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Magnetic properties of moiré quantum dot arrays

Weronika Pasek ,1,* Michal Kupczynski ,2 and Pawel Potasz 1

1Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
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We investigate magnetic properties of quantum dot arrays of moiré triangular superlattices. Starting from
a reciprocal space model, we use the projection technique to obtain maximally localized Wannier functions
and determine generalized Hubbard model parameters. The many-body Hamiltonian is solved using the exact
diagonalization method as a function of the number of electrons in differently shaped quantum dots arrays.
Finite spin polarization is observed within a wide range of filling factors for small twist angles and sufficiently
strong interactions in most of the studied structures. The prospect for a magnetization controlled by applying a
displacement field is presented. In the vicinity of half-filling, signatures of Nagaoka ferromagnetism in moiré
materials are seen, which we demonstrate by comparing results with the corresponding on-site Hubbard model.
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I. INTRODUCTION

Superlattices were shown to be a promising new platform
for quantum simulators [1–3]. In particular, when transition
metal dichalcogenides (TMD) heterobilayer are stacked, a
difference in lattice constant or a twist between the layers
produces a moiré superlattice. The carriers at the top of the va-
lence band of one of the layers experience a periodic potential
formed by the other layer and many-body physics is expected
to be described by a triangular lattice Hubbard model [3].

Correlated insulating states at half-filling [4–7] with an-
tiferromagnetic Curie-Weiss behavior [4] and discrete series
of insulating states identified as the generalized Wigner crys-
tal states for partial fillings [6,8–10] have been observed. In
particular, Wigner crystal states at the ν = 1/3 and ν = 2/3
and the stripe phase at the ν = 1/2 filling were detected using
noninvasive scanning tunneling spectroscopy (STS) imaging
[11] and optical anisotropy measurement [12].

Recently, the importance of nonlocal interaction terms due
to the finite high of the modulation potential strength was
established [13,14]. The role of different interaction terms
in determining the ground-state properties of the systems
depends on a moiré potential depth, a moiré lattice constant
determined by a twist angle, background dielectric screening,
and a filling factor, and all of these parameters can be experi-
mentally controlled [4,8,9,12,14,15].

While infinite moiré systems have been intensively stud-
ied, the physics related to their finite-size fragments have
been considered only in a very limited context [16]. A sin-
gle moiré localization potential for small twist angles can
be approximately described by a harmonic oscillator [3,13],
similarly to confining potentials in semiconductor quantum
dots [17]. Quantum dots, also known as artificial atoms, are
nanoscopic objects that can be considered as building blocks
for artificial molecules. Different shape and size nanostruc-
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tures with tunable hopping amplitude and interaction strength
allow one to probe fermionic many-body physics [18–20]. Re-
cently a few semiconductor quantum dot array patterned using
the scanning tunneling microscope (STM)-based hydrogen
lithography technique has been demonstrated and proposed
as Fermi-Hubbard model simulator [21]. The field of artifi-
cial lattices rapidly develops and the formation of artificial
molecules and superlattices has been proposed and demon-
strated in many semiconductor materials [22–32]. Within
several advantages of solid-state physics nanostructures over
other platforms for quantum simulations such as ultracold
atoms in optical lattices [33–36] are easy access to transport
measurements, and dynamic control of the chemical potential
landscape and filling factors using gates.

In this paper, we study a type of artificial molecules created
from moiré triangular superlattices and we focus on analysis
of their magnetic properties. Quantum dot arrays of various
shapes are considered and filling-factor-dependent properties
are determined. While a triangular lattice at the half-filling
is not expected to reveal finite spin polarization within the
Hubbard model, we show that moiré many-body Hamilto-
nian lead to a more complex magnetic phase diagram with
a twist angle and interaction strength dependence. We com-
plement our studies by analyzing the exchange interaction
of an effective spin model, which is also valid for infinite
systems. Close to half-filling we investigate a contribution to
magnetization coming from itinerant electrons and discuss the
potential observation of Nagaoka ferromagnetism. For fillings
away from the half-filling, shape-dependent charge orders are
identified, in particular, Wigner molecules for triangular shape
structures. We focus on finite-size fragments of WSe2/WS2

heterostructure but our conclusions are valid for other hetero-
bilayer TMDs.

