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Dimensional quantization and zero-field spin splitting of holes in GaAs nanowires
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Nanowires (NWs) of III-V semiconductor materials have been of interest to researchers for the last two
decades. Knowledge of the subband spectrum of charge carriers in NWs and NW-based structures is very
important for current applications. The electronic subband spectrum in NWs is currently known in detail,
while for holes it is found with significant simplifications. One or more of the following crucial features are
usually neglected: the real NW cross section shape, the crystal orientation of the NW, an accounting for the
real anisotropic Hamiltonian of the bulk host material, and contributions that are due to the lack of an inversion
center in the crystal lattice. Here we present a detailed calculation of hole subbands in GaAs NWs with the
[111] orientation with a zinc blende crystal lattice, taking into account all the above four features. The spectrum
of hole subbands based on the 4 × 4 Luttinger Hamiltonian is numerically calculated taking into account two
main contributions arising from the lack of inversion symmetry (the Td point group) in the lattice of the host
crystal. Accounting for these contributions leads to the appearance of spin splitting only for some subbands,
in accordance with symmetry considerations. However, a significant rearrangement also occurs in the spectrum
of nonsplit subbands. The hole densities are visualized, and it is shown that the contribution of terms with Td

symmetry significantly changes the structure of the multicomponent wave function. Thus, taking into account
the lack of an inversion center is essential for the spectrum of hole subbands and wave functions in GaAs NWs.
This can be more pronounced for NWs of III-V materials constituted by heavy elements, such as InSb, where
spin-orbit interaction is stronger. The effect of a transverse electric field leading to so-called Rashba spin splitting
is considered as well.
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I. INTRODUCTION

Nanowires (NWs) of semiconductor materials of the
AIIIBV group are of great interest due to a wide range of possi-
ble applications, as well as compatibility with existing silicon
technology [1]. Here we mean not only homogeneous NWs,
but also the so-called radial heterostructures, also known as
core-shell structures. NWs are currently used as the main
element of field-effect transistors [2,3], photodetectors [4]
(see also the review in Ref. [5] and references therein), and
piezoelectric nanogenerators [6]. NWs are also widely used in
the creation of such devices as light-emitting diodes, chemical
and gas sensors, waveguides, solar cells, and optical convert-
ers [7]. The possible applications of NWs in photovoltaics,
thermoelectrics, and betavoltaics have recently been outlined
in Ref. [8].

In recent years, many low-dimensional systems, includ-
ing NW-based structures, have found their application in the
field of quantum computation. When creating semiconductor
qubits [9], it turns out that, for a number of reasons, it is
more convenient to use the hole spin [10–12], rather than
electron one for information storage. Recently, various imple-
mentations of hole-spin qubits have been proposed [13–15],
including using NW-based structures. In this context, it is of
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interest to consider zero-field spin splittings of valence sub-
bands in NWs. It should be noted that significant theoretical
progress has been made in the direction of the zero-field spin
splitting calculation of conduction subbands in NWs [16–25].

At the same time, the zero-field spin splitting of hole sub-
bands in NWs has not been studied in such detail. There are
k · p-based theoretical works devoted to the spin splitting of
hole subbands in NWs [26–28]. However, in the above works,
only the Rashba spin splitting mechanism [29] caused by
structure inversion asymmetry (SIA) was taken into account.
An atomistic calculation [30] indicates the transition of the
hole Rashba effect in NWs from strong field dependence
to saturation, in contrast to an electron behavior. Another
mechanism, known as the Dresselhaus spin splitting [31],
is due to the lack of an inversion center in the lattice of
the host semiconductor material (bulk inversion asymmetry,
BIA). For NWs of semiconductor materials with the diamond
crystal lattice, such as Si and Ge (see Refs. [26–28]), which
have inversion symmetry, there is no Dresselhaus splitting.
However, for NWs with a zinc blende (ZB) or wurtzite (WZ)
lattice (e.g., from semiconductors of the AIIIBV group), such
splitting takes place. The atomistic calculation and symmetry
consideration [32] show that BIA-induced spin splitting in
NWs with a ZB crystal lattice crucially depends on crystal
orientation: In particular, for a [111]-oriented NW, there is no
Dresselhaus spin splitting for electrons; in contrast, for certain
hole subbands it takes place, but for others it is equal to zero.
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FIG. 1. (a) Sketch of a NW with a hexagonal cross section. The
axes of the coordinate system are indicated. (b) The use of a circular
basis set: The shaded areas between the circle and the hexagon
correspond to nonzero values of the “hexagonality potential” V (r, ϕ).

At the same time, as far as we know, there is no information
in the literature about the k · p calculation of the Dresselhaus
spin splitting of hole subbands in NWs.

Due to the large surface-to-volume ratio, the lattice mis-
match strain in NWs can be elastically relaxed at the NW
free surface without dislocations. This can be used to grow
heterostructures and III-V NWs directly on cheap substrates,
such as Si, rather than lattice-matched but more expensive
III-V substrates. The bulk GaAs is crystallized with a ZB
crystal lattice. However, depending on the growth conditions
and on the diameter, NWs can crystalize both with a ZB lattice
and with a WZ lattice. Epitaxially grown III-V NWs with
a ZB lattice are usually oriented along the [111] crystallo-
graphic direction and, for this reason, have a hexagonal cross
section [see Fig. 1(a)]. Moreover, the axial polytypic ZB/WZ
heterostructures can be realized [33]. It has been shown that
it is possible to control the crystal structure of III-V NWs
during growth [34] and even obtain periodic structures such
as polytypic superlattices.

Detailed information about the subband spectrum of carri-
ers (electrons and holes) in NWs is necessary to understand
all the processes occurring in NWs and NW-based hybrid
structures. There are first-principles methods [35,36] which,
together with tight-binding calculations [37,38], give good
accuracy in subband spectrum calculation, but they lose in
clarity. Clarity is typical for the k · p method, which, even
utilizing numerical diagonalization, makes it possible to trace
the contribution of certain bands. This is the reason for the
wide use of the k · p method in calculating the spectrum of
carriers in semiconductor structures.

The electronic properties of NWs, including spin ones,
have been intensively studied in the last two decades, while
holes in NWs have been studied much less. In this context
there are four key issues that are often not taken into account
in k · p calculations. (i) The first issue is the real crystal orien-
tation of NWs [39,40]. This is important for holes, which have
a strongly anisotropic spectrum in many materials. (ii) The

second issue is the real shape of the cross section. Frequently,
in k · p calculations one considers the shape of the section to
be circular or square [39–41]. (iii) The third issue is the use
of a simple isotropic (or so-called spherical) approximation
for the hole Hamiltonian in materials with Td or Oh point
symmetry. It should be recalled here that the spherical approx-
imation gives an incorrect result even for subband extrema
(at k = 0) both in quantum wells and in NWs. This issue is
closely related to the issue described in the first point. (iv)
The fourth issue is the lack of an inversion center in III-V
crystals with a ZB lattice (point group Td ) and the fact that
the related spin splittings, having both relativistic and nonrel-
ativistic character, are neglected.

