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Opacity of graphene independent of light frequency and polarization
due to the topological charge of the Dirac points
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The opacity of graphene is known to be approximately given by the fine-structure constant α times π . We point
out the fact that the opacity is roughly independent of the frequency and polarization of the light can be attributed
to the topological charge of the Dirac points. As a result, one can literally see the topological charge with the
naked eye from the opacity of graphene, and moreover it implies that the fine-structure constant is topologically
protected. A similar analysis suggests that 3D topological insulator thin films of any thickness also have opacity
πα in the infrared region owing to the topological surface states, indicating that one can see the surface states
with the naked eye through an infrared lens. For 3D Dirac or Weyl semimetals, the optical absorption power
is linear to the frequency in the infrared region, with a linearity given by the fine-structure constant and the
topological charge of Weyl points.
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I. INTRODUCTION

A fundamentally important issue in the research of
topological materials is how the topological order can be
unambiguously detected in experiments. Conventionally, the
most straightforward way is to detect the effects related to
the metallic edge or surface states, such as the quantized
Hall conductance [1,2] or zero bias conductance [3], which
only occur in topologically nontrivial phases and are directly
determined by the bulk topological invariant. On the other
hand, to our knowledge, there has not yet been a bulk material
property on the macroscopic scale that can be felt by human
perception and be attributed to the topological order. This is
in sharp contrast to the materials that possess Landau order
parameters. For instance, magnetic order can be simply per-
ceived from the force that repels or attracts two bar magnets,
and superconductivity can be understood as the mechanism
behind the magnetic levitation.

In this paper, we point out that the topological charge of
various materials containing gapless Dirac cones can actually
be seen with the naked eye, either directly or through an
infrared lens. This statement is made based on our discovery
that for gapless Dirac materials, the optical absorption power
is always proportional to the fine-structure constant α =
e2/4π h̄cε0 ≈ 1/137 times a factor determined by the topolog-
ical charge C. This feature originates from a metric-curvature
correspondence between topological order and quantum met-
ric of the valence bands [4], and moreover the latter is directly
measurable by optical absorption power. A particularly impor-
tant application of our theory is graphene, since single-layer
graphene of size up to cm2 deposits on transparent substrates,
such as polyethylene terephthalate (PET) or quartz, is al-
ready commercially available. In this case, the well-known
πα ≈ 2.3% opacity of graphene can be easily perceived by
the naked eye [5–8]. Remarkably, despite that this πα opacity
has been well known for more than a decade, it has never
been pointed out until the present work that the approximate
frequency and polarization independence of the opacity πα ×

4C2 is due to the protection by the topological charge C = 1/2.
Similar to the seminal Thouless–Kohmoto–Nightingale–den
Nijs (TKNN) theory that links the DC Hall conductivity to the
Chern number [9], we prove this feature by utilizing a linear
response theory to link the longitudinal optical conductivity to
the topological charge. On the other hand, we also investigate
how several realistic factors in graphene, such as the hexago-
nal warping and van Hove singularity, render the opacity not
exactly constant of frequency and polarization, and discuss
the possibility of extracting the fine-structure constant α pre-
cisely from the opacity. Furthermore, through the inclusion of
impurities, our theory well explains the reduction of opacity
in fluorinated graphene at low frequency [10].

Another remarkable prediction of our theory is that one can
literally see the topological surface states of 3D topological
insulator (TI) thin films with the naked eye, since they are also
described by gapless 2D Dirac cones. Our prediction is that all
single-crystal thin films of 3D TIs, such as [11,12] Bi2Se3 and
Sb2Te3, have the same πα × 4C2 ≈ 2.3% opacity as graphene
in the infrared region regardless of the thickness of the film.
This feature can be verified by simply looking at 3D TI thin
films of different thickness through an infrared lens, which
should all show the same opacity, offering a very pedagogical
way to perceive the surface states. Finally, we turn to 3D
Weyl and Dirac semimetals to elaborate that the well-known
optical absorption power that is linear in frequency in the
infrared region is also topologically protected [13–17]. Thus
the fact that, through an infrared lens, these semimetals look
darker under higher-frequency light is also a topological phe-
nomenon.