II. MODEL AND METHODS

We start from a continuum model to obtain Bloch
states of moiré bands of holes (see Appendix). As shown
in Refs. [3,37] the topmost moiré miniband is separated
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TABLE I. Generalized Hubbard model parameters for different
twist angles θ . All parameters are in meV and interaction parameters
for ε = 1.

θ t1 t2 t3 U0 U1 X1 A1

2.5 0.653 –0.024 –0.0147 1086.925 158.632 0.308 –3.301
3.5 3.341 –0.389 –0.217 1143.612 229.822 4.057 –4.135
5.0 10.351 –2.066 –1.032 1232.254 336.887 17.387 10.006

from other bands by the energy gap justifying the restric-
tion of the Hilbert space to only that band. We use the
projection technique to obtain corresponding exponentially
localized Wannier functions [38–40]. Next, we calculate real-
space Coulomb matrix elements for a generalized Hubbard
model. We include on-site and all direct Coulomb interac-
tions, and nonlocal interaction terms—exchange, and assisted
hopping—because they can play a crucial role in determining
many-body properties of the ground states [13]. We will con-
sider finite-size fragments of moiré superlattices with a given
number of lattice sites. Hamiltonian for these moiré quantum
dots arrays is written as

H = −
3∑

n=1

tn
∑

〈i, j〉n,σ

a†
i,σ a j,σ + U0

∑
i

ni,↓ni,↑

− X1

∑
〈i, j〉,σ

ni,σ n j,σ + A1

∑
〈i, j〉,σ

(ni,−σ + n j,−σ )a†
i,σ a j,σ

+
3∑

n=1

Un

∑
〈i, j〉n,σ,σ ′

ni,σ n j,σ ′ , (1)

where a†
i,σ (ai,σ ) is a fermionic operator, which creates (anni-

hilates) electron with spin σ on the lattice site i, 〈i, j〉n depicts
a pair of nth-nearest-neighbor sites, and i > j to avoid double
counting in summations. Model parameters are tn hopping,
U0 on-site interaction, Un direct interaction, nearest-neighbor
X1 direct exchange, and A1 assisted hopping. It is expected
that the effective dielectric constant ε determining the inter-
action strength lies within a range 10 < ε < 20. Thus, we
mainly investigate the properties of finite-size systems for two
values determining these limits. This estimation is based on
the dielectric constant of the electrostatic environment when
hexagonal boron nitride is used as the substrate, ε ≈ 6 [41]
and additional screening by conducting gates and virtual tran-
sitions between the considered energy band and energetically
remote moiré energy bands [13].

Calculated Hamiltonian parameters for three different twist
angles are shown in Table I in the Appendix. Hamiltonian
given by Eq. (1) is diagonalized in a basis of configurations
corresponding to all possible distributions of particles on
lattice sites. The ground state is characterized by its total
spin S.

III. MAGNETIC PHASE DIAGRAM FOR N = 9 SITES
STRUCTURE

We study the magnetic properties of quantum dot arrays of
different shapes shown in Fig. 1. Our representative example

FIG. 1. The effective moiré potential forms a triangular lattice
with lattice constant aM , which depends on the value of the twist
angle. Five analyzed structures consist of, in the upper row: N = 7
(left), N = 9 (middle), N = 12 (right), and in the lower row: N = 10
(left) and N = 12 (right) moiré quantum dots. White dots indicate
sites forming a given structure.

is the structure with N = 9 quantum dots shown in Fig. 1
in the middle of the top row. The total spin S of the ground
state is determined in a wide range of the twist angles, 2.0 �
θ � 5.0, and filling factors 0 � ν � 2, where ν = Np/N with
Np the number of particles. A color map of the total spin
is shown in Fig. 2(a) for the effective dielectric constant
ε = 10 and in Fig. 2(b) for ε = 20. For ε = 10 maximal spin
polarization appears for twist angles below θ = 4.0 within a
wide range of filling factors. The magnetic phase diagram is
asymmetric with respect to half-filling, (seen clearly in the
vicinity of smaller filling factors), which reveals the fact that
a triangular lattice is not bipartite (nonzero value of hopping t2
and t3 is also essential here). A mechanism of vanishing spin
polarization for larger twist angles is related to an increase
in single-particle energy levels separations, which are too
large compared to effective exchange interaction. The phase
diagram for weaker interaction strength, ε = 20, shown in
Fig. 2(b), in general does not reveal spin polarization. The en-

