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We numerically study the two-dimensional coherent spectrum (2DCS) of the Tomonaga-Luttinger liquid
hosted by the S = 1

2 XY spin chain. The 2DCS characterizes the system’s third-order nonlinear magnetic
response triggered by three pulses, separated successively by the delay time and the waiting time. It exhibits
a photon echo signal resulting from a lensing process of the fractional excitations: Two photon-excited fractional
excitations, initially moving apart, reverse their directions of motion and annihilate each other. In the XY
chain, the nonlinearity in the dispersion relation of the Jordan-Wigner fermions leads to the dispersion of the
fractional excitation wave packets and thereby suppresses lensing. The magnitude of the echo signal decreases
exponentially with increasing delay time. The decay rate scales with the temperature T as T n at low temperature,
where n is the leading order of the Jordan-Wigner fermion dispersion, and as T at high temperature. By contrast,
as the waiting time increases, the magnitude of the echo signal saturates, reflecting the integrability of the system.
Our results illustrate the effectiveness of the 2DCS in detecting subtle dynamical properties of optical excitations
in spin chains.
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I. INTRODUCTION

The latest emergence of terahertz two-dimensional coher-
ent spectroscopy (THz 2DCS) offers a new lens on the rich
dynamical phenomena in condensed matter [1]. Being a time
domain (nonlinear optical spectroscopy), the 2DCS triggers
quantum interference processes of the optical excitations with
successive phase coherent pulses, thereby accessing informa-
tion that is usually unavailable to conventional, linear optical
spectroscopies [2,3]. Operating in the meV energy window,
THz 2DCS is well positioned for studying collective excita-
tions in quantum materials. Experimentally, it has revealed
a host of interesting phenomena in quantum wells [1], anti-
ferromagnets [4], electronic glasses [5], and superconductors
[6,7]. Meanwhile, theorists have predicted its potential utility
for a wide range of systems from quantum spin liquids to
topological insulators [8–19].

A prominent feature of the 2DCS is its ability to measure
the photon echo [20]. Photon echo is a third-order nonlinear
optical response initiated by three optical pulses, separated
successively on the time axis by the delay time τ and the
waiting time tw [Fig. 1(a)]. After the arrival of the last pulse,
the echo appears as a sudden rise in the nonlinear response at a
later time t ≈ τ . Closely analogous to the spin echo [21] in nu-
clear magnetic resonance, the photon echo is a sensitive probe
for dissipation. Taking few-body systems as an example, the
fading of the echo with increasing delay time τ is a direct
manifestation of decoherence, whereas the echo’s falling off
with increasing waiting time tw reflects depopulation.
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This unique property of photon echoes is traced back to
the quantum interference process that produces the echo. In
the case of few-body systems, the photon echo arises from
an evolution trajectory of the density matrix (known as the
Liouville pathway) that executes an effective time reversal
operation. Such an operation erases all effects from the unitary
evolution and, consequently, exposes the dissipation [2,3].

The profound connection between the photon echo and
the quantum interference is amply demonstrated, as well as
enriched, by examining many-body systems. In a previous
analysis, we considered a Tomonaga-Luttinger liquid (TLL)
[11] hosted by quantum spin chains. We found that its non-
linear magnetic response features a photon echo similar to
few-body systems. However, the physical mechanism respon-
sible for the echo is quite different. In this system, the photon
echo arises from lensing [Fig. 1(b)] [11], a space-time in-
terference process of the fractional excitations in TLLs such
as spinons and Laughlin quasiparticles [22]. The first optical
pulse creates a pair of fractional excitations that are moving
apart. Under the action of the second and third pulses, they re-
verse their directions of motion and head toward each other. In
the last stage, the annihilation of the two excitations produces
the echo.

Akin to the interference of waves, the lensing requires
the coherent propagation of the wave packets of fractional
excitations. Based on the bosonization technique, the previous
analysis approximated the TLL as a system of noninteracting
bosons with a linear dispersion relation. In this highly ide-
alized situation, the photon echo is found to be independent
of both the delay time τ and the waiting time tw; that is, the
echo does not fade away. It is expected that dissipation and/or
dispersion of the fractional excitations, which must occur in
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FIG. 1. (a) Photon echo is a third-order nonlinear optical phe-
nomenon triggered by three successive pulses, separated by the pulse
delay time τ and the waiting time tw . The echo (gold solid line)
is the sudden rise of the response at a later time t ≈ τ . (b) The
lensing of fractional excitations in the Tomonaga-Luttinger liquid
hosted by spin chains. In the case of the ferromagnetic XY chain
(J > 0) in Eq. (1), the first pulse creates a pair of spinons (wave
packets in green). In the second stage, the second and third pulses
convert them to antispinons (wave packets in red) and reverse their
directions of motion. Finally, the two antispinons annihilate and emit
an echo. In the case of the antiferromagnetic chain (J < 0), the
fractional excitations involved in the lensing process are a spinon and
a Laughlin quasiparticle. Owing to their dispersion, the wave packets
broaden as they travel through the system, and the second and third
pulses are no longer effective in refocusing the excitations’ world
lines. As a result, the lensing is suppressed.

any realistic, microscopic spin chain, suppresses lensing and,
consequently, the photon echo. However, these effects have
not been subjected to quantitative analysis so far.

