matrix
which can be trivially written in terms of block matrices. We
refer to the three relevant cases “trivial,” “topological,” and
“defect” by denoting the corresponding matrices as Ctriv, Ctop,
and Cdef. In particular, we have

Ctriv =

⎛⎜⎜⎜⎜⎜⎜⎝

(1/2)2×2 (0)2×2 . . . (0)2×2

(0)2×2 (1/2)2×2
...

...
. . .

(0)2×2

(0)2×2 . . . (0)2×2 (1/2)2×2

⎞⎟⎟⎟⎟⎟⎟⎠
(A1)

in the trivial phase and

Ctop =

⎛⎜⎜⎜⎜⎜⎜⎝
(1/2)1×1 (0)1×2 . . . (0)1×2

(0)2×1
... Ctriv

...

(0)1×2

(0)2×1 . . . (0)1×2 (1/2)1×1

⎞⎟⎟⎟⎟⎟⎟⎠
(A2)

in the topological phase. If the interval includes a defect (with
topological phase cells on its left and trivial phase cells on its
right) and we assume that the corresponding zero mode is not
excited, then we have

Cdef =

⎛⎜⎜⎜⎜⎜⎝
(1/2)2×2 (0)2×2 . . . (0)2×2 (0)1×2

(0)2×2
. . .

...
...

... C̃def

(0)2×2 . . .
. . . (0)1×2

(0)2×1 . . . (0)2×1 (1/2)1×1

⎞⎟⎟⎟⎟⎟⎠
(A3)

with

C̃def =

⎛⎜⎝(1/2)2×2 (0)2×. (0)2×2

(0).×2 (d ).×. (0).×2

(0)2×2 (0)2×. (1/2)2×2

⎞⎟⎠ , (A4)
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and depending on the type of the defect, 1s or 3s, the
matrix (d ).×. is either a 1 × 1 matrix (d )1×1 = 0 or a 3 × 3
matrix

(d )3×3 =

⎛⎜⎜⎝
1
4 − 1

2
√

2
1
4

− 1
2
√

2
1
2 − 1

2
√

2
1
4 − 1

2
√

2
1
4

⎞⎟⎟⎠ , (A5)

with eigenvalues 1, 0, 0, respectively. The dots in the block
matrices indicate the consistency with the right size referring
to either 1 or 3.

APPENDIX B: DERIVATION OF THE MAIN
ANALYTICAL EXPRESSIONS

1. Charged moments

In this Appendix we provide a detailed derivation of our an-
alytical formulas for the boundary contributions to the charged
moments, reported in Sec. V. From the general expression in
Eq. (37) for charged moments in terms of the single-particle
entanglement spectrum, along with the result in Eq. (38) for
this spectrum in the case of a single cut at a strong bond, we
observe that

Zstrong
n (α) = 1 + eiα

2n

×
∏
l�1

[
eiα (1 + e−2nεl+iα )(1 + e−2nεl−iα )

(1 + e−2εl )2n

]
.

(B1)

The usual procedure for α = 0 (i.e., the one employed when
the unresolved entropy is the quantity of interest) dictates that
we should multiply the terms in the product up to l = ∞, as
these terms quickly converge to 1. In the case where α 	= 0,
we must take out the additional eiα factor out of the product
before replacing it with an infinite product. This results in
an overall phase factor that counts the number of entangle-
ment Hamiltonian modes with negative pseudoenergies. This
number is infinite when considering the problem of a half-
infinite subsystem, making the overall phase factor ill defined;
we therefore regard it as a proportionality factor that can be
exactly specified only for the finite subsystem, i.e., only after
the two boundary contributions are combined. We discuss this
issue in Sec. V.

With that in mind, we write

Zstrong
n (α) ∝ 1 + eiα

2n

∞∏
l=1

[ |1 + e−2nεl+iα|2
(1 + e−2εl )2n

]
. (B2)

To move forward, we introduce the definitions of the well-
studied Jacobi theta functions [77]

θ2(ω|ζ ) =
∞∑

m=−∞
ei(2m+1)ωζ (m+ 1

2 )2 = 2ζ 1/4 cos ω

×
∞∏

l=1

[(1 − ζ 2l )(1 + 2 cos(2ω)ζ 2l + ζ 4l )],

θ3(ω|ζ ) =
∞∑

m=−∞
e2imωζ m2

=
∞∏

l=1

[(1 − ζ 2l )(1 + 2 cos(2ω)ζ 2l−1 + ζ 4l−2)],

(B3)

and recognize that

Zstrong
n (α) ∝ θ2

(
α
2 |e−nε

)
θ2(e−ε )n

∞∏
l=1

(1 − e−2εl )n

(1 − e−2nεl )
, (B4)

where we again employed the notation θ j (ζ ) = θ j (0|ζ ).