FIG. 2. The magnetic phase diagram of N = 9 moiré quantum
dot array. Total spin of the ground state as a function of the twist
angle θ and filling factor ν for fixed values of the dielectric constant
(a) ε = 10 and (b) ε = 20.
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ergy level separations are too large here compared to Coulomb
energy scales and particles doubly occupy the lowest energy
states.

A. Filling factor ν = 1

A half-filled triangular lattice is expected to have a three
sublattice antiferromagnetic order within the on-site Hubbard
model and a limit of strong interaction [42–47]. A finite mag-
netization noticeable in Fig. 2(a) for ε = 10 at the half-filling
is related to the nonzero value of direct exchange interaction
due to overlap of neighboring Wannier functions, as a conse-
quence of finite height of moiré localization potentials [13].
This direct exchange interaction has to be sufficiently large to
overcome an energetic cost of the occupation of higher energy
states, but additionally, competes with an antiferromagnetic
superexchange interaction. The physics at half-filling can be
explained using an effective spin model for sufficiently strong
interaction, as we will discuss below.

1. Exchange J of an effective spin model

The spectrum of the Hubbard model in a limit of strong
interaction separates into two bands, lower and upper Hubbard
bands. The lower Hubbard band consists of 2N singly occu-
pied quantum dots, while the upper Hubbard band has some
doubly occupied quantum dots. Because of that separation
between the two bands is proportional to on-site interaction
U . Projecting Hamiltonian onto the lower Hubbard band gives
effective spin model, the Heisenberg model in this case, with
effective exchange interaction J derived for a generalized
Hubbard model in Ref. [13],

J = − 2X1 + 4t̃1
2

U0 − U1
+ 8t̃1

4

(U0 − U1)3

(
U0 − U1

2U0 − 3U1 + U2

+ 4(U0 − U1)

2U0 − U1 − U2
+ 3(U0 − U1)

U0 − U2

+ 2(U0 − U1)

U0 − U3
− 11

)
, (2)

where t̃1 = t1 − A1. In Fig. 3(a) we show J for twist angles be-
low θ = 4.0. A negative value of J indicates a ferromagnetic
state and a positive one indicates an antiferromagnetic order.
A sign of J agrees with magnetic phase diagrams at half-filling
ν = 1 for moiré quantum dot arrays shown in Fig. 2(a) for
ε = 10. For ε = 20, no finite spin polarization is expected,
J is always positive, and this agrees with results shown in
Fig. 2(b).

While according to the behavior of J , spin polarization
should sustain for larger angles θ > 3.5, the effective spin
model is not valid any longer in that regime. This is shown in
Figs. 3(b) and 3(c), where we analyze the energy gap between
the upper and lower Hubbard bands. The lower Hubbard band
consists of 2N = 512 spin states (N = 9), indicated by blue
circles in Figs. 3(b) and 3(c). The gap to higher energetic
states from the upper Hubbard band (red triangles) is visible
for small twist angles. The gap closes when the twist angle
increases, vanishing around θ = 4.0 for ε = 10, and θ = 3.5
for ε = 20. These are roughly twist angles, where a spin
model approximation breaks down. We can relate these es-

FIG. 3. (a) The effective exchange interaction J [Eq. (2)] for
ε = 10 and ε = 20 as a function of the twist angle. [(b),(c)] The
energy spectrum of many-body Hamiltonian for half-filling, ν = 1,
measured from the ground state �E = Ei − E0 for N = 9 moiré
quantum dot array as a function of a twist angle for (b) ε = 10 and
(c) ε = 20. Blue color marks the first 29 = 512 states of the lower
Hubbard band. A finite-energy gap between lower and upper Hub-
bard bands approximately indicates regimes where the description
of low energy physics using an effective spin model is justified. A
continuous line corresponds to expression t1+A

U0−U1
with a scale on the

right. (d) A variation from a single occupation of each quantum dot
as a function of a twist angle.