The first three issues are more or less currently closed in
the literature, whereas the fourth is not discussed to the best
of our knowledge. In this paper we will try to eliminate this
shortcoming and will show that accounting for the inversion
asymmetry is crucial and that inclusion of appropriate terms
in the hole Hamiltonian leads to dramatic rearrangement of
the subband spectrum and spatial behavior of the hole wave
function.

It should also be noted that different mesh methods (fi-
nite difference and finite element methods) have been used
for the calculation of the carrier subband spectrum in NWs
[20,42,43]. The main disadvantage of such methods is the
frequent appearance of rapidly oscillating nonphysical solu-
tions for the envelope wave functions. Knowledge of the wave
function on a discrete grid is also not always convenient, e.g.,
when calculating any observable quantity.

The aim of this work is to calculate the spectrum of hole
subbands and the corresponding wave functions in homo-
geneous NWs of an AIIIBV material (undoped or slightly
p doped) with a ZB lattice. The real geometry (cross sec-
tion shape and crystal orientation) of the NWs and the exact
structure of the valence band of the host semiconductor mate-
rial, including the effect of the lack of an inversion center, are
taken into account. The effect of the transverse electric field
leading to additional Rashba-type spin splitting is considered
as well.

The paper is organized as follows. In Sec. II we consider a
model and the Hamiltonian for holes in NWs with hexagonal
cross section. The results of numerical diagonalization as well
as the spin expectation values are presented in Sec. III. The
hole probability densities, including the partial contributions
of heavy holes (HHs) and light holes (LHs), are visualized.
The effective masses in one-dimensional (1D) subbands are
calculated as well. In Sec. IV, two main terms are included in
the Hamiltonian to take into account the lack of an inversion
center in the ZB lattice, which is important for holes in the
valence band. Rashba-type spin splitting due to the transverse
electric field is also considered. In Sec. V the obtained re-
sults are discussed and summarized. Calculation details are
presented in Appendixes A and B.

II. MODEL AND HAMILTONIAN

Most semiconductors with a diamond and ZB crystal struc-
ture have the top of the valence band at the � point of the
Brillouin zone. The Luttinger Hamiltonian [44] is a good ap-
proximation in order to describe the �8 valence band structure
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in semiconductors having a wide band gap Eg and the valence band spin-orbit splitting � [45]. In an invariant form, it is given
by

HL = h̄2

2m0

⎡
⎣(γ1 + 5

2
γ2

)
k2J0 − 2γ2(Jk)2 + 2(γ3 − γ2)

∑
i �= j

(Jiki )(Jjk j )

⎤
⎦, (1)

where J = (Jx, Jy, Jz ) is the vector of the 3/2 angular mo-
mentum matrices; J0 is the unit 4 × 4 matrix; k = (kx, ky, kz ),
with p = h̄k being the momentum operator; γi (i = 1, 2, 3)
are the Luttinger parameters, characterizing the valence band
of a bulk material; and m0 is the free electron mass. This
Hamiltonian is written in the principal cubic axes: x||[100],
y||[010], z||[001].

An explicit form of the Hamiltonian depends on the
choice of basis functions. Here the so-called canonical ba-
sis |3/2, Jz〉 (with the standard choice of Clebsch-Gordan
coefficient phases) is used, which is characterized by the z
projection of the hole spin: Jz = ±1/2,±3/2. The explicit
form of basis functions and corresponding angular momentum
matrices can be found, for instance, in Refs. [46,47].

Using the coordinate transformation (see Appendix A),
one can rewrite the Hamiltonian in the new reference frame.
The details of the coordinate transformation for the Luttinger
Hamiltonian can be found in Ref. [27]. In the new axes,
x||[112], y||[110], z||[111], the Luttinger Hamiltonian is given
by (see also, for instance, Ref. [48])

H[111]
L =

⎛
⎜⎜⎜⎝

F H I 0

H∗ G 0 I

I∗ 0 G −H
0 I∗ −H∗ F

⎞
⎟⎟⎟⎠, (2)

with
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[
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(
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y

) + (γ1 − 2γ3)k2
]
,

G = h̄2

2m0

[
(γ1 − γ3)

(
k2

x + k2
y

) + (γ1 + 2γ3)k2
]
,

H = − h̄2

2m0

[√
2

3
(γ3 − γ2)k2

+ + 2√
3

(2γ2 + γ3)kk−

]
,

I = − h̄2

2m0

[
1√
3

(γ2 + 2γ3)k2
− + 2

√
2

3
(γ3 − γ2)kk+

]
,

where k± = kx ± iky. Here, the momentum operator kz is re-
placed by its eigenvalue k due to the translational invariance of
the problem in the direction z. The order of the basis functions
in (2) is as follows: Jz = +3/2,+1/2,−1/2,−3/2.

We will consider a hole confined in a NW with a hexagonal
cross section. The spectral problem evidently cannot be solved
exactly. Recently, a similar problem for electrons with scalar
effective mass was numerically solved [49]. Here, this method
is generalized to the case of a complex valence band.

The following composite basis functions [Bloch functions
multiplied by envelope functions, which are written in cylin-

drical coordinates (r, ϕ, z)] are used:

|Jz; m, n; k〉 = |3/2, Jz〉
√

2

RJ|m|+1( jmn)
J|m|

(
jmn

r

R

)

× 1√
2π

eimϕ 1√
L

eikz, (3)

which are eigenstates of the simplified Luttinger Hamiltonian
[all off-diagonal matrix elements in Eq. (2) are omitted] with
an additional hard-wall confinement on a cylinder of radius
R. Thus these functions are eigenfunctions of the hole inside
the cylindrical NW described by the simplified Hamiltonian.
Here, Jm(x) is the Bessel function of the first kind of order
m, and jmn is the nth zero of Jm(x); m = 0,±1,±2, . . . and
n = 1, 2, . . ..

The eigenenergies EJz
mn(k) corresponding to the above basis

functions are given by [50]

E±3/2
mn (k)

E0
= (γ1 + γ3) j2

mn + (γ1 − 2γ3)(kR)2, (4)

E±1/2
mn (k)

E0
= (γ1 − γ3) j2

mn + (γ1 + 2γ3)(kR)2, (5)

where E0 = h̄2/2m0R2.
Using such a composite basis, one can calculate the

matrix elements of the Luttinger Hamiltonian (2) that are
off-diagonal in the hole spin. The subsequent numerical di-
agonalization of the obtained Hamiltonian matrix yields the
subband energies and wave functions of holes in a cylindrical
NW. Two points should be noted here. First, numerical di-
agonalization is impossible for a matrix of infinite size. This
means that we must truncate the Hamiltonian matrix to a size
that provides the required diagonalization accuracy. Second,
for holes in NWs, the transverse and longitudinal motions are
not separated. However, because of the translational invari-
ance, the longitudinal momentum is a good quantum number,
and for this reason k enters the Hamiltonian matrix as a param-
eter. This, in turn, means that in order to find the spectrum of
hole subbands, we have to diagonalize the Hamiltonian matrix
for a certain number of fixed k.