In this work, we make an attempt to solve this prob-
lem by studying the photon echo from an S = 1

2 spin XY
chain [23], which hosts a TLL with the Luttinger parameter
K = 1. Being equivalent to an ensemble of noninteracting
Jordan-Wigner fermions [24], this model possesses no in-
herent dissipation. However, owing to the nonlinearity in
the dispersion relation of the Jordan-Wigner fermions, wave
packets of fractional excitations disperse as they propagate
through the TLL. Meanwhile, the integrability of this model
gives access to its long-time dynamics. Therefore, the S = 1

2
spin XY chain is an ideal platform for investigating the impact
of dispersion on lensing and photon echo.

Through numerical calculation, we verify that the disper-
sion of the fractional excitations does lead to the decay of
the photon echo. On the one hand, the magnitude of the echo
signal decreases exponentially with increasing delay time τ .
When the temperature T is much lower than the exchange

energy J , the decay constant is proportional to T n, where n
is the order of the Jordan-Wigner fermion dispersion, namely,
n = 3 for the XY chain proper and n = 2 in the presence of a
longitudinal magnetic field. When T � J , the decay constant
scales linearly with T . On the other hand, as this model pos-
sesses no inherent dissipation, the echo signal saturates to a
finite value instead of fading away as the waiting time tw →
∞. These results corroborate the physical picture presented
in the previous work and illustrate the 2DCS’s capability of
detecting subtle dynamical properties of optical excitations in
the context of spin chains.

The rest of this work is organized as follows. In Sec. II, we
define the problem. After describing the numerical method in
Sec. III, we present our results in Sec. IV. Finally, we discuss
a few open problems in Sec. V.

II. PROBLEM SETUP

The Hamiltonian for the S = 1
2 XY spin chain is given by

[23]

H = −J

2

N−1∑
j=1

(S+
j S−

j+1 + H.c.) − B
N∑

j=1

Sz
j . (1)

Here, S±,z
j are S = 1

2 spin operators on site j. We employ
the open boundary condition. J is the exchange constant,
which is chosen to be positive (ferromagnetic) without loss
of generality. The antiferromagnetic (J < 0) case is related to
the present case by a staggered gauge transformation, namely,
rotating the spins on even sites by π with respect to the z axis.
B is a longitudinal field.

The system hosts a TLL when B < J . In this work, we con-
sider the regime B � J . The highly magnetized TLL (B � J)
and the polarized phase (B > J) are beyond the scope of this
work because these regimes have very different physics.

The quantities of central interest are the third-order nonlin-
ear magnetic susceptibilities χ

(3)
+−−+ and χ

(3)
−++−. Both exhibit

the photon echo described in Sec. I as per the analysis in [11].
As these two susceptibilities show very similar behaviors, we
present only results concerning χ

(3)
+−−+ for brevity. To set the

stage, we define the following response function through the
Kubo formula:

χ̃
(3)
+−−+(3, 2, 1, 0)

= i3�(t1)�(t2 − t1)�(t3 − t2)

× 〈[
S+

j3
(t3),

[
S−

j2
(t2),

[
S−

j1
(t1), S+

N/2+1(0)
]]]〉

. (2)

Here, 0–3 are shorthand notation for space-time coordinates
(t0, j0)–(t3, j3). We have utilized the space and time trans-
lation symmetry to shift t0 to zero and x0 to the center of
the chain, N/2 + 1. Since the wavelength of the THz electro-
magnetic wave is much larger than the relevant microscopic
length scales, we assume the spins couple to the THz field
homogeneously. Therefore, the optical response of the system
is obtained by summing over the lattice sites. It is convenient
to define

χ
(3)
+−−+(q|t, tw, τ ) =

∑
j1

∑
j2

∑
j3

e−iq( j1+ j2− j3 )

× χ̃
(3)
+−−+(3, 2, 1, 0). (3)
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Here, t = t3 − t2, tw = t2 − t1, and τ = t1 are, respectively,
the gating time, the waiting time, and the delay time. The
summations on j1, j2, and j3 run over all sites. q = 0 for
the ferromagnetic chain, and q = π for the antiferromagnetic
chain owing to the aforementioned staggered gauge transfor-
mation. Note the cases with other values of q are potentially
relevant for XY chains with Dzyaloshinskii-Moriya interac-
tions [25,26]. In this work, we consider solely q = 0 and π .