timations to the analysis of t
U ratio from Ref. [48] with a spin

model applicability estimated for t
U < 0.15 for the Hubbard

model. In our case, the energy gap between upper and lower
Hubbard bands vanishes already for t1+A

U0−U1
� 0.07 for ε =

10 [Fig. 3(b)], and for t1+A
U0−U1

� 0.05 for ε = 20 [Fig. 3(c)],
while the mentioned analysis does not take into account direct
exchange X interaction. The final estimation of spin model
approximation can be done by looking at quantum dot occu-
pations. In the spin model, each site is occupied by exactly one
particle. A variation from a single occupation is defined as

Varρ = 1

N

N∑
i

∣∣ρE
i − 1

∣∣, (3)

where ρE
i is the electron density at the ith lattice site, and

Varρ should be close to zero for spin model regime. Varρ as a
function of a twist angle is shown in Fig. 3(d) and conclusions
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FIG. 4. The ground-state charge (the first and the third row) and
spin (the second and the fourth row) densities for the half-filling, ν =
1, for N = 9 moiré quantum dot array. The results for twist angle θ =
3.0 (left column), θ = 4.0 (middle column), θ = 5.0 (right column)
and dielectric constant ε = 10 (top two rows) and ε = 20 (bottom
two rows).

agree with that from the energy gap between upper and lower
Hubbard band estimations, assuming a threshold at Varρ =
0.01 for a critical variation of single occupation. While the
results shown in Figs. 3(b) and 3(d) regard the structure with
N = 9 quantum dots, the conclusion drawn is expected to be
valid for arbitrary systems, including periodic structures.

2. Charge and spin orders

We investigate the charge and spin densities at the half-
filling for three different twist angles and both values of the
dielectric constant, shown in Fig. 4. The top two rows show
the charge and spin densities, distributed over quantum dots
in the case of strong interactions, ε = 10, and the bottom two
rows to a weaker interaction regime, ε = 20. For θ = 3.0 and
ε = 10, spin and charge densities are uniform, as expected
in a regime of the spin model and the fully spin-polarized
ground state with S = Smax. With a larger twist angle, for
both dielectric constants, the occupation of a central quantum
dot gets smaller compared to eight quantum dots around it,
which is related to the presence of repulsive direct Coulomb
interaction in Hamiltonian given by Eq. (1). The energy cost
needed to populate the central dot is the highest because of
interactions with electron in the six nearest-neighbor dots.
One can expect that when charging the system, electrons first
occupy external quantum dots and at the end the central dot.
For θ = 5.0, the central dot is almost empty and the highest

FIG. 5. The dependence of the energy gap between the ground
state and the first excited state and magnetization on the depth of
the effective moiré potential Vm, which can be tuned by an external
electric field perpendicular to the structure. Results obtained for the
half-filling ν = 1, and parameters θ = 3.0, ε = 10 for N = 9 moiré
quantum dot array. A dashed line indicated a transition between the
ground-state total spin.

electron density is at the two quantum dots that are farthest
away. The charge distribution in this case is similar for both
values of the dielectric constant.

In the case of weaker interactions ε = 20, the spin den-
sity for θ = 3.0 with the ground-states total spin S = Smin is
not uniform. Six quantum dots around the central one have
positive spin density while the central dot and the two far-
thest away dots have negative spin densities. This spin order
changes when a twist angle is increased to θ = 4.0. Now, spin
densities resemble a stripe phase with uniform spin densities
along a shorter axis of the quantum dot array with stripes of
positive and negative spin densities. In general, spin densities
reveal the twofold rotational symmetry of the quantum dot
array. Three sublattices’ antiferromagnetic phase expected for
an infinite triangular lattice can not be seen here because this
type of the quantum dot array has too strong finite-size effects.

3. Magnetization controlled by a displacement field

A displacement field has been used to control the moiré
potential depth Vm and induce a metal-insulator transition
[15,49]. In Fig. 5 we show that it can be used to control
the magnetic properties of quantum dot arrays at the half-
filling. The ground state is a maximally spin-polarized state
for parameters ν = 1, θ = 3.0, ε = 10, and Vm = 25 meV
without a displacement field. Applying a displacement field
can change the depth of a moiré localization potential Vm and
effectively change the bandwidth. The energy gap between
the ground state with maximal total spin increases its energy
when Vm is increased, while the excited states with lower total
spin decrease. After reaching a critical value, the total spin is
lowered. The transition between the ground-state total spin is
indicated in Fig. 5 by a dashed line.

