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Effects of interface-roughness scattering on nonlinear electron transport in a superlattice
based on exact solution of generalized Boltzmann transport equation
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In this paper, an effective scattering-potential approach is proposed for treating interface-roughness scat-
tering of drifting electrons within a superlattice. By utilizing established effective scattering potentials, a
quasi-one-dimensional generalized Boltzmann transport equation is developed after a self-consistent internal
scattering force is included. This generalized Boltzmann transport equation is solved exactly afterwords be-
yond the relaxation-time approximation. Furthermore, the dependence of the resulting steady-state current on
interface-roughness parameters is analyzed at various temperatures and dc electric-field strengths by utilizing
the calculated nonequilibrium electron occupation function. Meanwhile, the microscopic mechanism behind
non-ohmic transport behavior is revealed by analyzing numerically the computed nonequilibrium electron
occupation function and its dependence on interface roughness parameters as well as the dc electric field strength.
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I. INTRODUCTION

Vertical transport in superlattices (SLs) has gained consid-
erable attention because of the unique band structures of type-
II InAs/GaSb SLs which have appeared as third-generation
infrared focal-plane arrays and photodiodes [1–10]. Mean-
while, the superior performance of such optoelectronic
devices requires high carrier mobilities for efficient transport
through drift and/or diffusion in the vertical direction [11].
However, vertical mobilities cannot be measured directly
because their measurement involves nonstandard and indi-
rect experimental techniques, e.g., the geometric magneto-
resistance [12–15]. Consequently, the vertical mobility can
only be extracted indirectly by fitting measured current-
voltage data [16,17]. Historically, there have been a lot of
published research works on in-plane transport within quan-
tum wells [18], but there exists no comparable effort for
SLs. Moreover, only limited measurements for SL transport
have been performed [19], although the theory for diffusive
carrier transport in SLs was developed a long time ago by
Mori and Ando [20], as well as Dharssi and Butcher [21],
and others [22,23]. Consequently, most theoretical and ex-
perimental works to date have still been limited to horizontal
transport [24].

Notably, in a recent work by Szmulowicz et al. [25], a
three-dimensional (3D) static theory was developed for nu-
merically computing both vertical and horizontal mobilities
of carriers at low temperatures within an InAs/GaSb SL,
where a semi-classical Boltzmann transport theory is em-
ployed under a relaxation-time approximation and a very
weak DC electric field. In our current quasi-one-dimensional
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(1D) time-dependent theory, on the other hand, the scattering
of electrons by interface roughness is calculated accurately
beyond the relaxation-time approximation and the resulting
nonlinear transport theory can be applied to a strong DC
electric field and a large interface scattering of electrons. This
leads to a field-dependent electron mobility beyond Ohm’s
law for a weak DC electric field only.

To the best of our knowledge, no exact solution for the
Boltzmann transport equation has ever been analytically ob-
tained so far with the full inclusion of microscopic scattering
of electrons by impurities, phonons, or interface roughness.
The electron dynamics of semiconductor SLs under a strong
DC electric field E0 appears extremely rich due to the large
number of parameters that can be controlled quite easily in
experiments. As an example, evidence for Bloch oscillations
in doped SLs, resulting in a negative differential conduc-
tance as predicted by Esaki and Tsu [26] was reported by
Sibille et al. [14] for samples at both room and low tem-
peratures. In such a situation, the tunable strong THz emitter
enables real-time active spectral imaging in combination with
a focal-plane photodetector array [27]. On the other hand,
studies on long-time average current under AC monochro-
matic [28] and bichromatic [29] electric fields have also been
reported recently. In those studies, the conditions for occur-
rence of dynamical localization [30–32] were shown either
for a scattering-free system or within the relaxation-time ap-
proximation in the presence of elastic scattering. Meantime,
conditions for generalized dynamical localization under AC
electric fields were also displayed, when a tight-binding band
structure beyond the nearest-neighbor approximation was em-
ployed [32,33].

In our current theory, instead of employing a relaxation-
time approximation to deal with the scattering contributions
in the Boltzmann transport equation [25], we adopt a
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first-principles quantum kinetic approach [34] for accurately
capturing the full effects due to interface roughness on non-
linear vertical transport of electrons in SLs. In addition, a
scattering force is also included self-consistently in this for-
malism. To cut down on the computation time for these
very complex and time consuming numerical computations,
we construct effective 1D scattering potentials. Meanwhile,
we also introduce the corresponding occupation function for
nonequilibrium miniband electrons in their vertical SL trans-
port subjected to both deflected and backward scattering of
drifting electrons by in-plane interface roughness. Using this
approach, we demonstrated the role of interface roughness in
both DC and AC field-driven miniband transport [35]. Our
quantum-kinetic theory enables evaluating accurately non-
linear DC current and conductivity for vertical transport of
miniband electrons in a SL by extracting its long-time steady-
state values under a multistep function for setting up a DC
electric field. In this work, we assume that the width W0 of
a SL miniband is large and the applied DC electric field E0

is moderately high, so that the condition eE0d < W0 can be
satisfied to avoid Wannier-Stark localization of electrons in
SLs [36,37].

The rest of this paper is organized as follows. In Sec. II,
we put forward a first-principles quantum-kinetic model
and introduce effective scattering potentials as well as 1D
nonequilibrium occupation function for miniband electrons in
SLs driven by DC/AC electric fields. Our study includes both
deflected and backward scattering of electrons by in-plane
interface roughness. Numerical results based on our quantum-
kinetic theory for the transient current and nonequilibrium
part of the drifting-electron occupation function in SLs are
presented in Sec. III. Finally, a brief summary is given in
Sec. IV along with some remarks.

II. EFFECT OF INTERFACE-ROUGHNESS SCATTERING

For studying an electrical current flowing through a SL
structure in the presence of interface roughness, we propose
the use of our previously developed generalized Boltzmann
nonlinear-transport equation [34]. This gives rise to

d

dt
f (k, t ) = ∂ f (k, t )

∂t

∣∣∣∣
scat

− F tot (kz, t )

h̄
· ∂ f (k, t )

∂k
, (1)

where only one conduction miniband is considered in the
electric-quantum limit for low electron volume density and
thin barriers in SLs. In Eq. (1), f (k, t ) stands for a nonequi-
librium occupation function for miniband electrons in a SL,
k = {k‖, kz} represents a three-dimensional wave vector of
electrons, and F tot (kz, t ) represents an applied transient force
acting on both deflected and backward scattering of drifting
electrons.