χ
(3)
+−−+ and χ

(3)
−++− can be directly probed by 2DCS using

THz pulses with appropriate circular polarizations. Probing
χ

(3)
+−−+ requires the following pulse sequence: The first pulse

is right-handed circularly polarized, whereas the second and
third pulses are left-handed circularly polarized. Furthermore,
their contributions are also visible with linearly polarized THz
pulses since other third-order susceptibilities do not exhibit
echo signal. This feature eases the experimental conditions.

Finally, we obtain the two-dimensional spectrum by per-
forming a Fourier transform of χ

(3)
+−−+(q|t, tw, τ ) with respect

to t and τ :

χ
(3)
+−−+(q|ωt , tw, ωτ ) =

∫ ∞

0
dt

∫ ∞

0
dτ ei(ωt t+ωτ τ )

× χ
(3)
+−−+(q|t, tw, τ ). (4)

ωt and ωτ are, respectively, the frequency variables conjugate
to the gating time t and the pulse delay time τ .

III. METHOD

In this section, we sketch our numerical method for calcu-
lating Eqs. (2) and (3). Our procedure is similar in spirit to that
in earlier works [27,28], namely, expressing the spin correla-
tion functions in terms of the nonlocal correlation functions of
Jordan-Wigner fermions. The main improvement lies in the
manner in which the nonlocal fermion correlation functions
are treated. In the preceding works, they were computed in
terms of Pfaffians of fermion Green’s functions. Here, we re-
cast them as determinants [29–33]. The resulting expressions
are more compact in form and faster to evaluate, which speeds
up the numerical calculation of the four-point spin correlation
functions considerably.

In the first step, we diagonalize the S = 1
2 XY spin chain

by way of the Jordan-Wigner transformation,

S+
j =

∏
n< j

(1 − 2c†
ncn )c†

j , Sz
j = c†

j c j − 1/2, (5)

where c†
j and c j are fermion creation and annihilation opera-

tors. After the transformation, Eq. (1) assumes the form of a
free-fermion chain:

H = −J

2

N−1∑
j=1

(c†
j c j+1 + H.c.) − B

N∑
n=1

c†
j c j

=
∑

k

ε(k)c†
kck (N → ∞). (6)

In the second line, we have taken the thermodynamic limit
and switched to the momentum space. ε(k) is the dispersion
relation of the Jordan-Wigner fermions:

ε(k) = −J cos k − B. (7a)

The ground state is thus given by the Fermi sea. The dis-
persion near the Fermi point kF can be approximated as

ε(k) ≈
{

vF (k − kF ) − J
6 (k − kF )3 (B = 0),

vF (k − kF ) − B
2 (k − kF )2 (B �= 0),

(7b)

with the Fermi velocity vF = √
J2 − B2. We see that the

leading correction to the linear dispersion relation is cubic
(quadratic) in the absence (presence) of the longitudinal field.
We shall see their different impacts on the photon echo in
Sec. IV.

It is convenient for later purposes to define two sets of
fermion Green’s functions:

G<
j1 j2 (t1, t2) = 〈

c†
j1

(t1)c j2 (t2)
〉
, (8a)

G>
j1 j2 (t1, t2) = −〈

c j2 (t2)c†
j1

(t1)
〉
. (8b)

Note their definitions differ from the usual “G-lesser” and
“G-greater” functions by a factor of i. They can be easily
calculated from Eq. (6).

In the next step, we compute the four-point response func-
tion (2) by expanding the nested commutators. This process
yields a few four-point spin correlation functions. These, in
turn, are expressed as nonlocal correlation functions of the
Jordan-Wigner fermions. We recast these nonlocal correlation
functions as determinants of fermion Green’s functions G>

and G<.
The starting point is the following formula for a general

multipoint fermion correlation function:〈
M∏

n=1

c†
αn

cβn

〉
= det Y, (9a)

where αn and βn are arbitrary labels of fermion modes. Note
the product is understood as an ordered product with n = 1 on
the leftmost position and n = M on the rightmost position.
Y is an M × M matrix whose entries are fermion Green’s
functions:

Yi j =
{ 〈

c†
αi

cβ j

〉
i � j,

−〈
cβ j

c†
αi

〉
i > j.