B. Vicinity of half-filling, ν = 1, 1±

As we indicated previously, the ground state is maximally
spin polarized in the vicinity of the half-filling ν = 1, 1± for
ε = 10 and twist angles θ < 4.0 (Fig. 2), where 1± labels the
half-filling with extra ± one particle. In Fig. 6 we analyze the
total spin and the energy gap between the ground state and
the first excited state as a function of the interaction strength
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FIG. 6. The dependence of the total spin and energy gap on a
dielectric constant near half-filling for two values of the twist angle,
[(a),(c)] θ = 2.5 and [(b),(d)] θ = 3.5 for N = 9 moiré quantum dot
array. A transition to a spin-polarized phase is seen around ε ≈ 10
for both angles.

ε for fillings ν = 1, 1± and for the twist angles θ = 2.5 and
θ = 3.5. A transition from the ground state with total spin
S = Smin to a state with total spin S = Smax occurs near ε−1 =
0.08 for both twist angle and for all three fillings considered
here. Above this critical value of interaction strength, effective
exchange interaction dominates and the polarization of spins
is favored. Figures 6(c) and 6(d) show the evolution of corre-
sponding energy gaps between the maximally spin-polarized
ground state and the first excited states with a lower total spin.
After the transition to a magnetic phase, the gap is the largest
for filling ν = 1+. We relate it to the kinetic mechanism of
spin polarization within the Hubbard model proposed by Na-
gaoka [50], which we describe below.

C. Hubbard model and Nagaoka ferromagnetism for filling
factor ν = 1+

We consider the on-site Hubbard model [51] given by the
Hamiltonian

H = −t1
∑

〈i, j〉,σ
a†

i,σ a j,σ + U0

∑
i

ni,↓ni,↑ (4)

with parameters U0 and t1 taken from Table I for twist angle
θ = 2.5 and all other terms are neglected. This approximation
can be justified by noting that nearest-neighbor hopping t1 and
on-site interaction U0 are significantly larger than other terms
for this particular twist angle. Figure 7 shows the total spin of
the ground state in panel (a) and the energy gap between the
ground state and the first excited state in panel (c) as a function
of the filling factor and for interaction strength ε = 10. There
is a range of fillings 1 < ν < 1.5 with finite spin polarization.
Values of energy gaps suggest stronger stability of magnetic
phases closer to ν = 1.5.

In particular cases, when one electron or one hole is added
to the half-filled system, ν = 1, a transition to a maximally
spin-polarized state is expected within the Hubbard model in a

FIG. 7. Results obtained for the Hubbard model, Eq. (4) for N =
9 structure. (a) Total spin of the ground state and (c) the energy gap
as functions of the filling factor for ε = 10 and θ = 2.5. (b) Total
spin and (d) the energy gap for fillings ν = 1−, 1, 1+ and θ = 2.5 as
a function of interaction strength.

limit of infinite U0 interaction due to Nagaoka ferromagnetism
[50,52]. Whether on which side of the half-filling it occurs, for
ν = 1− or ν = 1+, depends on a lattice type. For a triangular
lattice, Nagaoka ferromagnetism is expected for the Hubbard
model for ν = 1+ because a ferromagnetic state was shown
to be unstable for ν = 1− concerning a Gutzwiller single spin
flip [53,54]. Indeed, we see it in Hubbard model results, which
is the reason for the increased energy gap in moiré quantum
dot arrays for this filling shown in Fig. 6. We analyze the
vicinity of half-filling, ν = 1, 1±, when interaction strength
is varied, showing in Fig. 7(b) the total spin and in Fig. 7(d)
the energy gap between the ground state and the first excited
state. A transition to the maximal spin-polarized ground state
occurs only for ν = 1+ for ε−1 ≈ 0.05. The energy gap in-
creases with the increase of interactions strength but saturates
at a constant value already around ε−1 ≈ 0.15. The kinetic
mechanism responsible for finite spin polarization for ν = 1+
within the Hubbard model contributes to spin polarization at
this filling within the generalized Hubbard model, making it
more stable compared to other fillings.