For Eq. (1), we would apply the Boltzmann-type scattering
term to an ultrafast energy-relaxation process, giving rise to

∂ f (k, t )

∂t

∣∣∣∣
scat

= Win(k, t | f )[1 − f (k, t )] −Wout (k, t | f ) f (k, t)

≡ Win(k, t | f ) − f (k, t )

τE(k)
, (2)
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FIG. 1. Illustrations for deflected scattering (left with k′
z > 0),

and backward scattering (right with k′
z < 0), by roughness (solid

black curve) on an interface (black dashed line) within a superlattice
structure, where qz = k′

z − kz, q‖ = k′
‖ − k‖ are transition wave num-

bers and the total kinetic energy of electrons must be conserved for
three-dimensional elastic-scattering events. Additionally, we must
replace k′

z by k′
z ± 2π/d so as to maintain |k′

z| � π/d within the first
Brillouin zone for the Umklapp scattering with |k′

z| > π/d .

where Win(k, t | f ) and Wout (k, t | f ) are, respectively. Here,
the scattering-in and scattering-out rates for electrons with a
wave vector k and are calculated as [34]

Win(k, t | f ) = 2π

h̄

∑
k′

|Vds(k, k′)|2 f (k′, t )

× δ(εk − εk′ ) �[ε̃k − Ez(k′
z )], (3)

Wout (k, t | f ) = 2π

h̄

∑
k′

|Vds(k, k′)|2[1 − f (k′, t )]

× δ(εk′ − εk ) �[ε̃k − Ez(k′
z )], (4)

and the inverse energy-relaxation time can be defined by

1

τE(k)
≡ Win(k, t | f ) + Wout (k, t | f )

= 2π

h̄

∑
k′

|Vds(k, k′)|2 δ(εk − εk′ ) �[ε̃k − Ez(k′
z )], (5)

which is independent of occupation function f (k, t ).
In Eqs. (3) and (4), εk ≡ εk‖,kz = h̄�0/2 + h̄2k2

‖/2m∗ +
W0 sin2(kzd/2) represents the kinetic energy for the lowest-
miniband electrons in a type-I SL with a spatial period d , an
isotropic in-plane effective mass m∗, a tight-binding miniband
width W0, and a harmonic frequency �0 due to quantum-well
confinement, and ε̃k = εk − h̄�0/2. In addition, Ez(kz ) ≡
W0 sin2(kzd/2), and �(x) represents an unity-step function
to ensure a real-value wave vector k′

‖ [23,25]. Furthermore,
both electron-electron and electron-phonon scattering have
been neglected for low doping densities and temperatures.
The summations over k′ in Eqs. (3) and (4) should ex-
clude the term with k′ = k. Moreover, |Vds(k, k′)|2 in Eq. (5)
is the scattering potential for dominant deflected (k′

z > 0) and
second backward (k′

z < 0) elastic scattering [38] of miniband
electrons by interface roughness within a SL structure, as
illustrated in Fig. 1, and is calculated explicitly as [25]

|Vds(k, k′)|2 = 2πV 2
0 	2

0

2
0

A e−q2
‖


2
0/4

∣∣φSL
k′

z
(a)

∣∣2∣∣φSL
kz

(a)
∣∣2

. (6)
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In Eq. (6), roughness at both interfaces of a quantum well
is included, q = k′ − k is a transition wave vector for domi-
nant deflected/second backward electron scattering illustrated
in Fig. 1, V0 is the depth of a symmetrical quantum well
for conduction electrons located at the right edge z = a (or
equivalently, at the left edge z = −a), 	0 is the average am-
plitude for interface roughness, 
0 is the in-plane correlation
length for interface roughness, A is the cross-sectional area
of SLs, and φSL

kz
(z) stands for the z component of a SL wave

function �SL
k (r) ≡ �SL

k‖,kz
(r‖, z) = [exp(ik‖ · r‖)/

√
A] φSL

kz
(z).

Different from the in-plane transport, the interface-roughness
scattering for vertical transport is a three-dimensional process
intrinsically. Within the 1D tight-binding model, φSL

kz
(z) is

written as [39]

φSL
kz

(z) = 1√
N0 + 1

N0/2∑
j=−N0/2

eikz jd χ
QW
0 (z − jd ) = [

φSL
−kz

(z)
]∗

,

(7)

where N0 + 1 represents the total number of unit cells in the
SL, and the individual quantum-well ground-state wave func-
tion takes the form |χQW

0 (z)|2 = (1/σ
√

2π ) exp(−z2/2σ 2)
with σ � a < d/2 for weak tunneling of electrons. In Eqs. (3)
to (5), the so-called Umklapp-scattering process [40] with
|k′

z − kz| > π/d could occur. To include this Umklapp-
scattering effect, we must replace k′

z by k′
z ± 2π/d properly

to ensure that the new final scattering-transition wave num-
ber k′

z ± 2π/d always stays within the first Brillouin zone
[−π/d, π/d].

In Eq. (6), we assumed that the dominant contribution
for scattering of electrons in SLs comes from the interface
roughness, while the electron-electron [41] and electron-
phonon [42] scattering are expected small for low doping
density and temperatures, respectively. To investigate the ver-
tical transport of miniband electrons in SLs, we consider
the total transient force F tot (kz, t ) = Ftot (kz, t ) êz pointing to-
wards the z (or SL) direction. Here, to greatly cut down
numerical computations, we formally introduce an effective
1D occupation function n(kz, t ) for nonequilibrium miniband
electrons only, defined by

n(kz, t ) ≡ 2

nqwA
∑

k‖

f (k, t )

≈ 1

2π2ρ0d

∫
d2k‖ f ({k‖, kz}, t ), (8)

where the two-fold spin degeneracy of electrons is included,
the areal density nqw ≈ ρ0d for electrons in individual quan-
tum well is given by Eq. (26) below since the total number of
electrons in a SL system remains to be a constant in transport
and ρ0 is the volume density for electrons from remote doping
of SLs.

In a recent work by Szmulowicz et al. [25] a 3D
static-transport theory was developed for semi-analytically
computing both vertical and horizontal mobilities of carri-
ers at low temperatures within an InAs/GaSb SL, where a
semi-classical Boltzmann transport theory is employed along
with a relaxation-time approximation and an assumption of
a very weak DC electric field. In our current quasi-1D

time-dependent theory, on the other hand, the scattering of
electrons by interface roughness is calculated accurately be-
yond the relaxation-time approximation and the resulting
nonlinear transport theory can be applied to strong DC electric
field and interface scattering of electrons, leading to a field-
dependent electron mobility beyond Ohm’s law under a weak
DC electric field only.