II. OPTICAL ABSORPTION OF GAPLESS DIRAC MODELS
AS A TOPOLOGICAL CHARGE

A. Relating optical absorption power to quantum geometry

Our survey starts by considering the quantum geometry
of valance band states [4,18,19]. We will reserve the index

2469-9950/2023/108(16)/165201(9) 165201-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8866-0614
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.165201&domain=pdf&date_stamp=2023-10-09
https://doi.org/10.1103/PhysRevB.108.165201


MATHEUS S. M. DE SOUSA AND WEI CHEN PHYSICAL REVIEW B 108, 165201 (2023)

n for valence bands, m for conduction bands, � for all the
bands, and their energies at momentum k are denoted by εk

� .
For a gaped topological material with N− valence bands, the
fully antisymmetric valence band Bloch state at momentum k
is |uval(k)〉 = εn1n2...nN−|n1〉|n2〉 . . . |nN−〉/√N−!. The quantum
metric of this state is defined from [20]

|〈uval(k)|uval(k + δk)〉| = 1 − 1
2 gμν (k)δkμδkν, (1)

whose diagonal component gμμ can be calculated from each
band by [4]

gμμ(k) = 〈∂μuval|∂μuval〉 − 〈∂μuval|uval〉〈uval|∂μuval〉
=

∑
nm

〈∂μn|m〉〈m|∂μn〉. (2)

To relate the quantum metric to optical responses, we intro-
duce a quantum metric spectral function [19]

gμμ(k, ω) =
∑
�<�′

〈∂μ�|�′〉〈�′|∂μ�〉

×[
f
(
εk
�

) − f
(
εk
�′
)]

δ

(
ω + εk

�

h̄
− εk

�′

h̄

)

= VD

πe2h̄ω
σμμ(k, ω), (3)

which at zero temperature frequency-integrates to the quan-
tum metric limT →0

∫ ∞
0 dω gμμ(k, ω) = gμμ(k), where VD is

the volume of the D-dimensional unit cell, and σμμ(k, ω)
is the finite temperature longitudinal optical conductivity at
momentum k obtained from linear response theory [21].

The optical conductivity measured in real space is given by
the momentum integration

σμμ(ω) = VD

∫
dDk

(2π h̄)D
σμμ(k, ω)

= πe2

h̄D−1 ω

∫
dDk

(2π )D
gμμ(k, ω). (4)

Furthermore, applying an oscillating electric field polar-
ized in the μ direction Eμ(ω, t ) = E0 cos ωt to the system
induces a current that oscillates accordingly jμ(ω, t ) =
σμμ(ω)E0 cos ωt , where E0 is the strength of the field. Thus
the optical absorption power per unit cell at frequency ω is
[21]

W μ
a (ω) = 〈 jμ(ω, t )Eμ(ω, t )〉t = 1

2σμμ(ω)E2
0 , (5)

where the time average gives 〈cos2 ωt〉t = 1/2. The main
point of the present work is how W μ

a (ω) is related to the
topological charge C and fine-structure constant α in a topo-
logically protected manner, as we elaborate below for several
different topological materials.

B. Opacity of pristine graphene

The low-energy band structure of graphene can be
described by the tight-binding model on a honeycomb lat-
tice with nearest-neighbor hopping H = ∑

〈i j〉σ t c†
iσ c jσ with

t ≈ 2.8 eV, and we denote the distance between neighboring
carbon atoms by a = 0.142 nm [22]. For each spin species,
the low-energy Hamiltonian in the momentum space may be

obtained by an expansion around the two Dirac points K and
K′, yielding the linear Dirac Hamiltonian [23]

HK,K′
0 (k) = vF (±kyσx − kxσy), (6)

where vF = 3ta/2h̄ is the Fermi velocity. This linearized
model well describes the linear band structure up to energy
∼1 eV, and hence is a suitable model for the optical absorp-
tion in the visible light range. To proceed, we introduce the
spin-valley index γ = {K ↑, K ↓, K′ ↑, K′ ↓} and denote the
valence and conduction band states by |nγ 〉 and |mγ 〉, whose
eigenenergies εk

n = −vF k and εk
m = vF k do not depend on γ .

The topological charge C per spin at each of the two Dirac
points K and K′ is given by integrating the valence band
Berry connection along a closed loop of radius k circulating
the Dirac points,∮

dφ

2π
〈nK↑|i∂φ|nK↑〉 = −

∮
dφ

2π
〈nK′↑|i∂φ|nK′↑〉

= −1/2 ≡ −C, (7)

which has opposite signs at the two Dirac points.
We now elaborate the relation between this topological

charge and the quantum metric. The quantum metric for a
valence band state of spin-valley flavor γ is defined from the
overlap |〈nγ (k)|nγ (k + δk)〉| = 1 − gγ

μνδkμδkν/2. In partic-
ular, because the valence band state |nγ 〉 does not depend on
the module of the momentum k, the only nonzero component
of the quantum metric in the polar coordinates {μ, ν} = {k, φ}
is the azimuthal component, which turns out to be equal to the
square of the topological charge

gγ

φφ = |〈mγ |i∂φ|nγ 〉|2 = |〈nγ |i∂φ|nγ 〉|2 = C2 = 1
4 . (8)

This relation, which has been called the metric-curvature cor-
respondence [4], is the key to identify the opacity of graphene
with the topological charge, as we shall see below.

