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Slow light effect plays a crucial role in both optical physics and devices. Herein, we explore the possibility
to achieve ultraslow light effect based on the quasibound states in the continuum (quasi-BICs) in a compound
grating waveguide structure. Driven by the unique resonant property of the quasi-BIC, the group velocity of
light can be intensively slowed down to the order of 10−4c. Interestingly, we disclose that the group velocity of
light and geometric perturbation parameters conforms to double-logarithm linear relationship. Our findings not
only offer unique insight for the relation between slow light effect and BIC, but also provide a feasible route to
achieving ultraslow light effect.
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I. INTRODUCTION

Interaction between light and matter is a fundamental
concept in optics [1,2]. It plays a crucial role in spon-
taneous emission [3], sensitive sensing [4,5], and cavity
quantum electrodynamics systems [6–8]. In homogeneous
media, large light speed gives rise to weak light-matter in-
teraction [9]. In the past decades, researchers have found
that light can be effectively slowed down in photonic crys-
tals [10–14], cold gas vapors [15–18], and metamaterials
[19,20]. Slow light effect promotes stronger light-matter in-
teraction [21,22]. Consequently, slow light effect has been
extensively utilized in delay lines [23,24], optical switch-
ers [25,26], optical butters [27], enhancement of optical
absorption [28,29], and enhancement of nonlinear optical ef-
fect [30]. Up until now, a series of mechanisms have been
proposed to achieve slow light effect, including flat bands
[31–36], electromagnetically induced transparency [37–42],
plasmon-induced transparency [43–45], coherent population
oscillations [46], stimulated Brillouin scattering [47], and
stimulated Raman scattering [48]. Empowered by the above
mechanisms, light speeds can be effectively slowed down
to the order of 10−1 to 10−3c [24,32,33,35,36,40,41]. Par-
ticularly, flat bands provide ultrahigh group indices but
intensively compromise the bandwidths [31–36]. To broaden
the bandwidths, researchers proposed the semislow light
approach [49,50].

As a kind of resonant state, bound states embedded in con-
tinuous spectra called bound states in the continuum (BICs)
have received abundant attention in nanophotonics [51–55].
After introducing perturbations, true BICs with infinite high-
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quality (Q) factors become quasi-BICs with finite high-Q
factors [56]. Over the past two decades, many nanostruc-
tures have been proposed to realize quasi-BICs, including
photonic crystal slabs [56–58], metasurfaces [59–65], and
grating-based structures [66–74]. Particularly, researchers re-
alized quasi-BICs in compound grating waveguide structures
based on selectable guided resonances [75–78]. Recently, this
kind of quasi-BICs demonstrated its potential applications in
enhancement of spatial shift of light beam [75–77,79–81],
enhancement of second-harmonic generation [82–84], and
ultralow-threshold optical bistability [85]. In this paper, we
explore the possibility to achieve ultraslow light effect based
on this kind of quasi-BIC. Driven by the unique resonant
property of the quasi-BICs in the compound grating waveg-
uide structures, the group velocity of light can be intensively
slowed down to the order of 10−4c. More interestingly, the
group velocity of light vg and geometric perturbation pa-
rameter α conforms to double-logarithm linear relationship,
i.e., lg(vg/c) = 2.0057 lg(α) − 2.0133. These results not only
offer unique insight for the relation between slow light effect
and BIC, but also provide a feasible route to achieving ultra-
slow light effect.

This paper is organized as follows. In Sec. II, we discuss
BICs and quasi-BICs in a compound grating waveguide struc-
ture consisting of a four-part period grating and a waveguide
layer based on the selectable guided resonance. As the geo-
metric perturbation parameter changes from nonzero to zero,
the four-part period grating turns into a conventional two-
part period grating. Hence, the previous excitable odd-order
guided resonances turn into dark modes, i.e., BICs. In Sec. III,
we explore the relationship between the group velocity of
light and geometric perturbation parameters. Interestingly, the
group velocity of light and geometric perturbation parameters
conforms to double-logarithm linear relationship. Finally, the
conclusion is given in Sec. IV.
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FIG. 1. Schematics of unit cells of compound grating waveguide
structures for (a) α �= 0 and (b) α = 0.