Here, we are interested in the hole states in NWs with a
hexagonal cross section. To consider the real hexagonal cross
section, it is necessary to add a special potential, which takes
into account the difference between a circular section and a
hexagonal one for the case of a hexagon inscribed in a circle
[49] [see Fig. 1(b)]. Obviously, the additional potential will
have matrix elements diagonal in the hole spin Jz, while the
basis functions with different quantum numbers m and n can
be mixed by this potential. The longitudinal momentum k
remains a good quantum number in the hexagonal NW as
well.
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The “hexagonality potential” V (r, ϕ) is chosen to be equal
to zero inside the hexagon and has a finite magnitude V0 in
areas which are inside the circle but at the same time are out-
side the hexagon [see Fig. 1(b)]. We cannot technically set V0

to equal infinity in order to provide zero boundary conditions
at the hexagon. However, within the k · p approximation any
high V0 value, say, 1 eV or higher, is effectively infinite. In this
case the wave function will not penetrate significantly into the
barrier areas.

It should be noted that there are other possibilities for
choosing a basis set. In Ref. [49], for example, two bases
were used: (i) a circular basis like the one used here and
(ii) a rectangular one. In the latter case, a regular hexagon is
inscribed in a rectangle of 2R × √

3R size. The use of such
a basis allows one to find exactly the matrix elements of the
hexagonality potential. However, from the symmetry point of
view, it is convenient to use a basis in which the rotational
symmetry is higher than a hexagonal one (C6 axis). Some
subbands of the hexagonal NW, which should be degenerate,
will have slightly different energies after numerical diagonal-
ization of the truncated Hamiltonian matrix if a rectangular
basis is used. Thus the use of a low-symmetry basis requires
more basis functions to provide the same accuracy. For this
reason, here we restrict ourselves to using only the circular
basis.

The spectral problem is reduced to finding the eigenvalues
and eigenvectors of the Hamiltonian matrix H = H[111]

L +
V (r, ϕ)J0 written in the basis (3). To write the Luttinger
Hamiltonian (2) in the basis (3), it is necessary to know
the matrix elements of the operators k± and k2

± between the
transverse envelopes |mn〉, which are part of complete basis
functions (3). These matrix elements 〈m′n′|kl

±|mn〉 (l = 1, 2)
are presented in Appendix B. The matrix elements of the
hexagonality potential 〈Jz;′ m′n′; k′|V (r, ϕ)|Jz; mn; k〉 are pro-
portional to the overlap integral Im′n′;mn of basis functions
in a single barrier segment (one of six). One can use some
symmetry arguments to calculate the matrix elements. They
are given by

〈m′n′|V (r, ϕ)|mn〉 = 6V0δm′,m+6MIm′n′;mn, (6)

where M = 0,±1,±2, . . .. These matrix elements obviously
do not depend on Jz and k and are diagonal with respect to
them. An explicit form of the overlap integral is presented in
Appendix B, and it can be found numerically.

III. NUMERICAL DIAGONALIZATION

For numerical diagonalization, we must truncate the size of
the found Hamiltonian matrix and work with a matrix of finite
size. We use the following procedure: We restrict ourselves to
the threshold energy Eth = 4000E0 and take into account only
the basis functions whose eigenenergies for k = 0 are less
than Eth. For GaAs band parameters [47] (γ1 = 6.85, γ2 =
2.10, γ3 = 2.90) this corresponds to the number N = 660 of
basis functions, of which Nh = 184 are of HH and Nl = 476
of LH character. The value V0 = 4000E0 is used as well.

The energy spectrum obtained by the numerical diago-
nalization of the truncated Hamiltonian matrix is shown in
Fig. 2. These results are valid for GaAs NWs of any radius.
In the particular case of a NW with R = 10 nm we have

FIG. 2. The hole subband energy spectrum of GaAs NW (γ1 =
6.85, γ2 = 2.10, γ3 = 2.90). The parameters of the numerical diago-
nalization are as follows: Eth = V0 = 4000E0. The energy is scaled to
E0. The colors reflect the HH and LH contributions to the multicom-
ponent wave function. The magnitude

√〈J2
z 〉i(k) is calculated for the

ith subband by means of Eq. (9). It takes values in the interval ( 1
2 ; 3

2 );
see color bar. The crossings of subbands with the vertical dashed
line correspond to the states whose wave functions are visualized in
Fig. 4.

E0 = 0.38 meV, which corresponds to Eth = V0 = 1.52 eV.
The results can be easily rescaled for NWs of any radius R.
It should be noted that all hole subbands are doubly degen-
erate. This is a consequence of the simultaneous presence of
time-reversal symmetry (TRS) and symmetry with respect to
spatial inversion. It should be remembered that the Luttinger
Hamiltonian used, as well as the hexagonality potential, is
invariant under spatial inversion. Calculations for NWs taking
into account the lack of an inversion center in a material with
a ZB lattice (point group Td ) are presented in Sec. IV.

The numerical diagonalization also yields for the ith sub-
band the expansion coefficients Ci

Jz ;mn(k) with respect to the
basis (3). Thus the spatial behavior of the subband wave
function

|i; k〉 =
∑
Jzmn

Ci
Jz ;mn(k)|Jz; mn; k〉 (7)

can be studied.
The quantum-mechanical density matrix ρ i

α′α (k) =
Ci∗

α′ (k)Ci
α (k) can be used to find the mean value of any

observable A in the state |i; k〉
〈A〉i(k) = Tr[Aρ i(k)]. (8)
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FIG. 3. The transverse hole density maps |
(r, ϕ)|2 for GaAs
NW at k = 0 (γ1 = 6.85, γ2 = 2.10, γ3 = 2.90). The separate con-
tributions for HH and LH are also depicted. The maps are in arbitrary
units, but all |
|2 are normalized to the same value. For the first and
fourth subbands the HH contributions of the hole density are rescaled
for clarity: They are increased by 25 and 10 times, respectively.

In order to trace the spin structure of hole subbands (the
relative contributions of HHs and LHs to the wave function),
the mean values of the J2

z = diag{9/4, 1/4, 1/4, 9/4} operator
can be calculated using Eq. (8). Since the J2

z operator is
diagonal in the hole spin, its mean values can be rewritten in
a simpler form using the expansion coefficients:

〈
J2

z

〉
i(k) =

∑
Jz=±1/2,±3/2

J2
z

∑
mn

∣∣Ci
Jz ;mn(k)

∣∣2. (9)

TABLE I. The effective masses of 1D hole subbands. For sub-
bands with more than one extremum, the effective mass in the side
extrema is presented in the third column indicating the position of
the extremum.