The quantum metric in the Cartesian coordinates
{μ, ν} = {x, y} can be obtained from Eq. (8) by utilizing
∂x = cos φ ∂k − (sin φ/k)∂φ and ∂y = sin φ ∂k + (cos φ/k)∂φ .
Moreover, because in the angular integration

∫ 2π

0 dφ in the
calculation of optical absorption below, the choice of φ = 0 is
arbitrary, so for any polarization μ = {x, y} we can simply set

gγ
μμ = sin2 φ

k2
gγ

φφ = sin2 φ

k2
C2. (9)

It follows that the quantum metric spectral function in Eq. (3)
for the flavor γ is

gγ
μμ(k, ω) = gγ

μμ

[
f
(
εk

n

) − f
(
εk

m

)]
δ

(
ω + εk

n

h̄
− εk

m

h̄

)
. (10)

In addition, from Eq. (3), the optical conductivity contributed
by the flavor γ is σ

γ
μμ(k, ω) = πe2h̄ω gγ

μμ(k, ω)/Acell, where
Acell = 3

√
3a2/2 is the unit cell area of the hexagonal lattice.

Putting the spectral function in Eq. (10) into Eq. (4), summing
over γ , and using the area of the BZ ABZ = 8π2/3

√
3a2, the

conductivity measured in real space is

σμμ(ω) = e2

h̄
C2

[
f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
, (11)

indicating that the optical conductivity [24,25] is given by the
conductance quantum times the topological charge.
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For an incident light with electric field E0, the incident
power per unit cell of area Acell is Wi = cε0E2

0 /2. Using
Eq. (5), the opacity at polarization μ and frequency ω is

O(ω) = W μ
a (ω)

Wi
= πα × 4C2

[
f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
, (12)

which does not depend on the polarization μ. In the zero-
temperature limit, one obtains

lim
T →0

O(ω) = πα × 4C2 = πα ≈ 2.3%. (13)

This is the seminal result of the 2.3% opacity (or transmit-
tance) of graphene [5–8], and our analysis brings in several
new aspects to this result: (1) The independence of frequency
ω is due to the topological charge C = 1/2, or equivalently
the azimuthal quantum metric gγ

φφ according to Eq. (8), that
is independent of the circle of radius k = h̄ω/2vF at which
the conduction band electrons are excited by the light. In
addition, gγ

φφ is also independent of the angle φ; hence the
opacity does not depend on the polarization μ either. Since
the visible light produced by common light sources usually
contains a wide range of polarization and frequency, the rea-
son that graphene always shows 2.3% opacity is due to the
topological protection of the Dirac cone, and it implies that
one can literally see the topological charge C by naked eye
through the opacity. (2) One may use the plateau of frequency
or polarization dependence of opacity to extract α. This pro-
cedure echoes the extraction of von Klitzing constant h/e2

from the Hall plateaus as a function of magnetic field in the
quantum Hall effect (QHE) [1], which is also topologically
protected. Our work that recognizes the opacity of graphene
as a topological charge through a linear response theory of
longitudinal optical conductivity is thus conceptually anal-
ogous to the seminal TKNN theory, which recognizes the
quantized Hall conductance as a topological invariant through
a linear response theory of the DC Hall conductance [9]. This
topological protection implies that the measured α should be
independent of many details of the system; i.e., ideally any
2D materials that have a Dirac code should have the same πα

opacity, which may describe a variety of 2D materials such
as graphynes [26,27], B2S [28], silicene [29–31], germanene
[32], etc. [33–35].