IV. SHAPE-DEPENDENT MAGNETIZATION IN MOIRÉ
QUANTUM DOT ARRAYS

In this section, we extend the previous analysis of magnetic
properties to structures with various shapes, consisting of
N = 7, 9, 10, 12 moiré quantum dots, shown in Fig. 1. The
total spin of the ground state as a function of the filling factor
ν for ε = 10 and two twist angles, θ = 2.5 and θ = 3.5, is
presented in Fig. 8. We measure it in relation to its maximal
value at the half-filling, Smax = N

2 . In general, a tendency for
spin polarization is stronger for a smaller twist angle. For this
twist angle, all structures have a maximal total spin at half-
filling, ν = 1, and for the filling with one extra electron added,
ν = 1+, where the Nagaoka mechanism of spin polarization
plays a role. Finite spin polarization for half-filling, small
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FIG. 8. The comparison of magnetic phase diagrams for moiré
quantum dot arrays with (a) N = 7, (b) N = 9, (d) N = 10, and
[(c),(e)] N = 12. Insets in the upper right corners show the structure.
The value of the dielectric constant is fixed to ε = 10.

twist angles, and sufficiently strong interaction seems to be
independent of the shape and size of moiré quantum dots and
agrees with expectations at the thermodynamic limit [from
the sign of J , see Fig. 3(a)]. Additionally, in all structures,
at least partial spin polarization occurs for filling factors in
a range 1 < ν < 1.5, while below ν = 1 it is a structure de-
pendent; for example, for N = 12 triangular moiré quantum
dot array spin polarization oscillates between a maximal and
minimal value [Fig. 8(e)]. When the twist angle is increased
to θ = 3.5, a tendency for spin polarization decreases, appear-
ing occasionally for some particular fillings. We now focus
on symmetric (triangular) moiré quantum dots, where shape
effects are stronger, revealing a geometry-related charge order.

A. Triangular Wigner molecules

The shape of moiré quantum dot arrays determines
their charge distribution when the filling factor is far from

(a) (b)

(c) (d)

FIG. 9. Charge [(a),(c)], and spin [(b),(d)] densities of the ground
state of triangular moiré quantum dot arrays with N = 10 for ν = 1.3
(Np = 13), (a) and (b); and N = 12 for ν = 1.5 (Np = 18), (c) and
(d). The twist angle and the dielectric constant are fixed to θ = 3.5
and ε = 10.

half-filling. Due to direct Coulomb interaction present in
Hamiltonian given by Eq. (1), the population of quantum
dots with the largest separation is energetically favorable for
such fillings. This leads to the observation of accumulation
of charges in the corners of triangular moiré quantum dot,
formation of Wigner molecules. This situation is similar to
previously studied triangular graphene quantum dots [55].

For the N = 10 structure, shown on the left in a lower
row in Fig. 1, Wigner molecules characterized by maxi-
mized charge density at three corners, occur for the system
with Np = 3, 7, 13, 17 particles. Two middle particle num-
bers correspond to ν = 0.7 and ν = 1.3, and equivalently, to
removal/addition of Np = 3 particles from/to the charge neu-
tral system. In Figs. 9(a) and 9(b) we show the charge and spin
densities of a representative example for ν = 1.3. Three cor-
ners are doubly occupied, and the rest of the moiré quantum
dots are singly populated. The total spin of the ground state is
S = 2.5 with a spin-down particle in the center and six spin-up
particles around it. For the second triangular shape structure
with N = 12, shown on the right in a lower row in Fig. 1, we
observe similar behavior after adding six particles to the half-
filling, and symmetrically after adding six holes, Np = 18 and
Np = 6, respectively, because here three corners are formed
from two quantum dots. Electronic and spin densities of the
former case are shown in Figs. 9(c) and 9(d). Total spin has
minimal value and spin density is uniformly distributed.