Generally speaking, the current physics model with an
effective 1D scattering potential holds true for a system with
an anisotropic band structure, such as a superlattice, as well as
a driving motion and a strong scattering of electrons in parallel
and perpendicular to the SL direction, respectively. Specifi-
cally, if we assume that the condition |	kz| ≡ eE0d/h̄|vd | �
1/
0 > |q‖| is satisfied by electrons in this SL system, then
the correlation between the vertical and parallel motions
within a SL is expected very weak, where E0, d , vd , and

0 represent DC electric-field strength, superlattice period,
drift velocity of electrons, and correlation length of interface
roughness, respectively. As a result, the full occupation func-
tion can be approximately factorized into individual in-plane
and vertical components. Meanwhile, the small transferred
in-plane momentum from initially fast-driving electrons along
the SL direction will be quickly balanced by strong interface-
roughness scattering of electrons within a quantum well and
maintain a thermal-equilibrium state. In this way, an effective
1D scattering potential can be validated.

Under this assumption, Eq. (1) can now be projected onto
this 1D kz-space (|kz| � π/d) as

d

dt
	n(kz, t ) = ∂n(kz, t )

∂t

∣∣∣∣
scat

− Ftot (kz, t )

h̄

[
∂n0(kz )

∂kz

+ ∂	n(kz, t )

∂kz

]
, (9)

where 	n(kz, t ) ≡ n(kz, t ) − n0(kz ) describes the nonequilib-
rium part of electron occupation function due to applied DC
electric field, while n0(kz ) is the initial thermal-equilibrium
occupation of electrons given by Eq. (25) below. It is impor-
tant to notice that the electric current flowing within a SL
only relies on 	n(kz, t ) but not on n0(kz ). Mathematically,
Eq. (9) can be utilized to evaluate the next-time nonequilib-
rium distribution 	n(kz, t + 	t ) for |kz| < π/d (besides two
points at kz = ±π/d) based on a so-called three-point central-
difference approach [35] for the drifting term ∂	n(kz, t )/∂kz

as well as known values of 	n(kz, t ) at previous time t .
However, the value of n(kz = ±π/d, t + 	t ) should still be
determined by the following restraint equation for the conser-
vation of total number of electrons within a SL [35], that is,

d

2π

∫ π/d

−π/d
dkz 	n(kz, t + 	t ) ≡ 0. (10)

Therefore, we expect that 	n(kz = ±π/d, t + 	t ) at two
Brillouin-zone boundary points can be expressed by
	n(kz, t + 	t ) within the range of |kz| < π/d , which is ex-
plicitly given by

g1(t + 	t ) = gN (t + 	t ) = −1

2

N−1∑
j=2

g j (t + 	t ), (11)
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from which we always get

N∑
j=1

g j (t + 	t ) ≡ 0, (12)

where g j (t + 	t ) ≡ 	n(k j, t + 	t ) for 1 � j � N , k j =
−π/d + ( j − 1)	k, 	k = 2π/(N − 1)d , and N > 3 is an
integer representing a total number of equal-distance discrete

points within the first Brillouin zone of a SL. Here, we want to
emphasize that our calculated 	n(kz, t ) from Eq. (9) will gen-
erally satisfy 	n(kz, t ) 	= 	n(−kz, t ) for |kz| < π/d under a
finite DC electric field although 	n(kz = π/d, t ) = 	n(kz =
−π/d, t ) is always maintained.

By applying the detailed-balance condition, we introduced
in Eq. (9) a reduced Boltzmann-type scattering term on its
right-hand side, given by

∂n(kz, t )

∂t

∣∣∣∣
scat

≈ 2

nqwA
∑

k‖

∂ f ({k‖, kz}, t )

∂t

∣∣∣∣
(in)

scat

[1 − f0(Exy(k‖) − μ0)] − 2

nqwA
∑

k‖

∂ f ({k‖, kz}, t )

∂t

∣∣∣∣
(out)

scat

f0(Exy(k‖) − μ0)

≡ Win(kz, t | n0 + 	n)[1 − n0(kz ) − 	n(kz, t )] − Wout (kz, t | n0 + 	n)[n0(kz ) + 	n(kz, t )]

− δt,0
[
W (0)

in (kz | n0)[1 − n0(kz )] − W (0)
out (kz | n0) n0(kz )

]
, (13)

where the detailed-balance condition has been employed for initial state n(kz, t = 0) ≡ n0(kz ), and the reduced 1D scattering-in
and scattering-out rates are written as

Win(kz, t | n0 + 	n) ≈ 2

nqwA
∑

k‖

Win(k, t | f ) [1 − f0(Exy(k‖) − μ0)] ≡ 2π

h̄

∑
k′

z

U (in)
sc (kz, k′

z )[n0(k′
z ) + 	n(k′

z, t )]

= Umd

h̄

∫ π/d

−π/d
dk′

z U
(in)
sc (kz, k′

z )[n0(k′
z ) + 	n(k′

z, t )], (14)

Wout (kz, t | n0 + 	n) ≈ 2

nqwA
∑

k‖

Wout (k, t | f ) f0(Exy(k‖) − μ0) ≡ 2π

h̄

∑
k′

z

U (out)
sc (kz, k′

z )[1 − n0(k′
z ) − 	n(k′

z, t )]

= Umd

h̄

∫ π/d

−π/d
dk′

z U
(out)
sc (kz, k′

z ) [1 − n0(k′
z ) − 	n(k′

z, t )], (15)

and W (0)
in (kz | n0) and W (0)

out (kz | n0) can be obtained from Eqs. (14) and (15), correspondingly, simply by setting 	n(k′
z, t ) = 0. In

Eq. (13), we employed an ansatz by inserting a thermal-equilibrium distribution f0[Exy(k‖) − μ0] for the inclusion of in-plane
scattering contributions through an average over all in-plane scattering states. In Eqs. (13) to (15), we used an implicit energy
drain for the transversal degrees of freedom of electrons so as to keep them in a thermal-equilibrium state. Here, f0[Exy(k‖) −
μ0] = {1 + exp[((Exy(k‖) − μ0(T ))/kBT ]}−1 in Eqs. (14) and (15), which also appears in Eqs. (16) and (17) below, approaches
�[EF − Exy(k‖)] with Fermi energy EF at low temperatures kBT 
 EF , where Exy(k‖) = h̄�0/2 + h̄2k2

‖/2m∗. In Eqs. (14) and

(15), we denote U sc(kz, k′
z ) ≡ Usc(kz, k′

z )/Um with a scaled value Um for the maximum of function |Usc(kz, k′
z )|, and meanwhile

we require mathematically that the time change 	t , initially introduced in Eq. (11), satisfies 	t 
 Um/h̄. Importantly, Eq. (13)
becomes nonlinear with 	n(kz, t ) since Win and Wout depend on n(kz, t ), and Eq. (9) can be approximated by a differential
matrix equation if all the higher-order terms ∝ [	n(kz, t )]2 are neglected [35].