II. BICS AND QUASI-BICS IN COMPOUND GRATING
WAVEGUIDE STRUCTURES

The designed compound grating waveguide structure con-
sisted of a four-part period grating, a waveguide layer, and
a substrate. The period and thickness of the four-part pe-
riod grating layer were chosen to be � = 850 nm and dG =
270 nm, respectively. Two ridges were made of hafnium diox-
ide (HfO2) with the refractive index nH = 1.88 [86], while two
grooves were made of air with the refractive index nL = 1.
The widths of the two HfO2 ridges were both chosen to be
wH = fH� = 0.3�. To form a complex lattice, the widths of
the two air grooves were chosen to be wL1 = fL1� and wL2 =
fL2�, respectively. A geometric perturbation parameter α =
(wL1 − wL2)/(wL1 + wL2) was defined to quantify the width
difference between the two air grooves. As the geometric per-
turbation parameter α �= 0, the grating was a four-part period
grating with the period � = 850 nm, as schematically shown
in Fig. 1(a). The waveguide layer was also made of HfO2

with the refractive index nWG = 1.88 [86]. The thickness of
the HfO2 waveguide layer was chosen to be dWG = 460 nm.
The substrate was made of silicon dioxide (SiO2) with the
refractive index nS = 1.44 [87]. As the geometric perturbation
parameter α = 0, the widths of the two air grooves become
identical. Therefore, the grating turns into a conventional two-
part period grating with the period �′ = �/2 = 425 nm, as
schematically shown in Fig. 1(b).

Then, we analyzed the guided-mode resonances (GMRs)
for α �= 0 and α = 0. Suppose that a plane wave with trans-
verse electric (TE) polarization perpendicularly launches onto
the compound grating waveguide structure at the xOz plane.
According to the slab-waveguide theory, the dispersion rela-
tion of the TE0 guided mode βTE0 (ω) can be calculated by the
four-layer slab-waveguide model [79,88,89]:
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FIG. 2. GMRs in compound grating waveguide structures for
(a) α �= 0 and (b) α = 0.
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In Eqs. (1) and (2), k0 = ω/c represents the wave number
in air, and neff = 2 fHnH + (1−2 fH)nL = 1.528 represents the
effective refractive index of the grating layer.

As the geometric perturbation parameter α �= 0, the grating
was a four-part period grating with the period � = 850 nm.
The GMR condition took the following form [88]:

kx,m = −p
2π

�
= βTE0 (ω) (p = ±1, ±2, . . .), (3)

where m × (2π/�) represents the grating-induced tangential
wave vector. According to Eqs. (1) and (2), we calculated the
dispersion relation of the TE0 guided mode, as depicted by the
blue solid line in Fig. 2(a). The normalized angular frequency
was ω0 = 2πc/dWG. The cutoff angular frequency of the TE0

guided mode was calculated as ωc, TE0 = 0.0733ω0 ( fc, TE0 =
47.80 THz). According to Eq. (3), we also calculated the
dispersion relations kx,−1 and kx,−2, as depicted by the red and
green dashed lines in Fig. 2(a), respectively. As demonstrated,
two crossing points (marked by P−1 and P−2) occurred at the
angular frequencies ω−1 = 0.3219ω0 ( f−1 = 209.9 THz) and
ω−2 = 0.6032ω0 ( f−2 = 393.4 THz), respectively. At these
two angular frequencies, two Fano resonances occurred since
the GMR conditions were satisfied.

As the geometric perturbation parameter α = 0, the grating
turns into a conventional two-part period grating with the pe-
riod �′ = �/2 = 425 nm. Consequently, the GMR condition
takes the following form:

k′
x,p′ = −p′ 2π

�′ = −p′ 4π

�
= βTE0 (ω) (p′ = ±1, ±2, . . .).