We notice here that Wigner molecules are observed regard-
less of the twist angle in both triangular structures, while their
magnetic properties are twist angle dependent. For example,
for N = 10 structure, the ground-state total spin for θ = 2.5
and ν = 1.3 is S = 3.5 with all singly occupied quantum
dots fully spin polarized, while for θ = 3.5 the ground-state
total spin is S = 2.5, with the spin of the center quantum dot
flipped, as shown in Fig. 9(b). A similar situation occurs for
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N = 12 and ν = 1.5, with a change of spin polarization from
maximal for θ = 2.5 to minimal for θ = 3.5.

V. COMPARISON WITH PERIODIC SYSTEMS

At half-filling, moiré quantum dot arrays have similar
magnetic properties to periodic systems. A metal-insulator
transition and a transition between antiferromagnetic and fer-
romagnetic order in infinite moiré superlattices have been
predicted by one of us [13,37]. In agreement with these results
is an observation of finite spin polarization in all moiré quan-
tum dot arrays for strong interaction (ε = 10) and small twist
angle (θ = 2.5) and no spin polarization when an interaction
strength decreases or a twist angle increases. In the latter case,
the systems studied are too small to identify the expected
long-range 120o-Néel antiferromagnetically ordered state.
Farther from half-filling, long-range direct interaction plays a
major role in determining the charge order. In infinite systems,
experimental and theoretical analysis have indicated many
correlated insulating states away from the half-filling for ν =
1/3, 1/2, 2/3, 3/4, and recognized them as general Wigner
crystal phases [8–10,56,57]. Corresponding magnetic orders
for filling ν = 1/3 and ν = 2/3 have been experimentally de-
termined with proven antiferromagnetic order in the later one
and no conclusive order in the former due to too small energy
scale [14]. The magnetic honeycomb pattern found at ν = 2/3
is in agreement with recent theoretical studies by one of us
[58] with an additionally anticipated transition between an-
tiferromagnetic and ferromagnetic orders. While, the charge
orders for these partial fillings observed in periodic systems
can not be expected in moiré quantum dot arrays because of
geometric restrictions, here instead Wigner molecules are ob-
served, and a transition between finite and no spin polarization
with an increase of the twist angle is quite common for many
fillings and in most of the structures, see Fig. 8.

VI. CONCLUSIONS

We investigated the magnetic properties of various moiré
quantum dot arrays and concentrate on a detailed analysis of a
structure with N = 9 sites. We show that the structures reveal
finite spin polarization for small twist angles and sufficiently
strong interaction strength in the vicinity of half-filling and
mainly above it. The origin of magnetization is twofold. The
main factor is direct exchange interaction due to the nonzero
overlap of Wannier functions from neighboring moiré lattice
sites. This leads to maximal spin polarization at half-filling
that otherwise would not be expected on a triangular lattice.
Additionally, there is a contribution to magnetization due to
the mechanism proposed by Nagaoka as the effect of construc-
tive interference between different paths of electrons moving
in a spin-polarized background. This can lead to more stable
magnetization away from half-filling (above it) in comparison
to the half-filling case, which we observe in all considered
structures. Nagaoka ferromagnetism is expected to vanish in
a thermodynamic limit because the energy gap between the
spin-polarized ground state and the excited states vanishes.
In moiré quantum dot arrays this energy gap should still be
finite, and, as we show, is filling-factor dependent. Whether
magnetization at half-filling or away from it is more stable

depends on which of these two factors dominates. We have
noticed that the shape of moiré quantum dot arrays determines
the charge order for fillings away from charge neutrality, the
magnetic properties are mainly determined by the twist angle.
Appropriate choice of materials forming TMD heterostruc-
ture, size and shape of moiré quantum dot arrays, and the
twist angle can allow designing magnetic nanostructures with
a filling-factor-dependent magnetization.
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APPENDIX: CONTINUUM MODEL AND WANNIER
FUNCTIONS FROM PROJECTION TECHNIQUE

The valley-projected continuum Hamiltonian for TMD
moiré heterobilayers is written as [3]

H = − h̄2

2m∗ k2 + �(r), (A1)

where m∗ = 0.35m0 [3,13] is the effective mass of charge
carriers in the valence band of the active layer and a modula-
tion potential �(r) = 2Vm