Moreover, by applying conservation of the total kinetic energy of electrons for elastic scattering, the inelastic-scattering
potential Usc(kz, k′

z ), in Eqs. (14) and (15), takes the explicit forms

U (in)
sc (kz, k′

z ) = 2

nqwA
∑
k‖,k′

‖

|Vds(k, k′)|2 δ(εk − εk′ ) �[ε̃k‖,kz − Ez(k′
z )] [1 − f0(Exy(k‖) − μ0)] f0(Exy(k′

‖) − μ0)

≈ 4πV 2
0 	2

0

2
0

nqw

∣∣φSL
k′

z
(a)

∣∣2 ∣∣φSL
kz

(a)
∣∣2 1

A2

∑
k‖

[1 − f0(Exy(k‖) − μ0)] �[ε̃k‖,kz − Ez(k′
z )]

×
∑

k′
‖

exp

(
−1

4
|k‖ − k′

‖|2
2
0

)
δ(εk‖,kz − εk′

‖,k′
z
) f0[Exy(k′

‖) − μ0]

≈ V 2
0 	2

0

2
0

2π2nqw

∣∣χQW
0 (a)

∣∣4
∫ ∞

0
dk‖ k‖ {1 − f0[Exy(k‖) − μ0]} �[ε̃k‖,kz − Ez(k′

z )]

×
∫ ∞

0
dk′

‖ k′
‖L0(εk‖,kz − εk′

‖,k′
z
, h̄�0)

∫ 2π

0
dθ0 exp

[
−P0(k‖, k′

‖, θ0)
2
0

4

]
f0[Exy(k′

‖) − μ0], (16)
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U (out)
sc (kz, k′

z ) = 2

nqwA
∑
k‖,k′

‖

|Vds(k, k′)|2 δ(εk − εk′ ) �[ε̃k‖,kz − Ez(k′
z )] f0[Exy(k‖) − μ0] [1 − f0(Exy(k′

‖) − μ0)]

≈ 4πV 2
0 	2

0

2
0

nqw

∣∣φSL
k′

z
(a)

∣∣2 ∣∣φSL
kz

(a)
∣∣2 1

A2

∑
k‖

f0[Exy(k‖) − μ0] �[ε̃k‖,kz − Ez(k′
z )]

×
∑

k′
‖

exp

(
−1

4
|k‖ − k′

‖|2
2
0

)
δ(εk‖,kz − εk′

‖,k′
z
) {1 − f0[Exy(k′

‖) − μ0]}

≈ V 2
0 	2

0

2
0

2π2nqw

∣∣χQW
0 (a)

∣∣4
∫ ∞

0
dk‖ k‖ f0[Exy(k‖) − μ0] �[ε̃k‖,kz − Ez(k′

z )]

×
∫ ∞

0
dk′

‖ k′
‖L0(εk‖,kz − εk′

‖,k′
z
, h̄�0)

∫ 2π

0
dθ0 exp

[
−P0(k‖, k′

‖, θ0)
2
0

4

]
{1 − f0[Exy(k′

‖) − μ0]}. (17)

In Eqs. (16) and (17), P0(k‖, k′
‖, θ0) = k2

‖ + k′2
‖ −

2k‖k′
‖ cos θ0 � 0 while θ0 is the angle between k‖ and k′

‖,
U (out)

sc (kz, k′
z ) = U (out)

sc (kz,−k′
z ) = U (out)

sc (−kz, k′
z ) for random-

ized scattering, and |χQW
0 (a)| = |χQW

0 (−a)| for a symmetrical
quantum well. Moreover, in Eqs. (16) and (17), Usc(kz, k′

z ) �
0, L0(a, b) = b/[π (a2 + b2)] is the Lorentz-shape
function, �0 (
 W0/h̄) is the inverse-lifetime broadening
of conduction electrons, ε̃k‖,kz ≡ εk‖,kz − h̄�0/2 = Exy(k‖) −
h̄�0/2 + W0 sin2(kzd/2) ≡ Ẽxy(k‖) + Ez(kz ) represents
the total-energy dispersion for miniband electrons with
nearest-neighbor coupling in an 1D tight-binding model, and
the variable in Lorentz-shape function is calculated explicitly
as ε̃k‖,kz − ε̃k′

‖,k′
z
= [Ez(kz ) − Ez(k′

z )] + [Ẽxy(k‖) − Ẽxy(k′
‖)].

Here, only the total kinetic energy of scattering
electrons in Eqs. (16) and (17) is required to be
conserved but not the individual ones in either the
longitudinal or transverse direction. Furthermore, we
will employ the relations k‖dk‖ = (m∗/h̄2) dẼxy(k‖) and
dk′

z = (2/W0d ) dEz(k′
z )/

√
1 − {1 − (2/W0)[Ez(k′

z ) + h̄�0]}2

for computations in Eqs. (16) and (17), where Ẽxy(k‖) =
h̄2k2

‖/2m∗ and Ez(k′
z ) = W0 sin2(k′

zd/2). From Eqs. (16)
and (17), we realize that such a 3D scattering process, as
illustrated in Fig. 1, can be effectively viewed as an 1D
one after an average with respect to the in-plane scattering
contributions of electrons has been performed.

For Eqs. (16) and (17), we would like to point out that
the obtained reduced-form scattering potentials U (in)

sc (kz, k′
z )

and U (out)
sc (kz, k′

z ), which are associated with initial-/final-state
electron wave numbers kz and k′

z in a quasi-1D SL system,
actually represent an inelastic-scattering process for SL elec-
trons with respect to wave numbers kz and k′

z although its
original form with an anisotropic energy dispersion is indeed
an elastic-scattering process for electrons in a 3D bulk system.
Particularly, if a one-dimensional elastic-scattering process
is assumed for electrons in a SL, we are simply left with
k′

z = −kz.
For the total transient force Ftot (kz, t ), lying along the

SL (z) direction, on the left-hand side of Eq. (9), we in-
clude an inhomogeneous kz-dependent scattering (or resistive)
force, i.e.,

Ftot (kz, t ) = −eE0

M

M∑
j=1

[
1

2
+ 1

π
tan−1

(
t − j	t

δ0

)]

+ fres(kz, t ), (18)

where, for the first term on its right-hand side, M is the
number of turning-on steps, 	t is the step-delayed time, E0

(eE0d < W0) is the magnitude of a DC electric field, t j = j	t
is the jth turning-on time, 	t is the waiting (or stage) time,
and δ0 (
 	t) represents the broadening for a turning-on
time at t = t j . On the other hand, the kz-dependent dynamical
scattering force fres(kz, t ) in Eq. (18) results from momentum
dissipation of drift electrons in the presence of interface-
roughness scattering, yielding [34,43,44]

fres(kz, t ) = h̄
∑

k′
z

(k′
z − kz ) �(+)

s (kz, k′
z; t | n) �(k′

z − kz ) + h̄
∑

k′
z

(kz − k′
z ) �(−)

s (kz, k′
z; t | n) �(kz − k′

z )