(4)
Combining Eqs. (3) and (4), the dispersion relations k′

x,p′

are identical with kx,2p′ since the grating-induced tangential
wave vectors double. For example, the dispersion relation
k′

x,−1 is identical with kx,−2, as shown by the red dot-
ted line in Fig. 2(b). Consequently, only one cross point
(marked by P′−1) occurs at the angular frequencies ω′−1 =
ω−2 = 0.6032ω0 ( f ′−1 = f−2 = 393.4 THz). At this angular
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FIG. 3. TE transmittance spectrum of designed compound grat-
ing waveguide structure with varying geometric perturbation param-
eter α.

frequency, a Fano resonance occurs since the GMR condition
is satisfied.

If the geometric perturbation parameter α changes from
nonzero to zero, the previous excitable odd-order guided res-
onances (at points P−1, P−3, . . .) turn into dark modes, i.e.,
BICs. In contrast, the even-order guided resonances (at points
P−2, P−4, . . .) are always excitable, giving rise to conventional
Fano resonances. This mechanism to form BICs can be called
selectable guided resonance.

To confirm the formation of the BIC, we calculate the
TE transmittance spectrum of the designed compound grat-
ing waveguide structure with varying geometric perturbation
parameter α based on the rigorous coupled-wave analysis
(RCWA) [90,91], as shown in Fig. 3. The spatially modulated
permittivity in the grating can be expanded into Fourier series
as [67]

ε(x) =
∞∑

m=−∞
εmei 2mπx

� , (5a)

where the Fourier harmonics εm take the following forms:

ε0 = 0.4n2
H + 0.6n2

L, (5b)

εm = (
n2

H − n2
L

) sin[mπ (1 − fL2)] − sin (mπ fL1)

mπ
(m = ±1, ±2, · · ·). (5c)

As the geometric perturbation parameter α = 1, a Fano dip
occurs at 208.84 THz. As the geometric perturbation parame-
ter α gradually decreases, the resonant width of the Fano dip
reduces dramatically. As the geometric perturbation param-
eter α continues to decrease to 0, the Fano dip completely
disappears at 209.82 THz. From the results in Fig. 3, we can
conclude that the quasi-BIC with finite resonant width turns
into a BIC with vanishing resonant width as the geometric
perturbation parameter α decreases from 1 to 0. The BIC
frequency in transmittance spectrum (209.82 THz) slightly
deviates from the BIC frequency predicted by the GMR theory
( f−1 = 209.9 THz). The relative error is only 0.038%.

Next, we calculate the TE transmittance spectra of the
designed compound grating waveguide structures for different
geometric perturbation parameters α = 0.6, 0.4, 0.2, and 0,
as shown in Fig. 4(a). For better visuality, the transmittance
curves are shifted in the unit of 1. The insets show the electric-
field distributions (|Ey|) at the corresponding transmittance
dips. The magnitude of the incident dielectric field is nor-
malized, i.e., |Ey| = 1 V/m. As the geometric perturbation
parameter α = 0.6, a Fano dip occurs at 209.49 THz. Be-
sides, the electric field is strongly localized inside the HfO2

waveguide layer due to the GMR. As the geometric pertur-
bation parameter α decreases from 0.6 to 0.2, the Fano dip
slightly shifts towards higher frequencies and its resonant
width reduces dramatically. Besides, the electric field inside
the HfO2 waveguide layer becomes stronger. As the geometric
perturbation parameter α continues to decrease to 0, the Fano
dip vanishes completely.