No. m∗/m0 at k = 0 m∗/m0 at k �= 0

1 −0.142 0.175 (kR = ±0.315)
2 0.044
3 −0.077 0.405 (kR = ±1.682)
4 0.056
5 0.472
6 0.287
7 0.965

The square root of this value is plotted in Fig. 2 using a
color scale. It can be seen that most of the subbands have a
predominant LH character near k = 0, with an increasing
contribution from HHs as k increases. An exception is the
sixth subband, which at k = 0 contains mainly the HH
contribution.

The effective masses (m∗
i )−1 = ∂2Ei(k)/∂ (h̄k)2 for low-

lying subbands are calculated. For the first seven subbands
they are presented in Table I. For subbands with more than
one extremum (W-like shape) and negative effective mass at
k = 0, positive masses in side extrema are also presented with
an indication of the position of these extrema.

The accuracy of the numerical procedure is estimated as
follows. The overlap integrals are found numerically with an
accuracy better than 10−4. The diagonalization process has
an accuracy of the same order. Thus the overall accuracy is
mainly determined by the size of the truncated Hamiltonian
matrix, i.e., the number of basis functions N or the truncation
energy Eth. To evaluate the influence of the matrix size on
the accuracy of the spectrum calculation in Fig. 2, we will
do the following. Consider a numerical diagonalization of the
Hamiltonian matrix with the same parameters (see the caption
of Fig. 2), except for Eth = 3000E0 (which corresponds to
N = 484 with Nh = 134 and Nl = 350). In this case, the first
12 subbands (taking into account the Kramers degeneracy)
have subband energies that exceed those shown in Fig. 2 by
less than 0.90E0 over the entire range of k, which is almost
indistinguishable in the scale of Fig. 2. On the other hand, an
increase in the strength V0 of the hexagonality potential leads
to a slight increase in the subband energies, which is associ-
ated with a decrease in the penetration of the wave function
into the “barrier” region. Thus, a simultaneous increase in Eth

and V0 does not lead to significant changes in the results of
numerical diagonalization. We have approximately the same
results for Eth = V0 = 3000E0 and Eth = V0 = 4000E0, with
the latter requiring twice as much computation time. It should
also be noted that the band parameters γi (i = 1, 2, 3) are
known with finite accuracy. This means that a slight change in
the band parameters will have a stronger effect on the subband
spectrum than a further increase in the size of the Hamiltonian
matrix (the number of basis functions N or the truncation
energy Eth).

The solution of the spectral problem includes finding the
coefficients Ci

Jz ;mn(k). This means that the spatial behavior of
the wave function (7) can be traced. The latter is a complex-
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valued quantity. For this reason, the transverse hole density
|
|2 is presented here. Since the transverse and longitudinal
motions are not separated, the spatial behavior of the trans-
verse function depends on the longitudinal momentum k. The
transverse hole density in 1D subbands is depicted in Fig. 3
for a longitudinal momentum k = 0. The separate HH and
LH contributions are presented as well. Here, one can see the
confirmation of what is shown in Fig. 2 using a color scale:
Most of the subbands near k = 0 have a main LH contribution,
whereas the HH one is small. The exception is the third and
sixth subbands: In the third subband the HH and LH contribu-
tions are of the same order, while in the sixth subband, the
HH contribution dominates. It can be seen that in addition
to states with a pronounced LH or HH character, there are
specific states for which the HH and LH contributions to the
multicomponent wave function are spatially separated. This
concerns the third subband.

In Fig. 4 the transverse hole density maps are presented
for the case of a nonzero longitudinal momentum, kR = 0.75.
It should be noted that the numbering of the subbands corre-
sponds to the increase in energy at given k. This means that
this numbering may differ from the numbering for k = 0 (see
Fig. 3) due to the possible crossings in the subband spec-
trum. The states whose wave functions are shown in Fig. 4
correspond to the crossings of the subband energies with the
vertical dashed line in Fig. 2.

The patterns of Fig. 4 are significantly different from those
in Fig. 3, which is due to the subband intermixing, as well
as the crossings and anticrossings in the spectrum. The Oh

symmetry of the Luttinger Hamiltonian (here the lack of an
inversion center is not yet taken into account) is reduced by the
NW’s [111] orientation and quantum confinement to the D3d

point symmetry. The maps of Fig. 4 depict the hole density
and its HH and LH components for one of two degenerate
subbands only. These maps do not reflect the whole D3d sym-
metry of the system. The use of the inversion operation i or
reflection in diagonal symmetry planes σd (the {110} planes,
which after projection onto the NW cross section look like the
lines connecting opposite vertices of a hexagon) transforms
the depicted hole densities into those for the corresponding
degenerate state. Thus the total hole densities (as well as
HH and LH components) after summation over degenerate
states have the necessary D3d point symmetry, as it should be.
Finally, the presence of 3σd and 3c2 symmetry elements leads
to C6 rotational symmetry in the cross-sectional plane for hole
density maps.

At the same time, density maps for k = 0 (see Fig. 3)
have C6 rotational symmetry for each member of the pair of
degenerate states. On the one hand, this is a consequence of
the C∞ symmetry of the Luttinger Hamiltonian (2) at k = 0.
In this case the C6 symmetry is imposed by the hexagonality
potential. On the other hand, the pair of degenerate states at
k = 0 are additionally linked by TRS. The latter means that
the hole densities for the degenerate states must coincide, i.e.,
the C6 rotational symmetry holds not only for the total hole
density, but also for the density in each of the degenerate
states. It should be noted that the following restrictions are
imposed on the quantum states by TRS: The time-reversed
state (k → −k and Jz → −Jz) is described by the complex-
conjugated wave function; in our case, this concerns the

FIG. 4. The transverse hole density maps |
(r, ϕ)|2 for GaAs
NW at kR = 0.75 (γ1 = 6.85, γ2 = 2.10, γ3 = 2.90). The separate
contributions for HH and LH are depicted. The maps are in arbitrary
units, but all |
|2 are normalized to the same value. For the first
and second subbands the HH contributions of the hole density are
rescaled for clarity: They are increased by 5 times.

corresponding components of the multicomponent envelope
function [
Jz (k) → 
−Jz (−k) = 
∗

Jz
(k)].

Note that when calculating the hole states in nanostruc-
tures, the so-called spherical approximation is often used
(though this use is not always justified). This corresponds to
the approximation γ2 = γ3 and does not take into account
the last term in Eq. (1). This approximation not only cannot
correctly describe the density maps in Fig. 4, which have
a rotational symmetry of the third order, but also leads to
incorrect subband energies at k = 0.
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It should be noted that the accuracy of the calculation of
|
|2 was also examined. There is no noticeable difference
for the cases Eth = 4000E0 (660 basis functions) and Eth =
1000E0 (152 basis functions) both for the maps of Fig. 3 and
for the maps of Fig. 4.

It can be seen that the results of Figs. 2 and 3 resemble the
results of Ref. [51], where a similar problem was solved for
GaAs/AlGaAs core-shell NW. This means that the structure
studied in Ref. [51] has rather high barriers and the wave
function does not penetrate them, which additionally justifies
our use of the hexagonality potential model. In addition, the
eight-band k · p model was used in Ref. [51], which is redun-
dant for holes in GaAs. This is due to the fact that the band
gap Eg = 1.5 eV and the spin-orbit splitting � = 0.35 eV of
the valence band significantly exceed the characteristic energy
scales in the problem. Thus hole states in NWs of not-too-
small radius, for which the envelope function approximation
is still applicable, can be described in terms of the Luttinger
Hamiltonian.

