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Mott-enhanced exciton condensation in a Hubbard bilayer
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We study the conditions to realize an excitonic condensed phase in an electron-hole bilayer system with
local Hubbard-like interactions at half-filling, where we can address the interplay with Mott localization. Using
dynamical mean-field theory, we find that an excitonic state is stable in a sizable region of a phase diagram
spanned by the intralayer (U ) and interlayer (V ) interactions. The latter term is expected to favor the excitonic
phase which is indeed found in a slice of the phase diagram with V > U . Remarkably, we find that, when U is
large enough, the excitonic region extends also for U > V , in contrast with naïve expectations. The extended
stability of the excitonic phase can be linked to in-layer Mott localization and interlayer spin correlations. Using
a mapping to a model with attractive interlayer coupling, we fully characterize the condensate phase in terms of
its superconducting counterpart, thereby addressing its coherence and correlation length.
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I. INTRODUCTION

The condensation of excitons in a macroscopic quantum
state has been proposed soon after the success of the BCS
theory of superconductivity [1,2] owing to the similarities
between Cooper pairs created by the binding of two elec-
trons and excitons, bound states formed by an electron and
a hole. However, the observation of excitonic phases has
long eluded the experimental effort, mainly because of the
short lifetimes of excitons due to electron-hole recombination
processes.

Developments in the engineering of devices and het-
erostructures have provided ideal platforms to observe exciton
condensation (EC), which has been indeed proposed and
reported in quantum Hall bilayers [3,4], graphene double
bilayers [5–8], and semiconductors quantum wells [9,10].
Excitonic ordering has also been recently reported in bulk
solids [11–18].

Bilayer structures are arguably ideal platforms to observe
condensation of spatially indirect excitons composed of holes
and electrons belonging to different layers, for which recom-
bination is essentially inhibited by the presence of a dielectric
material between the layers. Quantum Monte Carlo calcu-
lations for electron-hole gases coupled with the long-range
Coulomb interaction [19–21] have indeed shown that an ex-
citonic phase is stable at very low densities, a result which
has been confirmed by simulations of double bilayer graphene
[5,6].

In an analogous lattice model with local interactions,
some indication of EC has been found away from half-
filling [22] and in the half-filled system when the interlayer
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interaction is larger than the intralayer repulsion [23,24].
Similar models have been investigated using dynamical mean-
field theory (DMFT). In Ref. [25] the competition between
EC and s-wave superconductivity has been addressed in
a model without intralayer repulsion. A variety of two-
orbital models including, e.g., energy splitting between bands,
Hund’s coupling, and including nontrivial topology have
also been found to host excitonic states in some regions of
parameters [26–31].

In this paper, we aim at identifying a generic mechanism
connecting strong correlation physics and excitonic phases
which can be used to gain a deeper insight into results on
more involved and richer models for specific systems. We
address the interplay between the EC and Mott physics,
the most direct fingerprint of correlations, in an idealized
model for an electron-hole bilayer system with local Hubbard-
like interactions. Our focus is on the relative role of the
intralayer (U ) and interlayer (V ) interactions. We consider
the system at half-filling, where a Mott transition can take
place, so that our phase diagram will be characterized by
the competition/interplay between Mott insulating and EC
phases. We choose this simplified model, which does not
include nonlocal interactions, to disentangle the role of Mott
physics in the simplest possible framework. The present re-
sults are not meant to describe any specific material, even if
this modeling can be considered relevant to transition metal
oxides, where the Coulomb interaction is screened, while it is
certainly more questionable for semiconductors and graphene
bilayers.