Using the eigensolver in COMSOL MULTIPHYSICS, we obtain
the complex eigenfrequencies and Q factors of the eigen-
modes for different geometric perturbation parameters, as

given in Table I. The real parts of the complex eigenfrequen-
cies of the eigenmodes agree well with the frequencies of the
transmittance dips in the transmittance spectra calculated by
the RCWA. Figure 4(b) further gives the dependence of the

FIG. 4. (a) TE transmittance spectra of designed compound
grating waveguide structures for different geometric perturbation
parameters α = 0.6, 0.4, 0.2, and 0. Insets show electric-field
distributions (|Ey|) at corresponding transmittance dips. Magni-
tude of incident dielectric field is normalized, i.e., |Ey| = 1 V/m.
(b) Dependence of Q factor of quasi-BIC on α. (c) Dependence of Q
factor of quasi-BIC on α−2. Red dashed line represents linear fitting
curve.
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TABLE I. Complex eigenfrequencies and Q factors of eigen-
modes for different geometric perturbation parameters.

α Complex eigenfrequency (THz) Q factor

0.6 209.37 + 2.3341×10−1i 4.4850×102

0.5 209.46 + 1.6076×10−1i 6.5148×102

0.4 209.54 + 1.0222×10−1i 1.0249×103

0.3 209.60 + 5.7215×10−2i 1.8317×103

0.25 209.62 + 3.9656×10−2i 2.6430×103

0.2 209.64 + 2.5340×10−2i 4.1365×103

0.15 209.66 + 1.4237×10−2i 7.3631×103

0.1 209.67 + 6.3222×10−3i 1.6582×104

0.05 209.67 + 1.5797×10−3i 6.6362×104

0.02 209.67 + 2.5274×10−4i 4.1480×105

Q factor of the quasi-BIC on α. When α = 0.6, the Q factor
of the quasi-BIC is only 4.4850×102. As α approaches 0, the
Q factor increases significantly. When α = 0.02, the Q fac-
tor reaches 4.1480×105. When α = 0, the Q factor becomes
infinite. According to the perturbation theory in Ref. [59],
the Q factor of the quasi-BIC is proportional to the negative
quadratic power of the geometric perturbation parameter, i.e.,
Q ∝ α−2. Note that Q ∝ α−2 is only rigorously satisfied when
α is small. In Fig. 4(c), we also give the dependence of the Q
factor of the quasi-BIC on α−2. We fit the data from α = 0.1
to 0.6. The red dashed line represents the linear fitting curve.
Clearly, the Q factor of the quasi-BIC is almost perfectly
proportional to the negative quadratic power of the geomet-
ric perturbation parameter. The linear fitting curve takes the
following form:

Q = 165.94α−2 − 12.213. (6)

Finally, we consider the intrinsic and scattering losses
of HfO2 in the fabrication process. By fitting the measured
reflectance spectrum of the HfO2-based grating structure in
Ref. [92], the effective extinction coefficient of HfO2 in-
duced by the intrinsic and scattering losses can be obtained
as κeff,H = 3×10−5 (details can be seen in Sec. I of the
Supplemental Material [93]). The refractive index of HfO2

becomes nH = nWG = 1.88 + 3×10−5i. Figure 5(a) gives the
dependence of the Q factor of the quasi-BIC on α. When
α = 0.6, the Q factor of the quasi-BIC is only 4.4288×102.

FIG. 5. (a) Dependence of Q factor of quasi-BIC on α.
(b) Dependence of Q factor of quasi-BIC on α−2. Red dashed line
represents linear fitting curve. Refractive index of HfO2 is set to be
nH = nWG = 1.88 + 3×10−5i.

As α approaches 0, the Q factor increases significantly. When
α = 0.02, the Q factor reaches 3.2343×105. Also, we give
the dependence of the Q factor of the quasi-BIC on α−2, as
shown in Fig. 5(b). We fit the data from α = 0.1 to 0.6. The
red dashed line represents the linear fitting curve. Owing to
the absorption of HfO2, the linear relationship between Q
factor of the quasi-BIC and the negative quadratic power of
the geometric perturbation parameter is slightly broken. The
linear fitting curve takes the following form:

Q = 111.47α−2 + 1009.4. (7)

III. ULTRASLOW LIGHT EFFECT DRIVEN
BY QUASI-BICS

Now, we explore the possibility to achieve ultraslow light
effect driven by quasi-BICs. In Sec. III A, we give the the-
oretical model for calculating the group velocity of light. In
Secs. III B and III C, we achieve ultraslow light effect driven
by the quasi-BICs in lossless and lossy cases, respectively.