C. Influence of realistic factors on the opacity of graphene

Despite the appealing connection between the opacity and
topological charge, the above simple results suffer a great
challenge from many realistic factors in 2D materials con-
taining Dirac cones, as we formulate below. The first is
the realistic band structure beyond the simple description
of Eq. (6), which contains complications such as hexag-
onal warping, next-nearest-neighbor hopping, and Rashba
spin-orbit coupling (RSOC). To investigate their effects, we
incorporate them into the tight-binding model defined on a
honeycomb lattice,

H = −t
∑
〈i j〉,σ

c†
iσ c jσ + t ′ ∑

〈〈i j〉〉,σ
c†

iσ c jσ

+ iλR

∑
〈i j〉,α,β

c†
iα (σαβ × di j )

zc jβ. (14)

FIG. 1. (a) The definition of coordinates and various vectors on
the honeycomb lattice. (b) The band structure simulated by t = 1,
t ′ = 0.036, and λR = 0.2.

Here c†
iσ (ciσ ) creates (annihilates) an electron of spin σ

on the lattice site i, and 〈i j〉 and 〈〈i j〉〉 indicate nearest-
neighbor and next-nearest-neighbor lattice sites with the
corresponding hopping −t and t . The λR is the RSOC cou-
pling constant, σ = (σ x, σ y, σ z ) are the spin Pauli matrices,
and di j is the vector connecting the site i to j. Defining
the basis ψ = (A ↑, B ↑, A ↓, B ↓) and the Fourier trans-
formation cIiσ = ∑

k eik·ri cIkσ , where I = {A, B} denotes the
two sublattices and ri the unit cell position, the Hamiltonian
H = ∑

kIJαβ c†
IkαHIαJβ (k)cJkβ is described by the matrix

HIαJβ (k) =

⎛
⎜⎜⎝

t ′Z ′ tZ∗ 0 λRY ∗
tZ t ′Z ′ λRX ∗ 0
0 λRX t ′Z ′ tZ∗

λRY 0 tZ t ′Z ′

⎞
⎟⎟⎠,

Z ≡ e1 + e2 + e3,

Z ′ ≡ e′
1 + e′

2 + e′
3,

X ≡ −1 − i
√

3

2
e∗

1 + −1 + i
√

3

2
e∗

2 + e∗
3,

Y ≡ 1 + i
√

3

2
e1 + 1 − i

√
3

2
e2 − e3, (15)

where the nearest-neighbor δa and next-nearest-neighbor vec-
tors δ′

a and the corresponding phase factors are

δ1 =
(

1

2
,

√
3

2

)
, δ2 =

(
1

2
,−

√
3

2

)
, δ3 = (−1, 0),

δ′
1 =

(
−3

2
,−

√
3

2

)
, δ′

2 =
(

3

2
,−

√
3

2

)
, δ′

3 = (0,
√

3),

ea = eik·δa , e′
a = 2 cos k · δ′

a. (16)

These vectors and the resulting band structure using
t = 2.8 eV ≡ 1 as the energy unit, together with t ′ =
0.1 eV ≡ 0.036 and λR = 0.56 eV ≡ 0.2 (a rather large
RSOC just to demonstrate the splitting of bands), are shown
in Fig. 1. From the Hamiltonian matrix in Eq. (15), one can
calculate the velocity operators by ĵμ(k) = e ∂μH (k), which
may then be used to calculate the optical conductivity and
subsequently the quantum metric spectral function.

From the form of the Hamiltonian in Eq. (15), one can
immediately conclude that the next-nearest-neighbor hop-
ping t ′ does not affect the quantum metric and opacity of
graphene, simply because it enters the diagonal element of the
Hamiltonian in the form of an identity matrix t ′Z ′ × I4×4.
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FIG. 2. (a) The opacity of graphene O(ω)/πα at T = 300 K, 1000 K (a rather unrealistic temperature just to demonstrate the effect), and
silicene at T = 0 as a function of frequency of the unpolarized light. (b) The dependence of the opacity of graphene on the polarization angle
φE at T = 0. (c) The effect of RSOC on the opacity of graphene at T = 0. (d) The effect of impurities on the opacity of linear Dirac model,
with impurity density nimp and strength V . The inset shows schematically how the energy shift caused by the real part of self-energy blocks the
optical transition.

This means that t ′ does give a k-dependent deformation to the
dispersion without modifying the eigenstates, and the defor-
mation is the same for all the bands at k and hence it does
not affect the δ(ω + εk

� /h̄ − εk
�′/h̄) condition in the quantum

metric spectral function either. As a result, the optical con-
ductivity and opacity are not affected by t ′.