Now, recalling the definitions of kn and k′
n =

√
1 − kn

2

through the relation

nε = π
I (k′

n)

I (kn)
, (B5)

and using the identity [77]

∞∏
l=1

(1 − ζ 2l ) =
[

k̃
√

1 − k̃2

4ζ 1/2

]1/6

θ3(ζ ), (B6)

which applies to ζ = exp[−π I (
√

1 − k̃2)/I (k̃)], we obtain

Zstrong
n (α) ∝ θ2

(
α
2 |e−nε

)
2(n−1)/3θ2(e−ε )n

(
knk′n

knk′
n

)1/6
θ3(e−ε )n

θ3(e−nε )
. (B7)

By using the identity k = [θ2(e−ε )/θ3(e−ε )]2 [77], we may
finally write

Zstrong
n (α) ∝ 1

2(n−1)/3

(
k′n

knk′
nk2n

)1/6 θ2
(

α
2 |e−nε

)
θ3(e−nε )

. (B8)

A similar analysis leads to the result for the charged mo-
ments in the case where the single cut is located at a weak
bond. In that case, the single-particle entanglement spectrum
from Eq. (39) leads to the expression

Zweak
n (α) =

∏
l�1

[
eiα|1 + e−nε(2l−1)+iα|2

(1 + e−ε(2l−1))2n

]
, (B9)

which by the same argument as before can be written as

Zweak
n (α) ∝

∞∏
l=1

[ |1 + e−nε(2l−1)+iα|2
(1 + e−ε(2l−1))2n

]

= θ3
(

α
2 |e−nε

)
θ3(e−ε )n

∞∏
l=1

(1 − e−2εl )n

(1 − e−2nεl )
. (B10)

Applying the identity (B6) as before then yields

Zweak
n (α) ∝ 1

2(n−1)/3

(
knk′n

knk′
n

)1/6 θ3
(

α
2 |e−nε

)
θ3(e−nε )

. (B11)

2. Charge-resolved partition functions

In this Appendix we explain in detail how the Fourier
transform of Eq. (8), which is the crucial component in the
computation of the SRPFs once the charged moments have
been derived, can be done analytically in the case of the
charged moments in Eq. (43).
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We first observe, based on the definition of the theta func-
tions in Eq. (B3), that

[θ2(ω|ζ )]2 =
∞∑

m,l=−∞
e2iω(m+l+1)ζ m2+l2+m+l+ 1

2 . (B12)

We then replace the summation indices m, l with r, l , defining
r = m + l + 1. This allows us to write

[θ2(ω|ζ )]2 = ζ− 1
2

∞∑
r,l=−∞

e2iωrζ (r−l )2+(l+1)2−r . (B13)

Next, we identify eiα
[θ2( α
2 |e−nε )]2 as the α-dependent factor

in the expression for Z top
n (α) in Eq. (43), which will thus be the

only factor modified under the Fourier transform of Eq. (8).
Writing qA = 
 + �q, we see that∫ π

−π

dα

2π
eiα


[
θ2

(
α

2

∣∣∣∣e−nε

)]2

e−iαqA

= enε/2
∞∑

l=−∞
e−nε[(�q−l )2+(l+1)2−�q]

= e− 1
2 nε (�q)2

∞∑
l=−∞

exp

[
−2nε

(
l − �q − 1

2

)2
]
. (B14)

Given that the index l is summed over all integers, and that
�q is itself an integer, we conclude that the resultant value of
the sum depends only on the parity of �q. We may further
determine the exact value of the sum by examining Eq. (B3),
obtaining∫ π

−π

dα

2π
eiα


[
θ2

(
α

2

∣∣∣∣e−nε

)]2

e−iαqA

= e− 1
2 nε (�q)2

{
θ3(e−2nε ), �q is odd
θ2(e−2nε ), �q is even.

(B15)

This then leads to the result for the SRPF in the topological
phase, reported in Eq. (45).