The paper is organized as follows: In Sec. II, we introduce
the model, our implementation of DMFT, and the relevant ob-
servables we consider. In Sec. III, we present the normal phase
results where we discard excitonic ordering, while Sec. IV is
devoted to the results for the EC phase. Section V reports our
concluding remarks.
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II. MODEL AND METHOD

We consider a two-layer Hubbard model with a local inter-
action term:

H = −
∑

〈i j〉σm

tmc†
iσmc jσm + H.c. − μ

∑
iσm

niσm

+ U
∑
im

n′
i↑mn′

i↓m + V
∑
iσσ ′

n′
iσAn′

iσ ′B, (1)

where ciσm (c†
iσm) is the annihilation (creation) operator of an

electron on site i, layer m = A, B and with spin σ , niσm is the
number operator, and n′

iσm = niσm − 1
2 is introduced to write

the model in a particle-hole symmetric form which implies
that both bands are half-filled for μ = 0. We set tA = t and
tB = αtA. In our calculations, we will consider α = −1, so that
the A band has a standard negative hopping amplitude, and it is
an electronlike character around q = 0, while the B band has
a positive hopping amplitude, and it has a holelike character
around q = 0. We notice in passing that, for a bipartite lattice
(with sublattices S1 and S2), a sign-change transformation on
one of the sublattices for the B band:

c†
iB, ciB → −c†

iB,−ciB ∀i ∈ S1, (2)

would change the sign of the hopping, leading to two identical
bands. Here, U and V are both positive, and they measure the
intralayer and interlayer local screened Coulomb repulsion.

We will study an excitonic state characterized by a uniform
(q = 0) spin-singlet excitonic order parameter (EOP):

�0 = 1

N

∑
iσ

〈c†
iAσ ciBσ 〉, (3)

which is expected to be degenerate with spin-triplet counter-
parts due to the SU(2) × SU(2) spin symmetry of our model.
Models including other interaction terms and material-specific
features may favor one or the other spin symmetry [28,29,31].
On the other hand, we will not consider the possibility of stag-
gered spin, charge, or orbital orderings. A staggered orbital
ordered state can compete with the EC, and it is expected
to be stable on bipartite lattices when V > U . The choice
to discard these orderings is meant to focus on the intrinsic
correlation effects which occur regardless of the nature of the
lattice, following a standard strategy in the field.

We solve the model at zero temperature using DMFT [32],
a state-of-the-art method which treats different interactions
nonperturbatively, and it is particularly well suited to study the
Mott transition [32], strongly correlated metallic phases, as
well as superconductivity and other broken-symmetry states.
Within DMFT, the lattice model is mapped onto an impurity
model which must be solved self-consistently, requiring that
the impurity Green’s function coincides with the local com-
ponent of the lattice Green’s function. We solve the impurity
model at T = 0 using Lanczos/Arnoldi exact diagonalization
(ED) [33–35]. As is customary in the DMFT community,
we consider a Bethe lattice with a semicircular density of
states Nm(ε) = 2

πD2
m

√
D2

m − ε2, where Dm ∝ tm is the half-
bandwidth.

To study the EC phase, the bath of the impurity model
must include an excitonic amplitude, analogous to the su-
perconducting case. Using a spinorial representation where

�
†
k,σ

= (c†
kσA, c†

kσB), where k = 0 identify the impurity and
k = 1, ..., Nbath the bath levels, we can write it as

H (0)
imp =

∑
kσ

(
�

†
kσ

�
†
0σ

)( Hkσ Vk · I2

Vk · I2 0

)(
�kσ

�0σ

)
, (4)

where I2 is the 2 × 2 identity, and

Hkσ =
(

εk + Mk Pk

Pk εk − Mk

)
, (5)

where Pk is the interorbital excitonic hybridization term in the
bath Hamiltonian, εk + (−)Mk is the bath energy on orbital A
(B), and Vk is the hybridization between the impurity and bath
site k. Within ED-DMFT, we must limit the number of bath
sites to solve the impurity model. We fixed the number of bath
sites to Nbath = 4, and we have checked that the numerical er-
ror introduced by the finite bath is sufficiently small. We fixed
the system at global half-filling 〈∑σm nσm〉 = 2 by imposing
μ = 0. Then since we are focusing on orbitals with opposite
dispersion relation, we also fixed εk = 0 ∀k, and since we
focus on the state with orbital half-filling, this required that,
for each Mk parameter on bath site k, there must be another
bath site k′ with opposite energy Mk′ = −Mk .

III. NORMAL STATE

We start our investigation from the normal state where
we inhibit excitonic ordering as well as any other broken-
symmetry state like antiferromagnetism or staggered orbital
ordering. This is a standard strategy which has helped us to
understand the Mott transition disentangling Mott localization
from magnetic ordering [32]. For our model, a normal state
phase diagram has been reported in Ref. [36], but we find it
useful to present our results to emphasize the aspects which
are useful to better address the excitonic phase.