However, the tight-binding band structure does feature an
opacity that increases with frequency until the transition be-
tween van Hove singularities h̄ω ≈ 2t , which makes the opac-
ity in the visible light range to be 2.46% < O(ω) < 2.71%,
as shown in Fig. 2(a), and has already been investigated
theoretically and observed experimentally [5–8,10,36]. Nev-
ertheless, since human eyes can hardly distinguish such a
small deviation, the roughly constant opacity observed by the
human eye against a light source of any color can still serve as
a pedagogical example to demonstrate the topological charge.
In fact, to our knowledge, this is the only known topological
property of a material that can be directly perceived on the
macroscopic scale, and is only recognized through the present
work.

On the other hand, for 2D materials whose transition be-
tween van Hove singularities falls in the visible light range,
such as silicene simulated by t = 1.6 eV [37] and shown in
Fig. 2(a), the opacity will strongly depend on the color of
the light. This result indicates that Dirac cone materials with
larger hopping t , i.e., the linearity of Dirac cone extends
beyond the visible light range, are more ideal to visualize
the topologically protected constant opacity. Nevertheless, be-
cause the opacity in the infrared region should still be πα

for materials with a small t , the constant opacity may still
be perceived by the human eye through an infrared lens.
Finally, the finite-temperature data in Fig. 2(a) indicate that
the thermal broadening in Eq. (12) only reduces the opacity in
the low-frequency region h̄ω � kBT , which is far below and
hence has negligible effect on the visible light range [6,36].

D. Polarization dependence and the effect of Rashba SOC
on the opacity of graphene

In this section, we demonstrate that the realistic band
structure also influences the polarization dependence of the
opacity. To calculate the dependence of the direction of po-
larization μ̂ of the light, we consider μ̂ to be pointing at the
polar angle φE on the xy plane of graphene. The electric field
and the corresponding current operator in this situation may
be decomposed into

E = E0(cos φE x̂ + sin φE ŷ), ĵE = cos φE ĵx + sin φE ĵy.

(17)

The usual linear response theory requires calculating the
correlator 〈[ ĵE , ĵE ]〉, which yields an optical conductivity
[suppressing (k, ω)]

σE = cos2 φEσxx + sin φE cos φE (σxy + σyx ) + sin2 φEσyy,

(18)
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which is equivalent to calculating the quantum metric (note
that gxy = gyx)

gE = cos2 φE gxx + 2 sin φE cos φE gxy + sin2 φE gyy. (19)

The opacity will then carry the same angular dependence

OE (ω, φE ) = cos2 φEOxx(ω) + 2 sin φE cos φEOxy(ω)

+ sin2 φEOyy(ω), (20)

where Oμν (ω) corresponds to the contribution coming from
gμν . Note that if a light source is not polarized, then aver-
aging over the angle yields an opacity O(ω) = [Oxx(ω) +
Oyy(ω)]/2, meaning that the contribution from the off-
diagonal element of the quantum metric gxy drops out. How-
ever, for a polarized light, because Oxx(ω) ≈ Oyy(ω) [for in-
stance, (Oxx(ω),Oyy(ω),Oxy(ω)) = (1.175, 1.182, 0.277) ×
πα for blue light h̄ω = 3.1 eV], the variation of OE (ω, φE )
in Eq. (20) as a function of the polarization angle φE mainly
comes from the 2 sin φE cos φEOxy(ω) term contributed from
the optical Hall conductance σxy(ω), which is originated from
the off-diagonal element of the quantum metric gxy.

Our calculation reveals a 15% to 30% variation with the
polarization angle φE in the visible light range, as shown in
Fig. 2(b). Since this variation is mainly contributed from the
optical Hall conductance σxy(ω) originated from gxy, one can
actually estimate the magnitude of σxy(ω) by simply rotating
a graphene sheet against a polarized light and seeing how its
opacity varies. However, this also indicates that it is hard to
associate the opacity against a polarized light to the topologi-
cal charge since it is not a constant of φE , and suggesting that
only unpolarized light that averages over φE can serve this
purpose.

Furthermore, for 2D materials that are not perfectly flat but
have some buckling structure, the breaking of inversion sym-
metry can induce a Rashba spin-orbit coupling (RSOC). By
incorporating the RSOC of strength λR into the honeycomb
lattice [38] as described by Eq. (14), we obtain an opacity
that shows an anomaly at frequency ω ∼ 3λR owing to the
splitting of the bands, as shown in Fig. 2(c). Thus if the RSOC
of some material happens to fall in the visible light region
1.8 eV � 3λR � 3.1 eV, then its opacity may strongly depend
on the color of the light. However, such a strong RSOC seems
rather unlikely, since most of known 2D materials have an
RSOC of the order of 10 meV [39], and hence its influence
on the visible light range is negligible.