A procedure similar to the one that led to Eq. (B15) can
be applied when considering the Fourier transform of the
two other charged moments appearing in Eq. (43). For the
α-dependent factor in the expression for Z triv

n (α), we find that
its Fourier transform is given by∫ π

−π

dα

2π
eiα


[
θ3

(
α

2

∣∣∣∣e−nε

)]2

e−iαqA

= e− 1
2 nε (�q)2

{
θ2(e−2nε ), �q is odd

θ3(e−2nε ), �q is even,
(B16)

and for the corresponding factor in the expression for Zdef
n (α),

the same procedure yields∫ π

−π

dα

2π
eiα(
−1/2)θ3

(
α

2

∣∣∣∣e−nε

)
θ2

(
α

2

∣∣∣∣e−nε

)
e−iαqA

= 1

2
e− 1

2 nε (�q+ 1
2 )2

θ2(e−nε/2). (B17)

This allows to complete the computation of the SRPFs also for
the trivial phase and for the case where the interval includes a
defect. The results are reported in Eqs. (45) and (46).

APPENDIX C: CHARGE-RESOLVED ENTROPY
WITH A ZERO-MODE CONTRIBUTION

In this Appendix we provide technical details of the argu-
ment made in Sec. VI regarding the correspondence between
a degeneracy of the single-particle entanglement spectrum
(due to a contribution from the zero mode supported on two
defects, one of which is inside the subsystem of interest) and
the breaking of entanglement equipartition. For this purpose,
we analyze the relation in Eq. (52) between the SREs and a
charge distribution that is modified due to an average charge
constraint. The constraint [see Eq. (50)] shifts the single-
particle entanglement spectrum [given by Eq. (65) along with
εzero] by a fictitious chemical potential μ.

Consider the charge sector with charge qA. To probe the
SRE of this sector, we impose the average charge constraint
of Eq. (50), yielding

qA = 1

eεzero−μ + 1
+

2
−1∑
l=1

1

eεl −μ + 1

= 1

eεzero−μ + 1
+

2
−2∑
l=0

1

e−[μ+(
−1)ε]eεl + 1
. (C1)

As we claimed in Sec. VI, we can view εzero as a free param-
eter ranging between ±∞, which then determines μ through
Eq. (C1), given that all other spectrum levels are fixed. For

 � 1 we may write

qA = 1

eεzero−μ + 1
+

∫ ∞

0

dx

e−[μ+(
−1)ε]eεx + 1
+ �ε,μ, (C2)

where 0 < �ε,μ < 1 is a remainder due to the replacement
of the sum with an integral (the sum constitutes a discretized
version of the integral such that at each interval of length 1 we
sample the integrand at the left edge of the interval, which is
the maximum point of the integrand within the interval). This
then leads to the approximation

qA = 1

eεzero−μ + 1
+ 1

ε
log(1 + e[μ+(
−1)ε] ) + �ε,μ

≈ 1

eεzero−μ + 1
+ μ

ε
+ 
 − 1 + �ε,μ (C3)

or

μ = ε

[
qA − 1

eεzero−μ + 1
− 
 + 1 − �ε,μ

]
. (C4)

In particular, considering the form of the bulk entanglement
spectrum in Eq. (65), we have εqA−1 < μ < εqA+1. Therefore,
out of the bulk spectrum, εqA is the only level with which μ

can coincide under the charge constraint we chose. We will
now show that the SRE S(qA) obtains its maximal value (thus
leading to a maximal breaking of equipartition) when μ is
very close to εqA .

Indeed, if μ = εqA then the average occupation of bulk
levels in Eq. (C1) approximately yields qA − 1

2 (here, as in
Sec. V B, we assume that the level εqA is far enough from
the spectrum edges, and approximate the spectrum as sym-
metric about this level). To accommodate the constraint in
Eq. (C1) we must therefore have εzero ≈ μ, meaning that εzero

and εqA are very close to one another, and also that they
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both produce the dominant entropy contributions, according
to Eq. (51). The entropy contributions from all other levels
are much smaller (and vanish in the limit δ → 1) assuming
that ε is large enough: the levels εl with l < qA are effectively
occupied, and those with l > qA are effectively empty.