(9b)

Equation (9) can be derived straightforwardly by using the
Wick theorem.

In preparation for later calculations, we consider the ex-
pectation value of a nonlocal operator that resembles the
Jordan-Wigner string:〈

M∏
n=1

(
1 − 2c†

αn
cβn

)〉 =
∑

E

(−2)|E |
〈∏

i∈E

c†
αi

cβi

〉

=
∑

E

det(−2YE ,E )

= det(I − 2Y ). (10)

Here, E is a subset of the M-element index set {1, 2, . . . , M}.
The summation is over all possible subsets, including the
empty set. |E | denotes the number of elements of E . In the
first line, we have expanded the product. In the second line, we
have used Eq. (9). Here, YE ,E is a submatrix of Y [Eq. (9b)],
whose rows and columns are chosen from the set E . Its deter-
minant det YEE is known as the principal minor of the matrix
Y . In the last line, we employ the summation formula for the
principal minors [34].
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We proceed to calculate the spin correlation functions. It
is sufficient for our purpose to illustrate the procedure for
the two-point spin correlation functions. The four-point spin
correlation functions are obtained in the same vein. Consider

〈
S+

j1
(t1)S−

j2
(t2)

〉 =
〈

j1−1∏
n=1

[1 − 2c†
n(t1)cn(t1)]c†

j1
(t1)

×
j2−1∏
m=1

[1 − 2c†
m(t2)cm(t2)]c j2 (t2)

〉
. (11)

We observe that the above expectation value, although it re-
sembles the left-hand side of Eq. (10), is not exactly identical
to it. Specifically, the operator c j1 is missing a creation oper-
ator (c†) partner, and likewise, c j2 is missing an annihilation
operator (c) partner. We remedy this situation by introducing
auxiliary fermion operators ψ and ψ†, which we take to be
algebraically independent from c fermions; that is, ψ and c
modes mutually anticommute. We further assume the ψ mode
is unoccupied, 〈ψ†ψ〉 = 0. Using these, we rewrite Eq. (11)
as

〈
S+

j1
(t1)S−

j2
(t2)

〉 = 1

4

〈
j1−1∏
n=1

[1 − 2c†
n(t1)cn(t1)]

[
1 − 2c†

j1
(t1)ψ

] j2−1∏
m=1

[1 − 2c†
m(t2)cm(t2)][1 − 2ψ†c j2 (t2)]

〉

− 1

4

〈
j1−1∏
n=1

[1 − 2c†
n(t1)cn(t1)]

j2−1∏
m=1

[1 − 2c†
m(t2)cm(t2)]

〉

= 1

4
[det(I − 2A) − det(I − 2B)]. (12a)

The first equality follows from the definition of the ψ fermions. The second equality follows from Eq. (10). The matrices A
and B are given by

A =

⎛
⎜⎜⎜⎜⎝

G<
1: j1−1,1: j1−1(t1, t1) 0( j1−1)×1 G<

1: j1−1,1: j2−1(t1, t2) G<
1: j1−1, j2

(t1, t2)

G<
j1,1: j1−1(t1, t1) 0 G<

j1,1: j2−1(t1, t2) G<
j1, j2 (t1, t2)

G>
1: j2−1,1: j1−1(t2, t1) 0( j2−1)×1 G<

1: j2−1,1: j2−1(t2, t2) G<
1: j2−1: j2

(t2, t2)

01×( j1−1) −1 01×( j2−1) 0

⎞
⎟⎟⎟⎟⎠ (12b)

and

B =
(

G<
1: j1−1,1: j1−1(t1, t1) G<

1: j1−1,1: j2−1(t1, t2)

G>
1: j2−1,1: j1−1(t1, t2) G<

1: j2−1,1: j2−1(t2, t2)

)
. (12c)

Here, the lesser and greater Green’s functions are defined in Eq. (8). G<
i: j,k:l denotes the submatrix of G< whose rows and

columns range from i to j and k to l , respectively. G>
i: j,k:l is defined in the same vein. Substituting the above expression into

Eq. (12a) and performing the Laplace expansion of det(I − 2A) along the j1th column and the last row yield

〈
S+

j1
(t1)S−

j2
(t2)

〉 = (−1) j2

2
det

(
[I − 2G<(t1, t1)]1: j1,1: j1−1 −2G<

1: j1,1: j2
(t1, t2)

−2G>
1: j2−1,1: j1−1(t1, t2) [I − 2G<(t2, t2)]1: j2−1,1: j2

)
. (13)

To see how the A and B matrices in Eqs. (12b) and (12c) come about, we consider a simple case where j1 = j2 = 2. The
correlation function reads