= h̄d

2π

[∫ π/d

−π/d
dk′

z (k′
z − kz ) �(+)

s (k′
z, kz; t | n) �(k′

z − kz ) +
∫ π/d

−π/d
dk′

z (kz − k′
z ) �(−)

s (kz, k′
z; t | n) �(kz − k′

z )

]
, (19)
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where the scattering-in (+) and scattering-out (−) rates for momentum dissipation of drifting electrons are given,
respectively, by

�(+)
s (kz, k′

z; t | n) = 2π

h̄
U (in)

sc (kz, k′
z ) [n0(k′

z ) + 	n(k′
z, t )] [1 − n0(kz ) − 	n(kz, t )] − 2π

h̄
U (in)

sc (kz, k′
z ) n0(k′

z ) [1 − n0(kz )]

≈ 2π

h̄
U (in)

sc (kz, kz + qz ) {	n(kz + qz, t ) [1 − n0(kz )] − n0(kz + qz ) 	n(kz, t )} + O(	n)2, (20)

�(−)
s (kz, k′

z; t | n) = 2π

h̄
U (out)

sc (kz, k′
z ) [n0(kz ) + 	n(kz, t )] [1 − n0(k′

z ) − 	n(k′
z, t )] − 2π

h̄
U (out)

sc (kz, k′
z ) n0(kz ) [1 − n0(k′

z )]

≈ 2π

h̄
U (out)

sc (kz, kz − qz ) {	n(kz, t ) [1 − n0(kz − qz )] − n0(kz ) 	n(kz − qz, t )} + O(	n)2. (21)

Here, we set k′
z = kz + qz and k′

z = kz − qz, respectively, with qz � 0 in Eqs. (20) and (21) at their last steps for a DC electric
field E0 pointing in the z direction.

Physically, the dynamical force fres(kz, t ) introduced in Eq. (19) is zero at initial time t = 0 for a thermal-equilibrium
distribution of electrons and plays a role for reducing a nonequilibrium distribution function 	n(kz, t ) shifted towards negative
kz direction by accelerated electrons under a DC electric field E0. Furthermore, as seen in Eqs. (20) and (21), this scattering force
fres(kz, t ), which excludes a nonlinear term ∼O(	n)2 for electron transport within the first Brillouin zone in SLs, should be
determined self-consistently with respect to 	n(kz, t ) and will give rise to slight joule heating (different from thermal heating)
to drifting electrons.

For simplicity, if we assume |qz/kz| 
 1 for dominant small-angle vertical scattering events, Eqs. (20) and (21) simply
reduce to

�(+)
s (kz, kz + qz; t | n) + �(−)

s (kz, kz − qz; t | n) ≈ 2π

h̄
Uav(kz )

[
2	n(kz, t )[1 − 2 n0(kz )] + qz

∂	n(kz, t )

∂kz

]
, (22)

where the average scattering potential amplitude Uav(kz ) is defined by

Uav(kz ) = d

π

∫ π/d

0
dqz

[
U (in)

sc (kz, kz + qz ) + U (out)
sc (kz, kz − qz )

]
> 0. (23)

In Eq. (23), kz ± qz are supposed to be limited within the first Brillouin zone [−π/d, π/d], which can be ensured by adjusting
them into kz + qz ± 2π/d and kz − qz ± 2π/d , respectively, if |kz ± qz| > π/d , i.e., the so-called Umklapp scattering effect.
Therefore, by combining Eqs. (19) with (22), we finally arrive at an expression for the kz-dependent dynamical scattering
force, i.e.,

fres(kz, t ) ≈ Uav(kz ) d
∫ π/d

0
dqz qz

[
2	n(kz, t ) [1 − 2 n0(kz )] + qz

∂	n(kz, t )

∂kz

]

= π2 Uav(kz )

d

[
	n(kz, t ) [1 − 2 n0(kz )] + 1

3

(
π

d

)
∂	n(kz, t )

∂kz

]
, (24)

which appears with an opposite sign in comparison with the first term in Eq. (18) for an applied DC electric force. Mathematically
speaking, since ∂	n(kz, t )/∂kz > 0 and 	n(kz, t ) > 0 for kz < 0, we know from Eq. (24) that fres(kz, t ) > 0. In this case, the pos-
itive fres(kz, t ) can reduce the effect of a DC electric field E0 along the positive kz direction. On the other hand, we find fres(kz, t ) <

0 for kz > 0 because of ∂	n(kz, t )/∂kz < 0 and 	n(kz, t ) ≈ 0. From Eq. (9), we further realize that the scattering-force correc-
tion term fres(kz, t ) contributes to the Boltzmann transport equation by including two new nonlinear driving terms proportional
to ∼{	n(kz, t ), ∂	n(kz, t )/∂kz} × [∂n0(kz )/∂kz + ∂	n(kz, t )/∂kz] ∝ O{	n(kz, t )∂	n(kz, t )/∂kz, [∂	n(kz, t )/∂kz]2}, which is
expected to reduce the effect of an applied E0 pointing towards the positive kz direction.

Since DC electric field is applied only after t = 0, the initial condition for occupation function n(kz, t ) at t = 0 can be simply
set as a thermal-equilibrium Fermi function at temperature T0, that is,

n0(kz ) ≡ n(kz, t = 0) = 2

nqwA
∑

k‖

{
1 + exp

[
εk‖,kz − μ0(T0)

kBT0

]}−1

= 1

πnqw

∫ ∞

0
dk‖ k‖

{
1 + exp

[
εk‖,kz − μ0(T0)

kBT0

]}−1

, (25)

or 	n(kz, t = 0) = 0, where μ0(T0) is the chemical potential, which, for a given volume doping density ρ0, is determined by the
root of the following constraint equation [45] for any fixed value of T0, i.e.,

ρ0 = 1

2π2

∫ π/d

−π/d
dkz

∫ ∞

0
dk‖ k‖

{
1 + exp

[
εk‖,kz − μ0(T0)

kBT0

]}−1

. (26)
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FIG. 2. Selected 2D density plots for numerically calculated effective quasi-1D static scattering potentials U (in)
sc (kz, k′

z )/Um and
U (out)

sc (kz, k′
z )/Um as functions of wave numbers kz and k′

z from Eqs. (16) and (17), respectively, with various combinations for values of

0 and 	0 in four panels, where T = T0 = 4 K is assumed and Um = 1 eV is selected as a scale for calculated potentials.

With help from this determined chemical potential μ0(T ), we
further acquire the initial quantum-well areal density nqw of
electrons, introduced in Eq. (25), simply by nqw ≈ ρ0d .