IV. ZERO-FIELD SPIN SPLITTING

There are two main types of zero-field spin splitting
[52] and corresponding contributions into the electron or
hole Hamiltonian in semiconductor structures. The first one,
known as the Dresselhaus term [31], is due to the lack of
an inversion center in the lattice of the host semiconduc-
tor material, BIA. The second one, known as the Rashba
term [29], originates from SIA, i.e., is due to the lack of an
inversion symmetry at the macroscopic level. In particular,
Rashba splitting takes place in asymmetric heterostructures,
which asymmetry can be caused by the growth conditions, the
applied electric field, nonuniform doping, etc.

Zero-field spin splittings are very important for such effects
as Dyakonov-Perel spin relaxation [53,54], photogalvanic ef-
fects [55], current-induced spin polarization (see, for instance,
the brief overview in Ref. [56] and references therein), and
related phenomena (spin Hall effect, inverse spin Hall effect,
etc.).

The spin-orbit effects are more pronounced for the states
of the valence band than for those of the conduction band.
This is a consequence of the fact that the valence band is
constituted by p-type states (angular momentum of 1) whereas
the conduction band originates from s-type states (angular
momentum of 0). Thus the spin splitting in the conduction
band arises due to the k · p interaction with the valence and
other bands and is weaker.

In Sec. IV A, the terms with Td point symmetry are added
to the bulk hole Hamiltonian to take into account the lack
of an inversion center in the ZB lattice. The point group Td

has no inversion i among its elements, which means that the
twofold degeneracy of the subband spectrum discussed in
Sec. III can be (but will not necessarily be) lifted. The full
Hamiltonian is numerically diagonalized, and the correspond-
ing wave functions is visualized. Comparison with the results
of Sec. III shows that it is important to take into account the
real symmetry of the host semiconductor crystal. As a SIA
source the transverse electric field is considered in Sec. IV B.
Accounting for both contributions leads to a significant re-

arrangement of the spectrum of hole subbands and wave
functions.

A. Dresselhaus spin splitting

The Dresselhaus spin term [31], caused by BIA, takes
place for electrons and holes in bulk material as well as in
low-dimensional structures. In the latter case, dimensional
quantization renormalizes the Dresselhaus term, e.g., the
splitting is proportional to k3 [31] for electrons in the �6

conduction band of a semiconductor with a ZB lattice, while
in quantum wells of the same material the leading contribution
is linear in k [54]. The zero-field spin splitting of holes in
the �8 band in bulk AIIIBV semiconductors [57] is also well
studied. In low-dimensional systems the spin splitting of holes
was first studied by Rashba and Sherman [58] in a symmetric
quantum well.

For holes of the �8 band in the bulk material
there are one linear-in-k and four cubic-in-k invariants
[47,57,59]. The former one is given by

H1 = 2√
3

Ck
[
kx
{
Jx, J2

y − J2
z

} + c.p.
]
, (10)

where {A, B} = 1
2 (AB + BA) is the symmetrized product and

c.p. stands for cyclic permutation. This operator is written in
principal cubic axes. The explicit form of this operator, suit-
able for our consideration, after the coordinate transformation
(see Appendix A) is given by

H[111]
1 = 2√

3
Ck

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − i
2 k− i

2
√

2
k+ −i

√
3
2 k

i
2 k+ 0 i

√
3

2 k− − i
2
√

2
k+

− i
2
√

2
k− −i

√
3

2 k+ 0 − i
2 k−

i
√

3
2 k i

2
√

2
k− i

2 k+ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

Here, the operator kz is again replaced by its eigenvalue k.
It is well known that in a bulk material at k||[111] the HH
spectrum is split by this contribution, while the LH branch
remains degenerate [60].

In GaAs, out of four invariants cubic in k, the follow-
ing dominates (the rest have two-orders-of-magnitude smaller
strength parameters [47]):

H3 = b8v8v
41

[
Jx
{
kx, k2

y − k2
z

} + c.p.
]
, (12)

which after coordinate transformation is given by

H[111]
3 = b8v8v

41

⎛
⎜⎜⎜⎜⎝

H11 H12 0 0

H∗
12

1
3 H11

2√
3
H12 0

0 2√
3
H∗

12 − 1
3 H11 H12

0 0 H∗
12 −H11

⎞
⎟⎟⎟⎟⎠, (13)

where

H11 = −
√

3i

4
√

2
(k3

+ − k3
−),

H12 = i

4
[−k+k2

− +
√

2k2
+k + 4k−k2].
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FIG. 5. Energy spectrum of the hole subbands of GaAs NW taking into account the lack of inversion symmetry (γ1 = 6.85, γ2 = 2.10,
γ3 = 2.90): (a) the k-linear contribution H[111]

1 is taken into account, 2Ck√
3E0R

= 0.103; (b) the k-cubic contribution H[111]
3 is taken into account,

b8v8v
41

E0R3 = 0.216; (c) both contributions H[111]
1 and H[111]

3 are taken into account for the same parameter magnitudes. The energy is scaled to
E0. The color reflects the HH and LH contributions to the multicomponent wave function. The magnitude

√〈J2
z 〉i(k) is calculated for the ith

subband by means of Eq. (9). It takes values in the interval ( 1
2 ; 3

2 ); see color bar.

The matrix elements of the operators kp
+kq

− calculated be-
tween the transverse envelopes |mn〉 of the basis functions
(3) are presented in Appendix B. After substituting them into
Eq. (13) it is easy to see that this operator is non-Hermitian.
This problem is close to that which arose when considering
zero-field spin splittings of holes in quantum wells. It is possi-
ble that this problem (non-Hermiticity of the Hamiltonian) has
previously become an obstacle in the study of the zero-field
spin splitting of holes in NWs. There is no way to eliminate
non-Hermiticity problems when you solve the Schrödinger
equation on a grid. However, in our case, there is an easy
way to avoid this difficulty. This is an additional forced sym-
metrization of the obtained matrix [61], i.e., replacement of
matrix elements 〈J ′

z; m′n′; k|H[111]
3 |Jz; mn; k〉 by

〈J ′
z; m′n′; k|H[111]

3 |Jz; mn; k〉sym

= 1
2 〈J ′

z; m′n′; k|H[111]
3 |Jz; mn; k〉

+ 1
2 〈Jz; mn; k|H[111]

3 |J ′
z; m′n′; k〉∗. (14)

The total hole Hamiltonian, taking into account terms of
Eqs. (11) and (13) and additionally symmetrized, can be
numerically diagonalized. The result of numerical diagonal-
ization is shown in Fig. 5. Here three different situations are
considered for comparison. In Fig. 5(a) only the contribution

(11) linear in k is taken into account. In Fig. 5(b) only the
k-cubic contribution (13) is considered. Finally, both contri-
butions are taken into account in the Hamiltonian, the result
of which diagonalization is shown in Fig. 5(c).