E. Influence of impurity scattering on the opacity of graphene

Concerning various sources of scattering, graphene under
the influence of electron-electron interaction has been inves-
tigated intensively [40,41], which only yields a very small
correction to the opacity [42]. In contrast, we consider the
effect of random pointlike impurities [43], whose effect is de-
tailed in Appendix A. The results shown in Fig. 2(d) indicate
an opacity that is strongly suppressed in the low-frequency
regime h̄ω � 2nimpV , which is caused by the real part of the
self-energy that acts like a chemical potential, rendering the
valence band states with energy less than εk

n < nimpV empty.
As a result, the optical absorption is strongly suppressed
and hence the material actually becomes more transparent

at h̄ω � 2nimpV , as indicated by the inset of Fig. 2(d). This
suppression is in qualitative agreement with the experiment in
fluorinated graphene, where a reduced low-frequency opacity
is observed, and the reduction region can be extended to the
visible light range by increasing fluorine concentration [10].
In fact, changing the chemical potential should also cause
such a suppression, as has been observed experimentally [44].
Thus to see the topological charge from the opacity in the
visible light range, a clean and unbiased graphene is needed.
Finally, we remark that the opacity is frequency-independent
only if the topological material is gapless, as we demonstrate
in Appendix B using a 2D Chern insulator as a counterexam-
ple. In addition, in Appendix C we also discuss the possibility
of extracting the fine-structure constant accurately from the
frequency dependence of the opacity.

F. Opacity of 3D TIs

The bulk of 3D TI like Bi2Se3 and Sb2Te3 usually have a
direct band gap 2M ∼ 0.5 eV [11,12], so one may expect it to
be transparent in the infrared region. However, note that thin
films of TIs have surface states in the top and bottom surfaces
where the light passes through, and each has two spin species;
hence one may label them by the four spin-surface flavors
γ = (top ↑, top ↓, bottom ↑, bottom ↓). Each γ is described
by one of the Hamiltonians in Eq. (6) with a proper assign-
ment of kx and ky [11,12,45], yielding the same opacity πα

as graphene, and is also independent of the frequency and
polarization in the infrared region owing to the topological
charge of the surface state, equivalently the bulk topological
invariant due to the bulk-edge correspondence. Remarkably,
this implies that one can literally see the topological surface
states by naked eye from the opacity through an infrared lens.
Moreover, the opacity should be independent of the thickness
of the TI provided the material is thicker than the decay length
of surface states (same as the correlation length h̄vF /M ∼ nm
[46,47]), and should be the same for all 3D TIs regardless of
many details such as the Fermi velocity, lattice constant, and
chemical composition, which is ready to be verified by the
naked eye.

We remark that several experiments have already hinted
this constant opacity of 3D TI thin films. Peng et al. measured
the Bi2Se3 thin-film deposit on the transparent substrate of
mica [48], which reveals that the transmittances at different
thicknesses all seem to saturate to the same value in the
infrared region, although the Fabry-Perot interference hinders
the extraction of a precise value at the saturation. Chuai et al.
measured the Bi2Se3 thin-film deposit on p-Si(111) substrate
[49], and showed that the transmittance of the film is higher
than 90% and is a constant of frequency in a wide range
of infrared region, although the precise value has not been
quantified. Despite that further efforts are required to com-
pare experiments with our theory, these preliminary results
of transmittances that are roughly constant of frequency and
thickness seem to be highly encouraging.

G. Optical absorption of 3D Dirac and Weyl semimetals

We proceed to consider the low-energy sector of type-I
3D Weyl semimetals, such as TaAs and TaP [50,51], which
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contain pairs of Weyl points [52–54]. Their low-energy eigen-
states can be labeled by the valley index γ = {1, 2, . . . , NW },
where NW is the number of Weyl points. The Hamiltonian in
the infrared region for each γ is well described by the Dirac
model

Hγ (k) = ±(vkxσx + vkyσy + vkzσz ) = ±d · σ, (21)

and we assume a cubic lattice of unit cell volume VD = a3 for
simplicity. The topological charge of each Weyl point is cal-
culated by the integration of Berry curvature over a spherical
surface of any radius that encloses the Weyl point, whose sign
depends on the chirality