A. Theoretical model for calculating group velocity of light

It is known that the in-plane component of the group ve-
locity of light can be calculated by the slope of the photonic
band in the band structure [31]. For normal incident light, the
in-plane component of the group velocity is zero since the
slope of the photonic band is zero at the 	 point in the Bril-
louin zone (details can be seen in Sec. II of the Supplemental
Material [93]). To calculate the out-of-plane component of
the group velocity of light, we utilize an indirect method
through the transmission coefficient [94–96]. According to
Refs. [94–96], the out-of-plane component of the group ve-
locity of light can be calculated by

vg(ω) = dω

dkz
. (8)

The transmission coefficient of the compound grating waveg-
uide structure can be further given by

t (ω) = Re[t (ω)] + i Im[t (ω)] = |t (ω)|eiϕ(ω). (9)

In Eq. (9), ϕ(ω) represents the transmission phase of the com-
pound grating waveguide structure, which can be expressed as

ϕ(ω) = kz(ω)(dG + dWG). (10)

According to Eqs. (9) and (10), we have

tan[kz(ω)(dG + dWG)] = Im[t (ω)]

Re[t (ω)]
. (11)

Differentiating both sides of Eq. (11) with respect to the
angular frequency ω, we have

{1 + tan2[kz(ω)(dG + dWG)]}(dG + dWG)
dkz(ω)

dω

=
d{Im[t (ω)]}

dω
Re[t (ω)] − d{Re[t (ω)]}

dω
Im[t (ω)]

{Re[t (ω)]}2 . (12)
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FIG. 6. (a) Real and (b) imaginary parts of transmission coeffi-
cient as functions of frequency.

Combining Eqs. (8), (11), and (12), we can obtain

vg(ω) = {Re[t (ω)]}2 + {Im[t (ω)]}2

d{Im[t (ω)]}
dω

Re[t (ω)] − d{Re[t (ω)]}
dω

Im[t (ω)]
(dG + dWG).

(13)

B. Ultraslow light effect driven by quasi-BIC in lossless case

Considering the difficulty of the fabrication, we select the
geometric perturbation parameter to be α = 0.3. The widths
of the two air grooves are wL1 = fL1� = 0.26� and wL2 =
fL2� = 0.14�, respectively. The width difference between
the two air grooves is up to �w = wL1 − wL2 = 0.12� =
102 nm, which is well within the reach of current fabrica-
tion technique [97]. Figures 6(a) and 6(b) give the real and
imaginary parts of the transmission coefficient as functions of
the frequency. Both the real and imaginary parts of the trans-
mission coefficient change dramatically around the quasi-BIC
frequency, while they change smoothly far away from the
quasi-BIC frequency.

According to Eq. (13), we calculate the group velocity of
light vg as a function of the frequency, as shown in Fig. 7. The
group velocity of light is in units of c. It should be noticed
that the group velocity of light vanishes when Re[t (ω)] =
Im[t (ω)] = 0. Therefore, this point should be avoided when
calculating the group velocity of light. The result shows
that the group velocity of light is intensively slowed down
to 8.632×10−4c at the quasi-BIC frequency. Driven by the
unique resonant property of the quasi-BIC in the compound

FIG. 7. Group velocity of light as function of frequency.

FIG. 8. (a) Dependence of group velocity of light on geomet-
ric perturbation parameter. Green dashed line represents double-
logarithm linear fitting function lg(vg/c) = 2.0057 lg(α) − 2.0133.
(b) Dependence of group velocity of light on Q factor of quasi-BIC.
Red dashed line represents double-logarithm linear fitting function.

grating waveguide structure, the group velocity of light can be
intensively slowed down to the order of 10−4c.