Finally, by applying the numerically computed transient
non-equilibrium occupation function 	n(kz, t ) from Eq. (9),
the transient drift velocity vd (t ; E0) for miniband electrons in
a SL can be calculated from a quantum-statistical average of
electron group velocity vz(kz ), [34] leading to

vd (t ; E0) =
∑

kz
vz(kz ) 	n(kz, t )∑

kz
n0(kz )

=
∫ π/d
−π/d dkz vz(kz ) 	n(kz, t )∫ π/d

−π/d dkz n0(kz )
, (27)

where vz(kz ) = (W0d/2h̄) sin(kzd ) is the group velocity of
miniband electrons along a SL direction. Having obtained
vd (t ; E0), we can calculate the thermal dissipation power
P (t ; E0), given by

P (t ; E0) = vd (t ; E0) d

2π

∫ π/d

−π/d
dkz fres(kz, t ), (28)

which generates joule heating to a SL system. In addition,
the DC vertical mobility μ(t ; E0) can also be determined
from μ(t ; E0) = ∂vd (t ; E0)/∂E0, which depends on E0 due to
nonlinear nature of electron transport or current [34]. Particu-
larly, the transient current I (t ; E0) for the vertical transport of

electrons in SLs is found to be

I (t ; E0) = −e

π

∫ π/d

−π/d
dkz vz(kz ) 	n(kz, t )

= −eW0d

2π h̄

∫ π/d

−π/d
dkz sin(kzd ) 	n(kz, t ). (29)

TABLE I. Parameters used for numerical computations of verti-
cal electron transport in GaAs/AlGaAs SLs unless they are indicated
in figure captions.

Parameter Description Value Unit

	0 Average interface roughness 5 Å

0 In-plane correlation length 50 Å
h̄�0 Energy-level separation 100 meV
T0 Temperature 4 K
h̄�0 Electron lifetime broadening 1 meV
m∗ In-plane electron effective mass 0.067 9.1 × 10−31 kg
d SL period 100 Å
2a Well width 40 Å
ρ0 Electron volume density 1 1016 cm−3

E0 DC electric field 500 V/cm
W0 Miniband width 10 meV
N0 + 1 Number of SL periods 51 unit-less
M Number of time steps 5 unit-less
	t Waiting time 10 ps
δ0 Broadening time 0.5 ps
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FIG. 3. 2D density plots for numerically calculated quasi-1D nonequilibrium occupation functions 	n(kz, t ) from Boltzmann transport
equation as functions of wave number kz and time t with various values for 	0 = 3.54, 5.00, 7.07 Å but fixed values of 
0 = 50 Å and
f0 = 500 eV/cm, as well as plot for corresponding transient currents I (t ; E0 ) as a function of time t with various values for 	0 in the bottom-
right panel. Here, T = T0 = 4 K is assumed.

Interestingly, if fres(t ) = 0 is taken and |	n(kz, t )| is as-
sumed small, the nonequilibrium occupation function n(kz, t )
in steady states (t → ∞) can be found after we linearize the
1D Boltzmann transport equation in Eq. (9) with respect to
	n(kz ) for impurity [41], phonon [42], and Coulomb [38]
scattering of electrons, respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

The used model parameters for all our numerical compu-
tations are listed in Table I. With the use of Eqs. (16) and
(17), we present our numerically calculated effective quasi-
1D scattering potentials U (in)

sc (kz, k′
z )/Um and U (out)

sc (kz, k′
z )/Um

in Fig. 2 as functions of the wave numbers kz and k′
z

for both scattering-in and scattering-out processes, respec-
tively. Due to the presence of an energy-conservation
constraint for 3D elastic-scattering processes, both positive
U (in)

sc (kz, k′
z )/Um and U (out)

sc (kz, k′
z )/Um appear significant only

within two “curve-like” regions with mirror symmetry and
vary their strengths dramatically with average interface rough-
ness 	0 and in-plane correlation length 
0. This mirror
symmetry displays a 90o-degree rotation as U (in)

sc (kz, k′
z )/Um

switches to U (out)
sc (kz, k′

z )/Um and vice versa. Physically
speaking, these quasi-1D scattering processes, as character-
ized by two effective scattering potentials U (in)

sc (kz, k′
z )/Um

and U (out)
sc (kz, k′

z )/Um are inelastic ones in nature although

their corresponding 3D scattering processes still remain
elastic. Quantitatively, we find both U (in)

sc (kz, k′
z )/Um and

U (out)
sc (kz, k′

z )/Um goes up with increased 	0 but drops as 
0

becomes large.
By exactly solving the quasi-1D Boltzmann transport equa-

tion in Eq. (9) for the nonequilibrium occupation function
	n(kz, t ) of drifting electrons in a SL beyond the well-known
relaxation-time approximation, we display 2D density plots
for numerically computed 	n(kz, t ) in Fig. 3 at T = T0 =
4 K with different values for the average interface roughness
	0, as well as a comparison of their corresponding currents
I (t ; E0) as a function of time t . From Eq. (29), we know that
I (t ; E0) should be determined only by the nonequilibrium part
	n(kz, t ) of a full occupation function of electrons, instead
of a full occupation function n(kz, t ). For these cases with

0 = 50 Å, f0 = 500 eV/cm and various roughness parame-
ters 	0, we find that I (t ; E0) decreases with increasing 	0 due
to gradually enhanced interface-roughness scattering strength,
as revealed by Eqs. (16) and (17). Under a strong electric force
f0 = 500 eV/cm, the strip-shaped 	n(kz, t ) is pushed away
with time from its initial symmetrical position around the
Brillouin-zone center at kz = 0 to the left-side asymmetrical
kz < 0 region, leading to a finite and positive current I (t ; E0),
agreeing with the prediction from Eq. (29). Moreover, the cen-
tral dark-color bar (maximum) inside this stripe-shaped region
and near kzd = −π/2 for a maximum absolute value of group
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FIG. 4. 2D density plots for numerically calculated quasi-1D nonequilibrium occupation functions 	n(kz, t ) from Boltzmann transport
equation as functions of wave number kz and time t with various values for 
0 = 40, 50, 60 Å but fixed values of 	0 = 5 Å and f0 =
500 eV/cm, as well as plot for corresponding transient currents I (t ; E0 ) as a function of time t with various values for 
0 in the bottom-right
panel. Here, T = T0 = 4 K is assumed.

velocity has been smeared out quickly as 	0 is increased from
3.54 Å to 7.07 Å, resulting in a reduced current I (t ; E0) with
increasing 	0.