〈S+
2 (t1)S−

2 (t2)〉 = 1
4

〈
[1 − 2c†

1(t1)c1(t1)[1 − 2c†
2(t1)ψ][1 − 2c†

1(t2)c1(t2)][1 − 2ψ†c2(t2)]
〉

− 1
4

〈
[1 − 2c†

1(t1)c1(t1)][1 − 2c†
1(t2)c1(t2)]

〉
= det(I − 2A) − det(I − 2B). (14a)

In the first equality, both the first term and second term on the right-hand side resemble the left-hand side of Eq. (10). We
therefore can recast them as determinants by using Eq. (10). The matrices A and B are given by

A =

⎛
⎜⎜⎜⎜⎝

〈c†
1(t1)c1(t1)〉 〈c†(t1)ψ〉 〈c†

1(t1)c1(t2)〉 〈c†
1(t1)c2(t2)〉

−〈c1(t1)c†
2(t1)〉 〈c†

2(t1)ψ〉 〈c†
2(t1)c1(t2)〉 〈c†

2(t1)c2(t2)〉
−〈c1(t1)c†

1(t2)〉 −〈ψc†
1(t2)〉 〈c†

1(t2)c1(t2)〉 〈c†
1(t2)c2(t2)〉

−〈c1(t1)ψ†〉 −〈ψψ†〉 −〈c1(t2)ψ†〉 〈ψ†c2(t2)〉

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

〈c†
1(t1)c1(t1)〉 0 〈c†

1(t1)c1(t2)〉 〈c†
1(t1)c2(t2)〉

〈c†
2(t1)c1(t1)〉 0 〈c†

2(t1)c1(t2)〉 〈c†
2(t1)c2(t2)〉

−〈c1(t1)c†
1(t2)〉 0 〈c†

1(t2)c1(t2)〉 〈c†
1(t2)c2(t2)〉

0 −1 0 0

⎞
⎟⎟⎟⎟⎠ (14b)
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and

B =
( 〈c†

1(t1)c1(t1)〉 〈c†
1(t1)c1(t2)〉

−〈c1(t1)c†
1(t2)〉 〈c†

1(t2)c1(t2)〉
)

. (14c)

It is straightforward to verify that the above results are consistent with Eqs. (12b) and (12c).
The calculation of the four-point spin correlation function parallels that of the two-point spin correlation function but is more

involved. We present only the result for brevity. All four-point correlation functions can be cast in a fairly regular form:〈
Sμ1

j1
(t1)Sμ1

j2
(t2)Sμ3

j3
(t3)Sμ4

j4
(t4)

〉

= (−1) j2+ j4

4
det

⎛
⎜⎜⎜⎝

[I − 2G<(t1, t1)]J1,J ′
1

−2G<(t1, t2)J1,J ′
2

−2G<(t1, t3)J1,J ′
3

−2G<(t1, t4)J1,J ′
4

−2G>(t1, t2)J2,J ′
1

[I − 2G<(t2, t2)]J2,J ′
2

−2G<(t2, t3)J2,J ′
3

−2G<(t2, t4)J2,J ′
4

−2G>(t1, t3)J3,J ′
1

−2G>(t2, t3)J3,J ′
2

[I − 2G<(t3, t3)]J3,J ′
3

−2G<(t3, t4)J3J ′
4

−2G>(t1, t4)J4.J ′
1

−2G>(t2, t4)J4,J ′
2

−2G>(t3, t4)J4,J ′
3

[I − 2G<(t4, t4)]J4,J ′
4

⎞
⎟⎟⎟⎠. (15)

Here, the Greek indices μ1,2,3,4 = ± refer to the raising and
lowering types of the spin operator. J1,2,3,4 and J ′

1,2,3,4 are
index sets. Ji = {1, 2, . . . , ji} ({1, 2, . . . , ji − 1}) when μi =
+ (μi = −). Likewise, J ′

i = {1, 2, . . . , ji − 1} ({1, 2, . . . , ji})
when μi = + (μi = −).

The final step is carrying out the summation over the lattice
sites j1,2,3 in Eq. (3). Instead of summing over all sites, we
reduce the computational work load by utilizing causality;
namely, χ̃

(3)
+−−+(0, 1, 2, 3) falls off exponentially outside the

light cone about the center of the chain. Therefore, we may
restrict the summation over j1,2,3 to ±(Jt1,2,3 + R), where Jt
is the radius of the light cone at time t and R represents the size
of a small interval outside the cone. We choose R = 5, which
yields a relative error on the order of 10−3. Furthermore, we
reduce the work load by half by using the inversion symmetry
with respect to the center of the chain.