Next, we calculate the dependence of the group velocity of
light vg on the geometric perturbation parameter α, as shown
in Fig. 8(a). When α = 0.6, the group velocity of light is
3.519×10−3c. As α approaches 0, the group velocity of light
decreases significantly. When α = 0.02, the group velocity
of light is intensively slowed down to 3.817×10−6c. When
α = 0, the group velocity of light becomes infinitely low.
The underlying reason is that a stronger resonance induces
a stronger slow light effect. It is known that the Fabry-Perot
resonance can enable slow light effect [98]. Nevertheless, the
group velocity of light is finitely low since the Q factor of the
Fabry-Perot resonance is finitely high. In Fig. 8(b), we further
give the dependence of the group velocity of light vg on the Q
factor of the quasi-BIC. As shown by the red dashed line, the
group velocity of light and Q factor of the quasi-BIC almost
perfectly conform to double-logarithm linear relationship, i.e.,

lg(vg/c) = −0.999 61 lg(Q) + 0.197 66. (14)

Under current fabrication technique, the measured Q factor of
the quasi-BIC can reach the order of 104 to 106 [57,97,99].
Hence, it is possible to further slow down the group velocity
of light to the order of 10−5c. As we discussed in Sec. II
[see Fig. 4(c)], the Q factor of the quasi-BIC is almost per-
fectly proportional to the negative quadratic power of the
geometric perturbation parameter,

Q = Kα−2, (15)

where K > 0 is the proportionality factor. Taking the loga-
rithm of both sides of Eq. (15), we can obtain

lg(Q) = −2 lg(α) + K ′, (16)

where K ′ = lg(K ). Combining Eqs. (14) and (16), the group
velocity of light vg and geometric perturbation parameter α

also conforms to double-logarithm linear relationship. There-
fore, we utilize a double-logarithm linear function to fit the
data of the group velocity of light vg and geometric per-
turbation parameter α in Fig. 8(a). As shown by the green
dashed line, the fitting double-logarithm linear function can
be expressed as

lg(vg/c) = 2.0057 lg(α) − 2.0133. (17)
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FIG. 9. Group velocity of light as function of frequency. Refrac-
tive index of HfO2 is set to be nH = nWG = 1.88 + 3×10−5i.

Notice that the coefficient of the term lg(α) slightly derives
from (−0.999 61)×(−2) = 1.999 22 since the relationship
Q = Kα−2 is not satisfied rigorously [see Eq. (6)]. As demon-
strated, the fitting curve agrees well with the data. By solving
Eq. (17), we can finally obtain the relationship between the
group velocity of light vg and geometric perturbation parame-
ter α:

vg = 0.009 698 4×102.0057 lg(α)c. (18)

It should be noted that when the parameters (such as the
period and thickness of the grating layer, the filling ratio
of HfO2 ridge, and the thickness of the waveguide layer)
change, the double-logarithm linear relationship between the
group velocity of light and geometric perturbation parameter
can still be satisfied (details can be seen in Sec. III of the
Supplemental Material [93]). The only difference is the values
of two coefficients.

C. Ultraslow light effect driven by quasi-BIC in lossy case

Finally, we discuss the ultraslow light effect driven by the
quasi-BIC in lossy case. As we discussed in Sec. II, the refrac-
tive index of HfO2 is set to be nH = nWG = 1.88 + 3×10−5i.
Figure 9 gives the group velocity of light as a function of
the frequency, respectively. The result shows that the group
velocity of light is intensively slowed down to 1.316×10−3c at
the quasi-BIC frequency. When considering the intrinsic and
scattering losses of HfO2 in the fabrication process, the group
velocity of light can still be intensively slowed down to the
order of 10−3c.