C = ± 1

4π

∫
dφ

∫
dθ

1

d3
εi jkdi∂θd j∂φdk

= ± 1

4π

∫
dφ

∫
dθ sin θ = ±1, (22)

and we denote the integrand by Jk = εi jkdi∂θd j∂φdk/d3 =
sin θ . On the other hand, the quantum metric of each spin-
valley flavor γ on the spherical surface is

gγ

θθ = 1
4 , gγ

φφ = 1
4 sin2 θ, gγ

θφ = gγ

φθ = 0, (23)

which satisfies the metric-curvature correspondence√
det gγ = 1

4 |Jk|. (24)

In the Cartesian coordinates, the metric is given by

gγ
μμ = 1

4k4

(
k2 − k2

μ

)
, gγ

μν |μ �=ν = −kμkν

4k4
, (25)

and hence the trace of the quantum metric at k for each
spin-valley flavor gγ

xx + gγ
yy + gγ

zz = 1/2k2 only depends on
the module k but not the direction k̂ of the momentum. As a
result, using the definition of gγ

μμ(k, ω) in Eq. (4) with D = 3,
the conductivity in real space summing over three crystalline
directions is

∑
μ=x,y,z

σμμ(ω) = NW e2ω

4π h̄2

[
1

4π

∫
dφ

∫
dθ sin θ

]

×
∫

dk[ f (−vk) − f (vk)]
h̄

2v
δ

(
k − h̄ω

2v

)

= NW e2ω|C|
8π h̄v

[
f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
, (26)

since the bracket [. . .] in the second line is precisely the topo-
logical charge |C| in Eq. (22). The absorption power summing
over the three crystalline directions and then divided by the
incident power per unit cell volume Wi = cε0E2

0 /2a yields

∑
μ=x,y,z

W μ
a (ω)

Wi
= α|C|

(
NW a

2v

)
ω

[
f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
,

(27)

whose zero-temperature limit is linear in frequency, as has
been pointed out theoretically [13–16] and experimentally
observed [17]. Our result further suggests that the optical
absorption power summing over three crystalline directions is
directly proportional to the module of the topological charge
|C| and fine-structure constant α. In addition, since it is pro-
portional to the module, even if two Weyl nodes of opposite

chirality merge together to form a Dirac semimetal [55,56],
the absorption power is still that described by Eq. (27), whose
linearity in frequency has been observed experimentally [57].
Physically, this means that Dirac and Weyl semimetals appear
darker under higher-frequency light in the infrared region,
which should be detectable by human eyes through an infrared
lens. Finally, we remark that 3D topological semimetals have
surface states too, but since the bulk already absorbs light, the
contribution from the surface states should be negligible in the
bulk limit.

III. CONCLUSIONS

In summary, we clarify that the approximate frequency
independence of the opacity of disorder-free and unbiased
graphene can be attributed to the topological charge of Dirac
points. In other words, the roughly πα ≈ 2.3% opacity of
graphene against any sources of unpolarized visible light is
a manifestation of topological charge. The same analysis ap-
plied to 3D TIs suggests that their opacity in the infrared
region ideally is also the bulk topological invariant times
πα independent of frequency, polarization, and thickness of
the material. In contrast, for 3D Weyl and Dirac semimetals,
the fine-structure constant and topological charge also deter-
mine the linear dependence of optical absorption power on
frequency. Our results indicate that topological charges and
surface states can be directly perceived by the naked eye
on the macroscopic scale, and they offer a very accessible
way to estimate the fine-structure constant in a topologically
protected manner.

APPENDIX A: EFFECT OF IMPURITIES

We proceed to utilize a many-body formalism to investi-
gate the opacity of graphene under the influence of impurities.
To give an analytical result at low energy, we adopt the spin-
less linear Dirac model of the basis (cAk, cBk ) near the K point
as described by Eq. (6), and consider the potential scattering

V̂ = V

(
1 0
0 1

)
, (A1)

where V is the strength of impurity potential. We will focus on
only one spin species near the K valley, since all the four spin-
valley flavors give the same result. The corresponding vertex
for the � = {n, m} band is

Vkk′ = 〈�k|V̂ |�k′〉 = 〈nφ|V̂ |nφ′〉 = V

2
[1 + ei(φ′−φ)], (A2)

yielding the T matrix for the � band

T �
kk′ (ω) = V

2

[
1 + ei(φ′−φ)

] ∞∑
s=0

(
V

2

∫
k1dk1

2π/a2
G�(k1, ω)

)s

=
V
2 [1 + ei(φ′−φ)]

1 − V
2

∫ k1dk1
2π/a2 G�(k1, ω)

. (A3)