The typical GaAs parameters are used [47]: Ck =
3.4 meV Å, b8v8v

41 = 81.93 eV Å3. Figure 5 formally can be
rescaled to different R. However, the spin splitting param-
eters deprive us of such freedom, because they must scale
proportionally to each other. Thus Fig. 5 actually corresponds
to NW with R = 10 nm (E0 = 0.38 meV, 2Ck√

3E0R
= 0.103,

b8v8v
41

E0R3 = 0.216). At this NW radius, both contributions to the
zero-field spin splitting are of the same order. As the NW
radius decreases, the k3 contribution (13) dominates.

It should be noted that the energy spectra of the subbands
in Figs. 5(a) and 5(b), taking into account the terms H[111]

1 and
H[111]

3 separately, do not depend on the sign of the correspond-
ing parameter, Ck or b8v8v

41 , respectively. However, the relative
sign of Ck and b8v8v

41 is important when both contributions are
taken into account. Both positive (or both negative) values of
these parameters [47] are used, since this combination ensures
that the sign of the HH splitting in bulk GaAs is reversed in
the [110] direction [62].

Our results agree with the symmetry analysis and atomistic
calculations of Ref. [32]: In [111]-oriented NWs (C3v symme-
try) the Dresselhaus spin splitting does not take place for all
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subbands. The spin degeneracy is lifted in the band if the cor-
responding double group representation is one-dimensional.
If the double group representation has a dimension greater
than one (typically two), then there is a degeneracy. In the
case of the group C3v there are both one- and two-dimensional
irreducible representations.

It should be noted that not only does taking into account
the terms (11) and (13) lead to the spin splitting of certain
subbands, but also these terms influence the shape of the
nonsplit subbands. In particular, one can compare the eighth
pair of subbands in Fig. 2 with Figs. 5(b) and 5(c): For this pair
of subbands, the simple close-to-parabolic shape is changed
into a W-like one, having three extrema. This is due to the
presence of nonzero k-independent matrix elements of H[111]

3 .
Moreover, the wave functions and hole density maps (see

Fig. 6) change significantly when H[111]
1 and H[111]

3 terms are
taken into account. These contributions restore the real third-
order rotational symmetry of the density maps even at k = 0
(cf. Fig. 3).

B. Rashba spin splitting

The Rashba spin splitting [29] is associated with SIA. Our
understanding of Rashba spin splitting goes back to works
on the energy bands of semiconductors with a WZ crystal
structure [63,64], and this splitting takes place in semicon-
ductors without an inversion center that have a high-order
symmetry axis (not lower than the third order). For example,
in semiconductors with a WZ lattice, such splittings occur at
k directed perpendicular to the hexagonal axis.

In two-dimensional systems (heterostructures, quantum
wells), the Rashba splitting is a consequence of the asym-
metry of the heteropotential. This can be achieved by growth
conditions (different heights of barriers), nonuniform doping
of barriers, etc. In addition, the Rashba spin splitting can be
caused and continuously tuned using an external gate [65].
The latter can also be applied to NWs [66–68], which are used
as an element of a field-effect transistor. In this context, NWs
can also be adapted to the spin field-effect transistor proposed
by Datta and Das [69].

We consider a homogeneous undoped NW. This means that
the Rashba splitting can only be achieved by applying a trans-
verse electric field. Now there are different gate geometries
for NWs. The so-called wrapping (or gate-all-around) gates
[70,71] or �-like gates [72] are used for suspended NWs or
NW on a substrate, respectively. Nevertheless, the calculation
of the electrostatic potential created in a hexagonal NW by
such gates is in itself a difficult problem that deserves sep-
arate consideration. Here the simple case of a homogeneous
transverse electric field F is considered. This can be realized
when a NW is placed between the plates of a flat capacitor
and the empty space is filled by an insulator (which may be a
liquid) with the dielectric constant close in magnitude to that
of the NW material.

The hexagonal symmetry of NWs implies that the spin
splitting and the subband spectrum will depend on the orien-
tation of the transverse electric field relative to the hexagonal
cross section, which is determined by the angle ϕ0 (measured
from the x axis; see Fig. 1):

F = (F cos ϕ0, F sin ϕ0, 0).

FIG. 6. The transverse hole density maps |
(r, ϕ)|2 for GaAs
NW taking into account BIA terms (11) and (13) and corresponding
to Fig. 5(c) at k = 0. The separate contributions for HH and LH are
depicted. The maps are in arbitrary units, but all |
|2 are normalized
to the same value. For some subbands the HH contributions of the
hole density are rescaled for clarity: They are increased by 5, 10, or
25 times.

The potential energy of a hole placed in a uniform electric
field in cylindrical coordinates is given by

HF = −eFr cos(ϕ − ϕ0). (15)

Here, e is the absolute value of the electron charge.
In our considerations, it is important that the condition

eFR 
 V0 be fulfilled, i.e., the asymmetry of the total po-
tential due to the electric field must be much smaller than
the hexagonality potential. Otherwise, our concept of the
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FIG. 7. The hole subband energy spectrum of GaAs NW in transverse electric field (γ1 = 6.85, γ2 = 2.10, γ3 = 2.90, 2Ck√
3E0R

= 0.103,
b8v8v

41
E0R3 = 0.216). (a) eFR/E0 = 30, ϕ0 = π/2; (b) eFR/E0 = 70, ϕ0 = π/2; (c) eFR/E0 = 70, ϕ0 = 0. The energy is scaled to E0. The color
reflects the HH and LH contributions to the multicomponent wave function. The magnitude

√〈J2
z 〉i(k) is calculated for the ith subband by

means of Eq. (9). It takes values in the interval ( 1
2 ; 3

2 ); see color bar. The crossings of subbands with the vertical dashed line correspond to the
states whose wave functions are visualized in Fig. 8.

hexagonality potential does not work, and the hole wave
function may be nonzero in some of the shaded segments
in Fig. 1(b). This condition imposes a limitation on the
maximum magnitude of the electric field. The simple esti-
mates show the following: For NW with R = 10 nm we have
E0 = 0.38 meV, and the electric field energies eFR = 30E0

and eFR = 70E0 correspond to moderate electric fields F =
1.14 × 104 V/cm and F = 2.66 × 104 V/cm, respectively.
Thus, for the value V0 = 4000E0 used in the numerical cal-
culation, the above condition is fulfilled.

It can be seen that a moderate electric field of about
10 kV/cm leads to a significant rearrangement of the spectrum
(see Fig. 7). For the case of a strong electric field, the depen-
dence on its orientation is significant [see Figs. 7(b) and 7(c)].
In particular, this dependence is most pronounced at energies
around 30E0, where the interaction of the first, second, and
third pairs of subbands leads to different anticrossing patterns.