We close this section by commenting on the computational
complexity. For a chain with N sites, computing a four-point
spin correlation function requires evaluating a single determi-
nant of typical size O(N ), whose complexity is O(N3). Taking
the triple-lattice summation into account, the complexity for
computing the third-order susceptibility is thus O(N6). This
scaling limits the numerically accessible system size and, as
a result, the simulation time and temperature. With the var-
ious improvements described in this section, we are able to
compute the full two-dimensional spectrum of systems up to
N = 157 with O(106) CPU hours. To calculate the magnitude
of the photon echo signal, we can reach a system size up to
N = 357 by further restricting the lattice summation to sites
close to the lensing configurations [Fig. 1(b)].

IV. RESULTS

Figure 2(a) shows the numerically calculated nonlinear
magnetic susceptibility χ

(3)
+−−+ as a function of t and τ for

the ferromagnetic chain [q = 0 in Eq. (3)] at T/J = 0.3 and
B = 0. We set waiting time tw = 0. Note the susceptibility is
a real number in this case. The photon echo signal appears as
the feature running along the diagonal of the t-τ plane. Taking
a cut with constant τ reveals the structure of the echo signal
[Fig. 2(d), with Jτ = 15]. We see the nonlinear response
reaches the maximum at t ≈ τ , which is a characteristic of the
photon echo. Our previous analysis predicted the following

asymptotic behavior for the photon echo signal [11]:

χ
(3)
+−−+,q=0 ∼

{
(t − τ )3e−γ |t−τ | (t 
 τ 
 0),
(t − τ )e−γ |t−τ | (τ 
 t 
 0),

(16)

where γ = πT/2. The numerical results confirm these pre-
dictions [Figs. 2(b) and 2(c)].

For the ideal TLL where the fractional excitations neither
disperse nor dissipate, our previous analysis showed that the
echo persists along the diagonal direction of the t-τ plane; that
is, the echo does not depend on τ . Here, the diagonal feature
in Fig. 2(a) associated with the photon echo gradually fades
away at large τ and t . The decay of the photon echo signal is
best illustrated by taking a cut of Fig. 2(a) along the diagonal
direction of the t-τ plane [Fig. 2(e)]. After the initial rise, the
echo signal decreases exponentially as τ = t increases. This
information is also encoded in the two-dimensional spectrum
[Fig. 2(f)], where the photon echo manifests as a pair of peaks
on the ωt -ωτ plane. The antidiagonal width of photon echo
peaks is inversely proportional to the decay time of the echo
signal, whereas the diagonal width of the peaks scales with
temperature linearly.

We attribute the decay of the photon echo signal to the
nonlinearity of the dispersion relation of the Jordan-Wigner
fermions [Eq. (7)]. A key step in lensing is the refocusing
of the excitation world lines by the second and third pulses
[Fig. 1(b)]. This process occurs because the spin raising or
lowering operator acting on the fractional excitations reverses
their direction of motion and changes the topological charge
they carry [11]. However, due to the aforementioned non-
linearity, a fractional excitation wave packet disperses as it
travels through the system. As a result, the refocusing is no
longer prefect, which suppresses the lensing process. We shall
discuss the decay of the photon echo further momentarily.

Having discussed the ferromagnetic chain, we turn to the
antiferromagnetic case [q = π in Eq. (3)]. Figure 3(a) shows
the nonlinear magnetic susceptibility χ

(3)
+−−+ as a function of

t and τ with the same set of model parameters. Compared to
the ferromagnetic case, the photon echo signal is disguised at
early time by nonlinear processes other than lensing; nonethe-
less, it is clearly visible at late times. Figure 3(d) shows the
profile of the photon echo along a cut with constant Jτ = 15.
We note its overall span on the time axis is shorter than that of
the ferromagnetic case [Fig. 2(d)]. This phenomenon reflects
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FIG. 2. (a) Nonlinear magnetic susceptibility χ
(3)
+−−+ as a function of t and τ for the ferromagnetic [q = 0 in Eq. (3)] chain at T/J = 0.3

and in zero field. The waiting time tw = 0. The data are rescaled such that the maximum magnitude equals 1. (b) A scan of the data with
constant τ as indicated by arrow (b) in (a). The red dashed line delineates the expected asymptotic behavior. (c) A constant t scan of the data
as indicated by arrow (c) in (a). The red dashed line delineates the expected asymptotic behavior. (d) A constant τ scan of the data as indicated
by arrow (d) in (a), which shows the full profile of the photon echo. (e) The data along the diagonal direction of the t-τ plane as indicated by
arrow (e) in (a). (f) The complex modulus of the two-dimensional spectrum. The data are rescaled like in (a).

the faster decay of the four-point spin correlation functions
in both space and time due to the larger scaling dimension of
the uniform magnetization operators in the antiferromagnetic
chain.