We now look for the value of εzero that maximizes S(qA), in
the vicinity of the value of εzero for which μ = εqA . We observe
that the charge sector with charge qA is dominated by two
states: the one where εzero is empty and εqA is occupied, with
its probability proportional to eεzero−μ; and the one where εzero

is occupied and εqA is empty, with its probability proportional
to eεqA −μ. It is then straightforward to see that the maximal
value of the entropy S(qA) is reached when the two probabili-
ties are equal, i.e., at the degeneracy point εzero = εqA .

APPENDIX D: A SPIN-1 CHAIN WITH AN AKLT
SEGMENT AND WITH TWO DEFECTS

In this Appendix we demonstrate a simple example of a
spin-1 system which shows very similar features to the SSH
case. In particular, we investigate a system with PBC which is
composed of the interacting AKLT chain [89] on one half, and
another spin chain supporting a ground state of a product form
on the other half of the system. This way we naturally obtain
two defects at the interfaces of the two chains. The ground
state of the other spin system can be a ferromagnetic state
originating from an interacting spin chain but, for simplicity,
we choose a system whose ground state is

∏
i |0〉i.

Of course, extending the system with an essentially in-
dependent product state might seem slightly artificial and
superfluous. Nevertheless, via this extension we not only natu-
rally obtain two nontrivial interfaces hosting the AKLT spin- 1

2
modes but, additionally, we can derive results for the total
and Sz-resolved entanglement that are in one-to-one corre-
spondence with the fully dimerized limit of the SSH chain.
Alternatively, one could merely consider the AKLT chain
with OBC and that way the SSH results for the defect and
for topological phases are recovered as well depending on
whether the interval contains the edge of the AKLT chain or
not and is far away from it.

To be more specific, let us eventually define the model as

H =
N∑

i=1

hi (D1)

with

hi = −→
S i

−→
S i+1 + 1

3
(
−→
S i

−→
S i+1)2 if 1 � i < N/2,

hi = (
Sz

i

)2
if N/2 < i < N,

(D2)

where
−→
S are spin-1 operators, and PBC are imposed via−→

S 1 = −→
S N+1. This Hamiltonian commutes with the Jz

tot total
spin-z operator, which plays the role of the charge, as well
as with its restriction to a subsystem A, denoted by Jz

A. The
ground state of the Hamiltonian is the AKLT ground state
with open boundary condition on one side and

∏
i |0〉i on

the other side, where |0〉i is the zero spin-z eigenstate of
Sz

i . In this spin system, clearly, the roles of the trivial phase
and the topological phase are played by the trivial product

state and by the nontrivially entangled AKLT ground state,
respectively. This latter state is known to be a valance bond
state, which is made up of consecutive spin-singlet states each
composed of two spin- 1

2 degrees of freedom. These singlets
link neighboring lattice sites and two spin 1

2 ’s can be re-
garded as a fractionalization of the original spin-1 degrees of
freedom.

Because the ground state of the AKLT with OBC is four-
fold degenerate, the total ground state of the Hamiltonian (D2)
is fourfold degenerate as well. More precisely, the ground
states of the spin Hamiltonian (D2) are distinguished by the
behavior of the two edge modes of the AKLT part of the
chain, which can be regarded as solitary or unpaired spin
1
2 ’s. These degrees of freedom eventually form a global spin
singlet and three global spin-1 triplet states. We therefore label
the ground states of the entire chain as |�〉− to denote the
spin-singlet state (with Jz

tot = 0) and as |⇓〉, |�〉+ and |⇑〉
to denote the triplets with Jz

tot = −1, 0, 1, respectively. This
degeneracy corresponds to the fourfold degeneracy of the SSH
chain ground state around half-filling, due to the two zero
modes localized at its edges.

Finally, we again stress that instead of hi = (Sz
i )2 we could

have chosen

hi = −(
−→
S i )

2 − hSz
i (D3)

still commuting with the the total spin-z operator and yielding
a product state as well. In this case the ground states are no
longer spin-1 or spin-0 states, but their total spin would be
N/2 or N/2 + 1 and this would result in a trivial shift for the
average value 〈Jz

A〉 if the interval includes the defect.
We now show that, when considering the system described

by Eq. (D2), the formulas that arise for the SRE are similar to
those derived for the SSH chain in its fully dimerized limit.