A uniform electric field leads not only to an additional spin
splitting of hole subbands, but also to a significant rearrange-
ment of the wave function and a redistribution of the hole
density (see Fig. 8). The hole density obviously is shifted in
the electric field. The maps depicted in Fig. 8 have a quaint
shape.

At first glance, the maps in Fig. 8 seem a bit asymmetric,
which, for example, may be caused by insufficient accuracy
of the numerical calculation. However, there is another reason
for such a shape of the maps. The electric field F directed

along the y axis (ϕ0 = π/2) breaks the C3v symmetry of the
system. In this case the point symmetry is reduced to C1, and
there are no symmetry elements except for the identity one, e.
It seems there is the symmetry with respect to reflection in the
vertical plane (x = 0). This is due to the predominance of the
Rashba spin splitting over the Dresselhaus one. This symme-
try will be restored if the BIA contributions are neglected. It
should be noted that for the electric field F directed along the
x axis (ϕ0 = 0), the symmetry is partially conserved. In this
case, the C3v symmetry is reduced to the Cs one: One of the
three symmetry planes is preserved, (110).

Now TRS reflects the main symmetry properties of the sub-
band spectrum and wave functions, since taking into account
the BIA and the transverse electric field breaks the spatial
inversion symmetry. The standard relation E↑(k) = E↓(−k)
remains valid. However, here the transition from spin ↑ to spin
↓ should be understood as the replacement of all projections
of the hole spin by the opposite one, Jz → −Jz. The corre-
sponding envelope functions in this case are connected by
complex conjugation. The latter means that the hole density
maps for the time-reversed states coincide. The same is true
for the separate HH and LH contributions.

V. DISCUSSION AND CONCLUSIONS

We start the discussion with a comparison of the results
for the hole NW spectrum with and without inclusion in total
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FIG. 8. The transverse hole density maps |
(r, ϕ)|2 for GaAs NW (γ1 = 6.85, γ2 = 2.10, γ3 = 2.90) at kR = 2.0 in a transverse electric
field |e|FR/E0 = 70 directed perpendicular to the hexagon edge (ϕ0 = π/2). The separate contributions for HH and LH are depicted. The
maps are in arbitrary units, but all |
|2 are normalized to the same value. The subbands are numbered sequentially with increasing energy at
given kR.

Hamiltonian BIA terms. The related issue of H[111]
3 matrix

symmetrization is considered as well. The modification of the
hole spectrum in WZ NWs is qualitatively considered.

A comparison of the results of Secs. III and IV shows that
the inclusion of the BIA terms in the hole Hamiltonian is im-
portant and necessary. Accounting for the terms (11) and (13)
leads to a significant rearrangement of the spectrum and wave
functions. In some subbands, spin splitting takes place, while
in others, a significant change in the shape of the spectrum
occurs. The hole wave functions (or density distribution) are
influenced by BIA contributions. The third-order rotational

symmetry of the hole density map is restored due to BIA terms
even at k = 0.

As mentioned above, the approach based on the 4 × 4 Lut-
tinger Hamiltonian for calculating hole states in GaAs NWs
is a good approximation. At the same time, it is necessary to
take into account the real Td symmetry of the material and
include the corresponding BIA terms in the hole Hamiltonian.
For NWs of narrow-gap III-V materials (InAs, InSb, etc.), it is
necessary to take into account the exact interaction of the �8

valence band with the �6 conduction band and the �7 split-off
band, i.e., use multiband (six- or eight-band) calculations [73].
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Nevertheless, the spin-orbit interaction is more pronounced
in these materials than in GaAs. This means that the BIA
terms should be included in the hole Hamiltonian all the more.
Consistent accounting for the inversion asymmetry of the
lattice for a narrow-gap material is possible within a 14-band
model (the so-called extended Kane model), which explicitly
considers higher conduction bands of �7 and �8 symmetry.

The Rashba spin splitting is important for the hole spec-
trum as well. The use of the real gate technique [70–72] leads
to intricate distribution of the electric field and potential inside
the NW. However, a significant rearrangement of the hole
spectrum manifests itself even when a simple model with a
uniform electric field is used. The distribution of the hole
density is shifted by the electric field and has a quaint shape.
Simultaneous accounting for the lack of an inversion center
additionally reduces the symmetry of the problem.

The used simple procedure of forced symmetrization of
the non-Hermitian operator of Eq. (13) is not strict and con-
sistent. In the general case, one should start with a 14-band
Hamiltonian, as was done by Durnev et al. [74] for quantum
wells. On the other hand, there are a large number of examples
when a simple symmetrization approach works. For example,
the Hamiltonian for an electron in a thin quantum ring with
Rashba spin-orbit splitting was first incorrectly derived in Ref.
[75] and turned out to be non-Hermitian. The strict proce-
dure for finding the correct operator is based on averaging
of the high-dimensional Hamiltonian over the ground state
wave function of the transverse motion [76,77]. However,
a simple and fast procedure for forced symmetrization of a
non-Hermitian operator also gives the same correct result. It
should be noted that in this case, symmetrization at the level of
differential operators is possible, and the Hamiltonian remains
a 2 × 2 matrix with respect to the electron spin.

It should be remembered that NWs of GaAs under certain
conditions can be crystalized in the WZ phase. In the first
approximation, to describe hole states in WZ structures, it is
necessary to introduce the influence of the crystal field into
the Luttinger Hamiltonian. It is analogous to uniaxial strain,
giving the splitting �c f of HHs and LHs at k = 0 [78]

Hc f = −�c f

2

(
J2

z − 5

4

)
. (16)

Accounting for this term leads to a significant change in the
subband shape in Fig. 2. Moreover, the spin structure, namely
the relation between HH and LH contributions, is changed
dramatically. In WZ GaAs, the crystal field splitting �c f is
about 100 meV [79,80]. This means that accounting for Hc f in
the total Hamiltonian leads to low-lying subbands that are of
HH character (cf. with the results of Ref. [81]), which differs
from the result in ZB NWs. Thus consideration of polytypic
axial heterostructures may be of interest from the point of
view of spintronics.

The strain can significantly renormalize the hole subband
spectrum in NWs, especially taking into account the possible
large elastic deformations in NWs compared with the bulk
semiconductors. In the strained structure there are additional
mechanisms of HH-LH mixing, which can introduce more
complex terms into the hole Hamiltonian than, e.g., Eq. (16).
However, this issue is beyond the scope of this paper and
deserves separate consideration.

It should be noted that there is no direct possibility of
constructing an effective Hamiltonian, say, for the first NW
subband. For quantum wells, this problem is usually solved
as follows: There is a solution for k = 0, and in the vicinity
of this point the spectrum and the effective Hamiltonian are
constructed perturbatively. Here we are faced with two dif-
ficulties: (i) The subband position at k = 0 cannot be found
analytically, and (ii) even if the subband position found nu-
merically is used, the constructed Hamiltonian will not make
much sense, since at k = 0 the HH and LH states are already
mixed. However, such a standard procedure can be useful for
WZ NWs, where the ground and several excited subbands
near k = 0 are predominantly of HH character and the LH
contribution can be neglected.