Figure 10(a) gives the dependence of the group veloc-
ity of light vg on the geometric perturbation parameter α.
When α = 0.6, the group velocity of light is 4.108×10−3c.
As α approaches 0, the group velocity of light decreases
significantly. When α = 0.1, the group velocity of light is
intensively slowed down to 5.558×10−4c. In Fig. 10(b), we
further give the dependence of the group velocity of light vg

on the Q factor of the quasi-BIC. As shown by the red dashed
line, the group velocity of light and Q factor of the quasi-BIC
approximately conforms to double-logarithm linear relation-

FIG. 10. (a) Dependence of group velocity of light on ge-
ometric perturbation parameter. Green dashed line represents
double-logarithm linear fitting function lg(vg/c) = 1.1688 lg(α) −
2.2116. (b) Dependence of group velocity of light on Q factor of
quasi-BIC. Red dashed line represents double-logarithm linear fit-
ting function. Refractive index of HfO2 is set to be nH = nWG =
1.88 + 3×10−5i.

ship, i.e.,

lg(vg/c) = −0.646 58 lg(Q) − 0.738 46. (19)

Owing to the absorption of HfO2, the double-logarithm linear
relationship between the group velocity of light and Q factor
of the quasi-BIC is slightly broken. Similar to Sec. III B,
we utilize a double-logarithm linear function to fit the data
of the group velocity of light vg and geometric perturbation
parameter α in Fig. 10(a). As shown by the green dashed line,
the fitting double-logarithm linear function can be expressed
as

lg(vg/c) = 1.1688 lg(α) − 2.2116. (20)

As demonstrated, the fitting curve approximately agrees with
the data. Owing to the absorption of HfO2, the double-
logarithm linear relationship between the group velocity of
light and geometric perturbation parameter is slightly broken.
By solving Eq. (20), we can finally obtain the relationship
between the group velocity of light vg and geometric pertur-
bation parameter α:

vg = 0.006 143 3×101.1688 lg(α)c. (21)

IV. CONCLUSIONS

In summary, we achieve ultraslow light effect driven by the
quasi-BICs in a compound grating waveguide structure with a
complex lattice. Empowered by the unique resonant property
of the quasi-BICs, the group velocity of light can be inten-
sively slowed down. Then, we disclose that the group velocity
of light and geometric perturbation parameters conforms to
double-logarithm linear relationship. Our findings not only
offer unique insight for the relation between slow light effect
and BIC, but also provide a viable route to designing high-
performance slow light-based optical devices.
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[21] M. Soljačić and J. D. Joannopoulos, Enhancement of non-
linear effects using photonic crystals, Nat. Mater. 3, 211
(2004).

[22] R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-
Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V.
Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and
A. Bjarklev, Strained silicon as a new electro-optic material,
Nature (London) 441, 199 (2006).

[23] C. Yu, T. Luo, L. Zhang, and A. E. Willner, Data pulse distor-
tion induced by a slow-light tunable delay line in optical fiber,
Opt. Lett. 32, 20 (2007).

[24] D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuiers,
and T. F. Krauss, Ultrafast tunable optical delay line based
on indirect photonic transitions, Phys. Rev. Lett. 108, 213901
(2012).

[25] M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi,
A. S. Zibrov, V. Vuletic, and M. D. Lukin, Efficient all-optical
switching using slow light within a hollow fiber, Phys. Rev.
Lett. 102, 203902 (2009).

[26] L. Torrijos-Morán, A. Brimont, A. Griol, P. Sanchis, and J.
García-Rupérez, Ultra-compact optical switches using slow
light bimodal silicon waveguides, J. Lightwave Technol. 39,
3495 (2021).

[27] R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, Slow-
light optical buffers: Capabilities and fundamental limitations,
J. Lightwave Technol. 23, 4046 (2005).

[28] S.-Y. Lin, J. G. Fleming, and I. El-Kady, Experimental obser-
vation of photonic-crystal emission near a photonic band edge,
Appl. Phys. Lett. 83, 593 (2003).
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Joannopoulos, and M. Soljačić, Observation of trapped light
within the radiation continuum, Nature (London) 499, 188
(2013).

[57] J. Jin, X. Yin, L. Ni, M. Soljačić, B. Zhen, and C. Peng,
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