We now turn our attention to the effect due to the in-
plane correlation length 
0 on the distribution of 	n(kz, t )
in kz-space, and on the magnitude change of I (t ; E0) as well.
From Fig. 4, we see a similar feature from their dependence
on in-plane correlation length parameter 
0 (characterizing
the area density of interface roughness) in comparison with
those from their dependence on average interface-roughness
amplitude 	0 in Fig. 3, where I (t ; E0) increases with re-
ducing value of 
0. In fact, as revealed by Eqs. (16) and
(17), I (t ; E0) depends on 
0 through an exponential factor
of ∼
2

0 exp[−P0(k‖, k′
‖, θ0)
2

0/4], which is slightly different
from its dependence on 	0 in Fig. 3 through a proportional
factor of ∼	2

0. Practically, however, both 	0 and 
0 can be
attributed to and determined by a particular sample-growth
process.

Since the presence of an electric current I (t ; E0) is always
subjected to an applied electric force f0 or a DC electric
field E0 experimentally, we study such a case in Fig. 5
by displaying 2D density plots for 	n(kz, t ) as functions
of time t and wave number kz of electrons under differ-
ent strengths of f0 in Fig. 5, ranging from 50 eV/cm up
to 500 eV/cm. From Fig. 5, one easily visualizes a full
physical mechanism and process for producing a conduction
current flowing through a SL structure. Such a process starts

from continuously shifting a nonequilibrium part 	n(kz, t )
of electron occupation function towards negative kz direc-
tion with an increasing electric force f0 until kzd = −π/2 is
reached, which is accompanied by an enhanced conduction
current I (t ; E0) at the same time. When f0 = 500 eV/cm,
a central dark-color bar close to kzd = −π/2 occurs in-
side the stripe-shaped region, which greatly increases the
conduction current I (t ; E0) in this case. The fact that the
shift of 	n(kz, t ) towards negative kz direction with increas-
ing f0 is blocked at kzd = −π/2 demonstrates a so-called
“negative effective mass” m∗(kz ) determined by 1/m∗(kz ) =
(1/h̄2) d2Ez(kz )/dk2

z = (W0d2/2h̄2) cos(kzd ), [46,47] which
becomes negative in the range of −π < kzd < −π/2.

For the purpose of displaying an easy-reading comparison,
we first put together numerically computed I (t ; E0) for its
dependence on 	0, 
0 and f0, respectively, in three upper
panels of Fig. 6, which were already presented in Figs. 3–
5, separately. Importantly, the extracted steady-state currents
at the final time t = 10 ps are exhibited simultaneously, in
the three lower panels of Fig. 6. Here, under a relatively
strong DC electric force at f0 = 500 eV/cm, both variations
of I (t ; E0) with respect to average interface-roughness ampli-
tude 	0 and to in-plane correlation length 
0 appear linearly
and look similar to each other qualitatively. However, the
dependence of I (t ; E0) on an electric force f0, or a DC elec-
tric field E0, presents a quite unique nonlinear feature. This
nonlinear dependence implies that the electric conductivity
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FIG. 5. 2D density plots for numerically calculated quasi-1D nonequilibrium occupation functions 	n(kz, t ) from Boltzmann transport
equation as functions of wave number kz and time t with various values for f0 = 50, 250, 500 eV/cm but fixed values of 	0 = 5 Å and

0 = 50Å, as well as plot for corresponding transient currents I (t ; E0 ) as a function of time t with various values for f0 in the bottom-right
panel. Here, T = T0 = 4 K is assumed.

FIG. 6. (Upper) Numerically calculated transient currents I (t ; E0 ) as a function of time t with various values for 	0 = 3.54, 5.00, 7.07 Å
(left), 
0 = 40, 50, 60 Å (middle), and f0 = 50, 250, 500 eV/cm (right). (Lower) Numerically calculated steady-state currents I at t = 10 ps
as a function of 	0 for 
0 = 50 Å and f0 = 500 eV/cm (left), a function of 
0 for 	0 = 5 Å and f0 = 500 eV/cm (middle), as well as a
function of f0 for 	0 = 5 Å and 
0 = 50 Å (right). Here, T = T0 = 4 K is assumed.
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FIG. 7. (Upper) Numerically calculated transient currents I (t ; E0 ) with (dashed curve) and without (solid curve) inclusion of a dynamical
scattering force fres(kz, t ) as a function of time t under 	0 = 5 Å, 
0 = 50 Å, and f0 = 1 eV/cm (left), as well as 2D density plots for a
dynamical scattering force fres(kz, t ) as functions of wave number kz and time t (right) for the same parameters used in the left panel. (Lower)
2D density plots for numerically calculated quasi-1D nonequilibrium occupation functions 	n(kz, t ) from Boltzmann transport equation as
functions of wave number kz and time t with (right) and without (left) inclusion of fres(kz, t ) for the same parameters employed in upper panels.
Here, T = T0 = 4 K is assumed.

∝ ∂I (t ; E0)/∂E0 is no longer a constant and appears as a
decreasing function of the applied field E0 instead, i.e., a
non-ohmic behavior.

Physically, as predicted by Eq. (18), besides an external
electric force f0, there exists another internal scattering force
fres(kz, t ), which depends on the electronic state through the
wave number kz, as well as on time t dynamically. Such
an internal scattering force fres(kz, t ) should be determined
self-consistently based on Eqs. (19) to (24) and taken into con-
sideration for our generalized Boltzmann transport equation in
Eq. (9). To reveal the dynamical nature and significance of
fres(kz, t ), we show in Fig. 7 a comparison of computed con-
duction currents I (t ; E0) either with (dashed curve) or without
(solid curve) inclusion of this scattering force fres(kz, t ).
From this figure, we observe that both positive and negative
fres(kz, t ) become significant only at two boundaries kzd =
±π/2 of a nonshifted strip-shaped region because of its dom-
inant dependence on ∂	n(kz, t )/∂kz in Eq. (24). Interestingly,
for a very weak electric force f0 = 1 eV/cm utilized in Fig. 7,
the condition for fres(kz, t ) > | f0| can be satisfied, implying
the direction of a total force in the generalized Boltzmann
transport equation can be reversed for some electronic states
with a specific wave number kz although the overall driving
effect for SL electrons still remains in the −kz direction. Such

a force-direction switching can produce a visible reduction of
conduction current I (t ; E0) for a weak external electric force
f0 = 1 eV/cm, as demonstrated in this figure.

As the electric force f0 is increased to 500 eV/cm in Fig. 8,
the maximum of the scattering force fres(kz, t ) also reaches
20 eV/cm, which is, however, still much smaller than f0 in
this case. Therefore, we do not expect the occurrence of a
reversed direction for a total electric force acting on elec-
trons as in Fig. 7. Therefore, there is no visible difference
between conduction currents I (t ; E0) with (dashed curve) and
without (solid curve) inclusion of a dynamical scattering force
fres(kz, t ) as a function of time t under 	0 = 5 Å, 
0 = 50 Å,
and f0 = 500 eV/cm at a very low temperature T = T0 =
4 K. Moreover, the internal scattering force fres(kz, t ) as a
function of electron wave number kz is found significant only
around kzd = −π/2 in this case, and consequently, no visible
change in conduction current I (t ; E0) becomes visible.