In conclusion, the hole states in GaAs NWs with the [111]
orientation and a hexagonal cross section are calculated. The
necessity of taking into account in the Hamiltonian the terms
that arise due to the lack of an inversion center in the ZB lattice
is shown. This leads to a significant rearrangement of both the
hole energy spectrum and the corresponding wave functions.
The Rashba spin splitting of subbands due to the transverse
electric field is also studied.

The used matrix approach with forced symmetrization of
non-Hermitian terms is able to take into account all four
issues that are important for NW states, as discussed in the
Introduction. However, the strict procedure should be based
on the extended Kane model, which explicitly takes into ac-
count the interaction with higher conduction bands and the
corresponding splittings. The main advantage of our approach
is the absence of nonphysical (rapidly oscillating) solutions,
which usually appear when the problem is solved on the grid.
It should be noted that it is possible to calculate the hole states
in core-shell NWs generalizing an approach that we used for
electrons in core-multishell NWs [82] with a cylindrical cross
section.
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APPENDIX A: LUTTINGER HAMILTONIAN
AND COORDINATE TRANSFORMATION

The invariant form of the Luttinger Hamiltonian is given by
Eq. (1). Using the abovementioned representation of J = 3/2
matrices [46,47] and substituting their exact form into Eq. (1),
we find the explicit form of the Luttinger Hamiltonian in the
principal axes (x||[100], y||[010], z||[001]):

HL =

⎛
⎜⎜⎜⎜⎝

P + Q S R 0

S∗ P − Q 0 R

R∗ 0 P − Q −S

0 R∗ −S∗ P + Q

⎞
⎟⎟⎟⎟⎠, (A1)

where P = h̄2γ1

2m0
(k2

x + k2
y + k2

z ), Q = h̄2γ2

2m0
(k2

x + k2
y − 2k2

z ), S =
−

√
3h̄2γ3

m0
k−kz, and R = −

√
3h̄2

2m0
[γ2(k2

x − k2
y ) − 2iγ3kxky], with

k± = kx ± iky.
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Here the coordinate transformation is presented, which is
necessary to rewrite the Luttinger Hamiltonian in new axes
(x′||[112], y′||[110], z′||[111]):

⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3

−
√

2
3 0 1√

3

⎞
⎟⎟⎟⎠
⎛
⎜⎝

x′

y′

z′

⎞
⎟⎠. (A2)

Using this transformation for ki and Ji (i = x, y, z) and sub-
stituting it into Eq. (1), we find the Hamiltonian (2). All BIA
terms [Eqs. (11) and (13)] in the (x′y′z′) frame are obtained
using the same transformation.

APPENDIX B: MATRIX ELEMENTS
OF SOME OPERATORS

To calculate the matrix elements of the Hamiltonian be-
tween the functions (3), including the operators describing

spin splittings, it is necessary to find the matrix elements
of some combinations of k± operators between transverse
envelopes |mn〉. For this purpose, it is convenient to use the
well-known identity

k±Jm(kr)eimϕ = ±ikJm±1(kr)ei(m±1)ϕ ; (B1)

after that, the calculation becomes trivial, taking into account
the recurrence relations for the Bessel functions (see, for ex-
ample, Ref. [83]) and the orthogonality of the basis functions.
The matrix elements of the k± operators are given by

〈m′n′|k±|mn〉 =
(

2i

R

)
jm′n′ jmn

j2
m′n′ − j2

mn

δm′,m±1. (B2)

It is easy to find the matrix elements of the operators k2
±,

which are given by

〈m′n′|k2
±|mn〉 = ∓

(
2

R

)2 (m ± 1) jm′n′ jmn

j2
m′n′ − j2

mn

δm′,m±2. (B3)

The particular case 〈±1n|k2
±| ∓ 1n〉 requires separate consideration:

〈±1n|k2
±| ∓ 1n〉 = j2

1n

R2
. (B4)

The matrix elements, which enter into Eq. (13), are given by

〈m′n′|k3
±|mn〉 = − 2i

R3

jm′n′ jmn
[
4(m ± 2)(m ± 1) − j2

mn

]
j2
m′n′ − j2

mn

δm′,m±3, (B5)

〈m′n′|k±k2
∓|mn〉 = 2i

R3

jm′n′ j3
mn

j2
m′n′ − j2

mn

δm′,m∓1. (B6)

The non-Hermiticity of k3
± and k±k2

∓ leads to the need for additional symmetrization of the matrix H[111]
3 . The corresponding

matrix elements are denoted as 〈J ′
z; m′n′; k|H[111]

3 |Jz; mn; k〉sym:

〈3/2; m′n′; k|H[111]
3 |3/2; mn; k〉sym = −

√
3b8v8v

41

4
√

2R3

jm′n′ jmn

j2
m′n′ − j2

mn

{
δm′,m+3

[
8(m + 1)(m + 2) − j2

m′n′ − j2
mn

]
− δm′,m−3

[
8(m − 1)(m − 2) − j2

m′n′ − j2
mn

]}
, (B7)

〈3/2; m′n′; k|H[111]
3 |1/2; mn; k〉sym = 2b8v8v

41

R3

jm′n′ jmn

j2
m′n′ − j2

mn

[
1

8

(
j2
m′n′ + j2

mn

) − (kR)2

]
δm′,m−1

− ib8v8v
41

√
2k

R2

(m + 1) jm′n′ jmn

j2
m′n′ − j2

mn

δm′,m+2. (B8)

Other matrix elements can be derived using the properties of the H[111]
3 matrix (13). In the special case of m′ = 1, m = −1, and

n′ = n in accordance with Eq. (B4) the last term in the previous equation should be replaced by (ikb8v8v
41 /2

√
2R2) j2

1n.
The matrix element of the potential energy of the hole placed into a homogeneous electric field (15) between the transverse

envelopes |mn〉 has the form

〈m′n′|HF |mn〉 = eFR(e−iϕ0δm′,m+1 + eiϕ0δm′,m−1)

J|m′ |+1( jm′n′ )J|m|+1( jmn)

∫ 1

0
dxx2J|m′ |( jm′n′x)J|m|+1( jmnx) (B9)

and requires numerical evaluation.
To calculate the overlap integral of basis functions (3), one needs at first to find the domain of integration. In Fig. 1(b)

in the first shaded segment, this area in polar coordinates is defined as 0 � ϕ � π
3 and

√
3R√

3 cos ϕ+sin ϕ
� r � R. After some

simplifications, the overlap integral that enters the equation for the matrix element of the hexagonality potential (6) is given
by

Im′n′;mn = 1

πJ|m′ |+1( jm′n′ )J|m|+1( jmn)

∫ π/3

0
dϕ cos(m − m′)ϕ

∫ 1

√
3√

3 cos ϕ+sin ϕ

dxxJ|m′ |( jm′n′x)J|m|( jmnx) (B10)

and can be evaluated numerically.
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