Our previous work predicted the following asymptotic be-
havior for the photon echo in the antiferromagnetic case [11]:

χ
(3)
+−−+,q=π ∼

{
(t − τ )e−γ |t−τ | (t 
 τ 
 0),

e−γ |t−τ | (τ 
 t 
 0),
(17)

FIG. 3. The same as Fig 2, but for an antiferromagnetic [q = π in Eq. (3)] chain. Note the two-dimensional spectrum in (f) is obtained
from (a) by performing a two-dimensional Fourier transform while masking out the data with Jt < 3 and Jτ < 3.
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FIG. 4. (a) The behavior of χ
(3)
+−−+ at t = τ for the ferromagnetic

chain at various temperatures in zero field. The waiting time tw = 0.
(b) The decay time τdisp as a function of temperature. The blue and
green open circles represent the cases with B = 0 and B = 0.3J ,
respectively. The blue solid line, the blue dashed line, and the green
solid line delineate, respectively, the power law T α with exponents
α = 3, 1, and 2. (c) and (d) Same as (a) and (b), but for an antiferro-
magnetic chain.

where γ is the same as before.1 We find good agreement
between the numerical results and the prediction for t > τ

[Fig. 3(b)] but much worse agreement for t < τ [Fig. 3(c)].
The small magnitude of the signal for the latter case makes it
challenging to numerically ascertain the asymptotic behavior.
Like in the ferromagnetic case, the photon echo decreases
exponentially with τ [Fig. 3(e)].

Figure 3(f) shows the two-dimensional spectrum. Note that
we have masked out the data with Jt < 3 and Jτ < 3 in the
Fourier transform to enhance the photon echo peaks. We see
that the photon echo peaks are more extended in the frequency
plane compared with the ferromagnetic chain, which is di-
rectly related to its shorter span on the time axis [Fig. 2(d)]
relative to the ferromagnetic case.

We now investigate the decay of the photon echo in more
detail. Figures 4(a) and 4(c) (solid lines) show the value of
χ

(3)
+−−+ along the diagonal direction (τ = t) in the t-τ plane

at various temperatures for both the ferromagnetic and anti-
ferromagnetic chains. For both cases and at all numerically
accessible temperatures, we find the echo signal decreases
exponentially at late time, i.e.,

χ
(3)
+−−+(t = τ ) ∼ e−τ/τdisp , (18)

where τdisp is the decay time of the echo signal. Physically,
we interpret τdisp as the effective life time of the fractional
excitations created by the first pulse—in the case of the fer-
romagnetic chain, they are a pair of spinons; in the case of
the antiferromagnetic chain, they are a spinon and a Laugh-
lin quasiparticle [22]. Their wave packets broaden as they

1Note, however, the constant γ taking the same value for the ferro-
and antiferromagnetic chains is a special feature of the XY chain, or
TLL with K = 1. See Ref. [11] for the expression of γ for general
K .

propagate. Beyond time τdisp, they are virtually indistinguish-
able from the thermal fluctuations. Figures 4(b) and 4(d)
(open circles) present the dependence of τdisp on temperature,
extracted by fitting the χ

(3)
+−−+(t = τ ) data to an exponen-

tial function. We identify two regimes: At low temperature
T � J , 1/τdisp ∝ T 3; at higher temperature T � J , we find
1/τdisp ∝ T .

We may understand the low temperature T 3 scaling by a
simple dimension counting argument. At the renormalization
group (RG) fixed point, the Hamiltonian for TLL is that of
relativistic compactified bosons:

H0 = 1

4π

∫
dx(∇φR)2 + (∇φL )2, (19)

where φL and φR are, respectively, the left and right chiral
compactified boson fields. Since H0 must have dimension −1
in units of length, the dimensions of φR and φL are zero. At
the fixed point, the photon echo does not decay, i.e., τ−1

disp = 0.
Now, the nonlinearity in the dispersion relation of the Jordan-
Wigner fermions at B = 0 gives rise to the following RG
irrelevant perturbation to the fixed point Hamiltonian:

H ′ =
∫

dx λ+(∇φR)2(∇φL )2 + λ−[(∇φR)4 + (∇φL )4].

(20)

The explicit values of λ± are determined by the microscopic
model [35–37]. Both λ± have dimension 2 in units of length.
Given that they are RG irrelevant, we expect 1/τdisp to admit
a perturbative expansion in λ±. In particular, if the leading
order perturbation does not accidentally vanish, we must have
τ−1

disp ∼ λ±. To account for the correct dimension, we must
supplement the right-hand side with temperature T , which has
dimension −1. We thus find 1/τdisp = cλ±T 3, with c being a
dimensionless constant.