1. Entropies for Jz
tot = ±1 states

We first study the total and SR entropies in the ground
states with Jz

tot = ±1, which correspond to the half-filled
ground state of the SSH chain without the zero modes, or
involving both of them. In these cases we can immediately
adopt the results of Sec. IV B and, for brevity, we only present
formulas for the entropies such as

Sn =

⎧⎪⎨⎪⎩
0, triv
2 log 2, top
log 2, def

(D4)

that is, the von Neumann entropy and all the Rényi entropies
exhibit exactly the same behavior: they are all equal to 0 in the
trivial phase, 2 log 2 in the topological phase, and log 2 for an
interval which contains a defect.

For both Jz
tot = ±1 states, the SREs can be written as fol-

lows:

Striv
n

(
Jz

A

) = 0 ∀ Jz
A (D5)

for the trivial phase,

Stop
n

(
Jz

A

) =
{

log 2 for Jz
A = 0,

0 otherwise
(D6)
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for the topological phase, and finally

Sdef
n

(
Jz

A

) = 0 ∀ Jz
A. (D7)

As we can see, our considerations made for the dimerized
SSH case naturally hold: whereas to calculate the standard
entropies of an interval we merely have to count the cut bonds
giving rise to the notion that the defect result is half of the
topological result, this cannot be the case for the SRE since
Sdef

n (Jz
A = 0) = 0 while Stop

n (Jz
A = 0) = log 2.

Regarding the make up of the total entropy in terms of the
configurational and fluctuational parts, we can write

Striv
f = Striv

c = 0 (D8)

for the trivial phase,

Stop
f = 3

2 log 2, Stop
c = 1

2 log 2 (D9)

for the topological phase, and finally

Sdef
f = log 2, Sdef

c = 0. (D10)

The conclusions drawn at the discussion of the fully dimerized
case of the SSH chain remain valid again as well.

2. The two Jz
tot = 0 ground states and their hybridization

We can also study the two Jz
tot = 0 ground states, i.e., |�〉+

and |�〉−, or their linear combinations which we write as

|�〉p =
√

1 − p |�〉+ + √
p |�〉−. (D11)

Similarly to the SSH case, the only scenario to work out is
when the interval contains the defect. If the interval does not
contain the defect, the corresponding formulas of the above
subsection apply without changes, irrespective of whether we
choose |�〉+, |�〉−, or |�〉p. It is easy to show that for the case
of the defect the reduced density matrix can be essentially
written in terms of two spin- 1

2 degrees of freedom in the
following way:

ρ = 1

4
I −

√
(1 − p)p

2

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠, (D12)

where I is the 4 × 4 identity matrix and when the basis is
made up by |↑↑〉, |↓↑〉, |↑↓〉, and |↓↓〉, i.e., the conventional
basis of two spin- 1

2 degrees of freedom. This means that,
introducing

η = 2
√

p(1 − p) (D13)

for simplicity, the spin-resolved entropies can be expressed as

S(η)
n

(
Jz

A = 0
) = 1

1 − n
log

[(
1 + η

2

)n

+
(

1 − η

2

)n]
,

(D14)

and they vanish for Jz
A 	= 0. In particular the von Neumann

SRE reads as

S(η)
(
Jz

A = 0
) = −1 + η

2
log

(
1 + η

2

)
−1 − η

2
log

(
1 − η

2

)
,

(D15)

and it also vanishes for Jz
A 	= 0.

The above formulas are essentially the same as those for
the SSH chain, just for the AKLT model we used the symmet-
ric and antisymmetric eigenstates to construct |�〉p, whereas
for the SSH model the interpolating state was defined via
localized zero modes rather than their symmetric and antisym-
metric combinations. In other words, the role of the parameter
p is slightly different in the two cases and the p parameter of
the SSH case corresponds to the η for the AKLT chain.

Finally, the total entropy is

S(η)
n = log 2 + 1

1 − n
log

[(
1 + η

2

)n

+
(

1 − η

2

)n]
,

(D16)

and in particular

S(η) = log 2 − 1 + η

2
log

(
1 + η

2

)
− 1 − η

2
log

(
1 − η

2

)
. (D17)

We can observe that the change in the entropies with respect to
the nonhybridized ground states |�〉+ and |�〉− is analogous
to what was found for the SSH chase, that is,

�S(η) = �S
(
η

)(
Jz

A = 0
)

= −1 + η

2
log

(
1 + η

2

)
− 1 − η

2
log

(
1 − η

2

)
(D18)

and

�S(η)
n = �S(η)

n

(
Jz

A = 0
)

= 1

1 − n
log

[(
1 + η

2

)n

+
(

1 − η

2

)n]
. (D19)
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