So we are led to the integration of the retarded Green’s func-
tion over the module of the momentum, assuming that it has a
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FIG. 3. Single-particle spectral function for the valence band An(k, ω) and the conduction band Am(k, ω) of disordered graphene, where
we fix the impurity density at nimp = 10% and plot the results at impurity potential (a) V = 0.28 eV and (b) V = 4.2 eV. The dashed line
labels the Dirac point of the pristine graphene. The result suggests a shift of energy spectrum toward positive energy caused by the impurities.

cutoff 0 < k1 < π/a,

∫ π/a

0

k1dk1

2π/a2
G�(k1, ω) =

∫ π/a

0

k1dk1

2π/a2

[
1

ω ± vk
− iπδ(ω ± vk)

]
, (A4)

where + is for the valence band � = n and − is for the conduction band � = m, which leads to the result

T n
kk′ (ω) =

V
2 [1 + ei(φ−φ′ )]

1 − Va2

4πv2

[
πv
a − ω ln

∣∣πv/a+ω

ω

∣∣] − iVa2ω
4v2 θ (0 > ω > −πv/a)

,

T m
kk′ (ω) =

V
2 [1 + ei(φ−φ′ )]

1 − Va2

4πv2

[−πv
a − ω ln

∣∣πv/a−ω

ω

∣∣] + iVa2ω
4v2 θ (0 < ω < πv/a)

, (A5)

where the θ function ensures the range of the frequency ω. The self-energy at momentum k is simply the T matrix at k = k′
multiplied by the density of the impurity ��(k, ω) = nimpT �

kk(ω), which can be used to calculate the spectral function by

A�(k, ω) = − 1

π
Im G�(k, ω) = − 1

π

Im��(k, ω)

[ω ± vk − Re��(k, ω)]2 + Im��(k, ω)2
. (A6)

After the spectral function is obtained, we further use the full Green’s function approximation to obtain the dressed quantum
metric spectral function g̃γ

μν (k, ω) for the spin-valley flavor γ by

g̃γ
μν (k, ω) = h̄gγ

μν

∫ ∞

−∞
dε An(k, ε)Am(k, ε + h̄ω)[ f (ε) − f (ε + h̄ω)], (A7)

where gγ
μν is the unperturbed quantum metric. This dressed

spectral function can then be used to calculate the opacity
using the formalism presented in Secs. II A and II B. The spec-
tral function A�(k, ω) shown in Fig. 3 exhibits a broadening of
the quasiparticle peak that gradually diminishes as k → 0 ow-
ing to the imaginary part of self-energy, and a positive energy
shift relative to the Dirac point of the pristine graphene due to
the real part roughly given by the density of impurities times
their strength nimpV . This positive energy shift strongly sup-
presses the optical conductivity in the low-frequency regime
h̄ω � 2nimpV , as argued in Sec. II C.

APPENDIX B: OPACITY OF A CHERN INSULATOR

We remark that the constant opacity πα seems to manifest
only if the unperturbed topological material is gapless. As a
counterexample, consider a 2D Chern insulator described by
adding a mass term Mσz into the linear Dirac model in Eq. (6),
which gaps out the Dirac cone. The resulting fidelity number

spectral function is

Gμμ(ω) =
[

1

16πω
+ M2

4π h̄2ω3

]

×
[

f

(
− h̄ω

2

)
− f

(
h̄ω

2

)]
ω�2|M|/h̄

, (B1)

which yields an opacity that depends on the band gap M and
is not a constant of frequency. Since the opacity depends on
the color of the light and is not directly proportional to the
Chern number, it is hard to argue that one can see the bulk
topological invariant by naked eye in this case.

APPENDIX C: POSSIBILITY OF EXTRACTING
FINE-STRUCTURE CONSTANT ACCURATELY

FROM THE OPACITY

Given all these complications in reality, a question that
naturally arises is whether it is possible to extract the
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fine-structure constant α up to very high precision from the
opacity. We anticipate that this is possible by measuring the
opacity at zero temperature in the low-frequency limit against
an unpolarized light source, where it has been pointed out
in Ref. [6] that within the tight-binding model, the opacity
should depend on frequency quadratically,

lim
{T,ω}→0

O(ω) = πα + βω2, (C1)

where β is a nonuniversal coefficient that depends on the
Fermi velocity of the material. Provided that the sample is
clean enough and no RSOC is present, α extracted by fitting
the experimental data by Eq. (C1) should be very accurate in
all the 2D Dirac semimetals mentioned above. The feasibil-
ity of this frequency-dependence measurement awaits to be
verified.
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