We may generalize the above analysis as follows. Suppose
the leading order of the Jordan-Wigner fermion dispersion is
n. Then such a perturbation λ must have dimension n − 1.
Rerunning the above argument, we now find 1/τdisp = cλT n.
In the presence of longitudinal magnetic field, the leading
order changes from n = 3 to n = 2 [Eq. (7)]. Thus, we expect
a T 2 scaling in this case. Our numerical results show that
1/τdisp ∝ T 2 for both ferromagnetic and antiferromagnetic
chains, in agreement with the analysis [Figs. 4(b) and 4(d)].

So far, we have fixed the waiting time tw = 0. The de-
pendence of the photon echo on tw also contains important
information about the dynamics of the system. Figures 5(a)
and 5(b) present χ

(3)
+−−+ as a function of tw with fixed t = τ

for a ferromagnetic chain and an antiferromagnetic chain, re-
spectively. We set the temperature T/J = 0.25 and magnetic
field B = 0. For both cases, we find the data can be well fit to
an exponential function, A exp(−αtw ) + A′. Crucially, we find
A′ �= 0; that is, the magnitude of the echo signal saturates at
tw → ∞ instead of decreasing to zero. While it is interesting
to examine the infinite waiting time limit, i.e., A′, as a function
of time variables t and τ as well as the temperature T , such an
analysis requires a large system size that is beyond the reach
of our computational resources.

This behavior is associated with the integrability of the
S = 1

2 XY spin chain. In a thermalizing system, as long as the
response is not tied to any conservation law or spontaneously
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FIG. 5. The nonlinear magnetic susceptibility χ
(3)
+−−+ as a func-

tion of tw at various values of t = τ for the (a) ferromagnetic and
(b) antiferromagnetic chains. The temperature T/J = 0.25, and the
magnetic field B = 0. Numerical data are denoted as solid circles.
Solid lines are fits of the data to exponential functions. Arrows mark
the extrapolated value of χ

(3)
+−−+ at tw → ∞.

broken symmetry, the nonlinear response function must tend
to zero as tw → ∞ because the memory of the first two pulses
is lost. Therefore, the fact that χ

(3)
+−−+ does not decrease to

zero is necessarily a consequence of the integrability. In our
previous work [11], we hypothesized that the saturation of
the photon echo signal with tw is a feature of integrable spin
chains. Our results seem to support this idea.

V. DISCUSSION

In this work, we have analyzed the photon echo of the
S = 1

2 XY spin chain. Through numerical calculations, we
showed that the photon echo signal decays with increasing
pulse delay time τ , whereas it saturates as the waiting time
tw → ∞. The former reflects the suppression of lensing due
to the dispersion of the fractional excitation wave packets. The
latter, on the other hand, is a manifestation of the integrability
of the model. These results are in broad agreement with the
physical picture presented in previous work. Furthermore, the
numerically extracted asymptotic behavior of the echo signal
is also quantitatively consistent with the prediction.

Our numerical calculation revealed that the decay rate
of the photon echo (with the delay time τ ) scales with the
temperature T as T n, where n is the order of the leading
nonlinearity in the dispersion relation of the Jordan-Wigner
fermions. The nonlinearity in the fermion dispersion relation
and its physical consequences are the central topics of the non-
linear Luttinger liquid theory [38,39]. Although a formidable
task, it would be illuminating to treat the present problem
analytically by using this approach.

Adding generic longitudinal exchange interactions to the
S = 1

2 XY chain breaks the integrability of the model. As
a result, the fractional excitations now disperse as well as
dissipate, which leads to additional decay of the echo signal
with respect to the delay time τ . In the bosonization language,
this perturbation amounts to an umklapp term in the bosonized
Hamiltonian. Comparing the RG eigenvalue of the umklapp
term 2 − 4K to that of the dispersion term −2, we expect that
the dispersion-induced decay remains the dominant mecha-
nism when K > 1 [36]. Outside this regime, a systematic
treatment of dissipation is necessary to clarify its impact.

Finally, we saw that saturation of the echo signal with
tw is associated with the integrability of the S = 1

2 XY spin
chain. We think that the fact that the integrability of a many-
body system manifests in a nonlinear response function is
remarkable. In light of the studies on the out-of-time-order
correlation functions [40–42], it would, perhaps, be interest-
ing to explore whether the photon echo could provide an
in-depth characterization of quantum chaos or the lack thereof
of many-body systems.
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