As the temperature T is lifted up from T0 = 4 K to T0 =
77 K in Fig. 9, the resulting conduction current I (t ; E0) is
reduced dramatically by one order of magnitude for the same
parameters used in Fig. 8. In fact, for a raised temperature T
from 4 K to 77 K, the introduced in-plane thermal-equilibrium
Fermi function f0[Exy(k‖) − μ0] of electrons in Eqs. (16) and
(17) will be reduced in magnitude around k‖ = 0 whereas it is
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FIG. 8. (Upper) Numerically calculated transient currents I (t ; E0 ) with (dashed curve) and without (solid curve) inclusion of a dynamical
scattering force fres(kz, t ) as a function of time t under 	0 = 5 Å, 
0 = 50 Å, and f0 = 500 eV/cm (left), as well as 2D density plots for a
dynamical scattering force fres(kz, t ) as functions of wave number kz and time t (right) for the same parameters used in the left panel. (Lower)
2D density plots for numerically calculated quasi-1D non-equilibrium occupation functions 	n(kz, t ) from Boltzmann transport equation as
functions of wave number kz and time t with (right) and without (left) inclusion of fres(kz, t ) for the same parameters employed in upper panels.
Here, T = T0 = 4 K is assumed.

increased beyond the low-T occupation boundary at k = kF ,
where kF represents the Fermi wave number for free elec-
trons in 2D k‖-space. As a result, electrons in large k‖ states
will contribute to in-plane roughness scattering processes as
predicted by Eqs. (16) and (17). This greatly decreases the
vertical conduction current I (t ; E0), as displayed in Fig. 9.
Compared with the nonequilibrium part 	n(kz, t ) of electron
occupation function presented in Fig. 8, it is decreased by
about one order of magnitude in Fig. 9. Meanwhile, both
boundaries of a shifted strip-shaped region are softened sig-
nificantly by thermal effects at a higher temperature T =
T0 = 77 K, and furthermore, the central dark-color bar near
kzd = −π/2 inside the stripe-shaped region has been washed
away completely. Finally, we also notice from Fig. 9 that
the internal scattering force fres(kz, t ) drops by one order of
magnitude due to thermal effects at an elevated temperature
T = T0 = 77 K.

IV. CONCLUSION AND REMARKS

In conclusion, we proposed an effective scattering-
potential approach for treating interface-roughness scattering
of field-driven miniband electrons within a type-I semicon-
ductor superlattice structure. Based on these calculated effec-
tive scattering potentials, we further introduced a generalized

Boltzmann transport equation by including self-consistently
an internal scattering force which is time-dependent and
electronic-state specific. Meanwhile, we solved exactly this
generalized Boltzmann transport equation by going beyond
the commonly used relaxation-time approximation.

As an exact solution to the generalized Boltzmann trans-
port equation, we analyzed the dependence of our numerically
computed nonequilibrium electron occupation function on
different interface-roughness parameters. Using this obtained
solution under a strong DC electric field, we revealed some
unique features in reduced conduction current with respect to
in-plane correlation length and average interface-roughness
amplitude at various temperatures and DC electric-field
strengths. More importantly, on a microscopic level, we
enabled quantitatively visualizing physical mechanism as-
sociated with nonlinear transport of miniband electrons
or non-ohmic behavior as demonstrated by our numerical
results.

From a mathematical point of view, the proposed effective
scattering-potential approach presented in this paper can be
utilized for treating other types of electron scattering, such as
impurity, phonon and electron-electron scattering if they are
mostly limited to a 2D wave-vector space. Technically, on the
other hand, the currently performed numerical investigation
on vertical transport in type-I superlattices can be generalized
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FIG. 9. (Upper) Numerically calculated transient currents I (t ; E0 ) with (dashed curve) and without (solid curve) inclusion of a dynamical
scattering force fres(kz, t ) as a function of time t under 	0 = 5 Å, 
0 = 50 Å, and f0 = 500 eV/cm (left), as well as 2D density plots for a
dynamical scattering force fres(kz, t ) as functions of wave number kz and time t (right) for the same parameters used in the left panel. (Lower)
2D density plots for numerically calculated quasi-1D non-equilibrium occupation functions 	n(kz, t ) from Boltzmann transport equation as
functions of wave number kz and time t with (right) and without (left) inclusion of fres(kz, t ) for the same parameters employed in upper panels.
Here, T = T0 = 77 K is assumed. The label ×5 in upper left panel indicates the scale of blue solid curve has been amplified by a factor of
5 for T = T0 = 77 K.

to type-II superlattice structures under a tilted nonquantizing
magnetic field and utilized for third-generation infrared focal-
plane arrays and photodiodes.

In a general case as formulated in this paper, we require a
3D elastic scattering model when electrons are driven perpen-
dicularly. Therefore, one deals with a six-dimensional phase
space for initial- and final-state scattering wave vectors, q and
q′, of an electron in numerical computations. Due to total-
energy conservation for a scattering electron, this reduces the
previous dimensionality of phase space from six to five. If
a 3D electron-electron coulomb scattering is considered, the
reduced dimensionality of the system will be eight, by taking
into account the conservation of total momentum and energy
for the scattering between a pair of electrons.

By going beyond our currently proposed quasi-1D time-
dependent theory, a full theory for the same system considered
in this paper requires an accurate description for 2D paral-
lel interface-roughness scattering of driven electrons along
the vertical SL direction. Therefore, a 3D scattering model,
instead of a 2D scattering model, is mandated for studying
scattering dynamics of electrons in such a system. If electrons

are driven within the scattering plane, however, only a 2D
scattering model is needed for such a case.

In our current quantum-kinetic model, the in-plane rough-
ness scattering of electrons is assumed remaining in a
thermal-equilibrium state with a constant initial temperature
T0 within a 2D q‖-phase space. The criteria for the presence
of such an in-plane thermal-equilibrium occupation function
is give by eE0d/h̄vd > 1/
0. However, the partial occupation
function n(kz, t ) of electrons in the qz-phase space, which
leads to an electron transport under a DC electric field, be-
comes a nonequilibrium and nonthermal one. Therefore, an
initial thermal-equilibrium temperature T0 can only be used
for in-plane thermal-equilibrium scattering electrons but can-
not be employed for driving electrons along the superlattice
direction. Instead, one should introduce an effective temper-
ature Teff , which is defined as the change of average kinetic
energy of electrons along the superlattice direction in their
nonequilibrium and nonthermal states. In the presence of a
strong DC electric field, one finds Teff becomes larger than
T0 in this system, leading to a dramatic field-induced electron
heating [34].
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