∑
j=1,3,5 cos(b j · r + φ) with b j =

4π/
√

3aM ( cos(π j/3), sin(π j/3)), belonging to the first shell
of reciprocal lattice vectors with Vm = 25 meV and φ =
−94◦, which determine the strength of the potential and the
location of its minima, respectively. The Hamiltonian given
by Eq. (A1) is diagonalized in a plane-wave basis giving ener-
gies En and eigenstates |
n(k)〉. Bloch |
(k)〉 of the topmost
valence band (we omit the band index) are

|
(k)〉 =
∑

G

zk+Gei(k+G)r, (A2)

where zk+G are expansion coefficients.
We use a projection technique [38–40] to obtain Wannier

functions of holes localized on moiré superlattice sites. We
project trial wavefunction |ti(r)〉, with corresponding Fourier
transform |ti(k)〉 onto Bloch function |
(k)〉 of topmost
valence band of moiré band structure. One has

|γi(k)〉 = P(k)|ti(k)〉 = |
(k)〉〈
(k)|ti(k)〉
with overlap

S = 〈ti(k)|P(k)|ti(k)〉 = 〈ti(k)|
(k)〉〈
(k)|ti(k)〉
= |〈
(k)|ti(k)〉|2

and orthogonal new quasi-Bloch states are

|
̃(k)〉 = (S−1/2)|γ (k)〉 = |
(k)〉 〈
(k)|t (k)〉
|〈
(k)|t (k)〉|

= |
(k)〉e−iθt (k), (A3)
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which means that the projection technique is equivalent to
appropriate θt (k) phase fixing of Bloch states in order to have
corresponding exponentially localized Wannier functions on
lattice site i. We choose trial state |ti〉 as a delta function
(Gaussian-like trial wavefunction gives similar results) local-
ized at a given site of a crystal lattice,

|ti(r)〉 = δ(r − τi )

where τi determines a position of a lattice site. Fourier trans-
form of it is

|ti(k)〉 = 1√
NG

∑
G

ei(k+G)(r−τi )

where NG is a number of reciprocal basis vectors G. One has
an overlap with the Bloch state

〈
(k)|t (k)〉 = 1√
NG

∑
G,G′

z∗
k+G

∫
dre−i(k+G′ )rei(k+G)(r−τi )

= Vcell√
NG

∑
G

z∗
k+Ge−i(k+G)τi ,

where Vcell is the unit-cell volume. After the above procedure
of fixing the phase of the topmost valence band, eigenstates
corresponding localized Wannier functions can be obtained

|R〉 = 1√
N

∑
k

e−i k·R|
̃(k)〉, (A4)

where R are Wannier center positions on a moiré triangular
lattice and N is the number of moiré unit cells. Four-center

real-space Coulomb matrix elements are

〈Ri, R j |V |Rk, Rl〉 = 1

N2

∑
ki,k j
kk ,kl

ei(ki ·Ri+k j ·R j−kk ·Rk−kl ·Rl )

× 〈
̃(ki ), 
̃(k j )|V |
̃(kk ), 
̃(kl )〉 ,

(A5)

with V = e2

4πε0ε|r1−r2| , with e as electric charge and ε0 is the
vacuum permittivity, ri is position of ith particle, and two-
center integrals are: U0 (i = j = k = l), U1 (i = l , j = k and
i, j are nearest neighbors), X1 (i = k, j = l and i, j are nearest
neighbors), A (i = j = k, and i, l are nearest neighbors). We
also take Un = U1/rn, where rn is a distance to nth-nearest
neighbors, assuming r1 = 1 for nearest neighbors. We per-
form calculations of Coulomb elements in reciprocal space
using the Bloch state defined by Eq. (A3). Tight-binding hop-
ping integrals are given by

tn = 1

N

∑
k

e−ik(Ri−R j )Ek, (A6)

where n = 1 for (i, j) nearest neighbors and n = 2 for (i, j)
next-nearest neighbors, and n = 3 for (i, j) next-next-nearest
neighbors. To confirm the validity of our real-space parame-
ters we have compared exact diagonalization results starting
from a continuum model and with real space parameters ob-
taining satisfactory agreement for a periodic system with N =
9 unit cells (3 × 3 momentum space mesh) and Nel = 9 parti-
cles. Generalized Hubbard model parameters are presented in
Table I.
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