The model is expected to feature two different Mott-
insulating solutions that we can easily understand from the
atomic (tm = 0) limit. Among all configurations with two
electrons per site, the four with one electron in each layer
|↑,↓〉, |↓,↑〉, |↑,↑〉, and |↓,↓〉 have energy E11 = − 1

2U ,
while the two configurations with two electrons in the same
layer |↑↓, 0〉 and |0,↑↓〉 have energy E20 = 1

2U − V . There-
fore, the former set of states is favored for U > V and the
latter for U < V . Hence, when U and V are much larger
than the hopping and U > V , we expect an insulator with
one electron on every site of each layer. This state, that we
label as U-Mott (U-MI) is expected to be unstable toward an-
tiferromagnetic ordering if we allow for symmetry breaking.
On the other hand, for V > U , we have an insulator where
every site is in a mixture between the two solutions with one
doubly occupied layer. This state, henceforth V-Mott (V-MI),
would be naturally unstable toward a staggered orbital (layer)
ordering [37].

To monitor the Mott localization, we compute the quasipar-
ticle weight Zm which measures the metallicity of the system
[32]. The progressive destruction of the metallic state is de-
scribed by a reduction of Zm from 1 (noninteracting limit) to
0 (correlated insulator). The connected local density-density
correlations Cm,m′ = 〈nmnm′ 〉 − 〈nm〉〈nm′ 〉 can be used to study
the competition between the two interaction terms and the
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FIG. 1. Quasiparticle weight (top), intraorbital density-density
correlation (center) and interorbital density-density correlation (bot-
tom), as a function of V/D for U/D = 0.0 (black), 2.0 (green),
3.0 (red), and 4.0 (blue). Dotted lines are data in the normal state,
solid lines mark the same quantities in the excitonic phase. The gray
dashed lines are the atomic limits.

approach to the atomic limit insulators. The orbital symmetry
implies CAA = CBB and CAB = CBA. It is easy to see from
the above discussion that the atomic U-MI has CAA = 0 and
CAB = 0, while the atomic V-MI has CAA = 1 and CAB = −1.

In Fig. 1, we show as dotted lines the evolution of ZA = ZB

and of the interlayer and intralayer correlations CAA and CAB as
functions of V/D for different values of U/D. The boundaries
of the U-MI and V-MI phases are marked by dotted lines with
crosses in the phase diagram of Fig. 2.

The cuts for U/D = 0 and 2 in Fig. 1 clearly show a
metal-insulator transition toward the V-MI state with ZA = 0,
CAA = 1, and CAB = −1. For U/D = 3, we find a U-MI for
small V followed by a metallic region and the V-MI as V
increases. For large U/D = 4, we have only a tiny slice of
V with a metallic solution sandwiched by the two insulators.

The main feature of the normal state phase diagram, as
already pointed out in Ref. [36], is the existence of a metallic
region that intrudes between the two insulators when U and V
are comparable. The region shrinks as we increase U and V ,
and it closes for U = V = 4, where we find a tricritical point.
For larger values of the interactions, the metallic solution
is confined to the line U = V , like other models where the

FIG. 2. V vs U ground state phase diagram. In yellow, the region
of the exciton condensation (EC) phase; in orange, the metallic
phase; in blue, the U-Mott insulator; and in green, the V-Mott
one. The dashed lines with crosses symbols indicate the two Mott-
transition boundaries in the normal state, while the gray dashed line
highlights the U = V line.

competition between different atomic states leads to interme-
diate phases which can have either a metallic [39,40] or an
insulating [41] nature.

IV. EXCITONIC PHASE

We now turn to solutions where the EC is allowed. The
values of ZA, CAA, and CAB are shown as solid lines in Fig. 1
and compared with their normal state counterparts. Indeed, the
excitonic state is stable in a wide region of parameters, and
its onset makes the evolution from U-MI to V-MI smoother,
thereby also increasing the quasiparticle weight.

Reporting this information on the phase diagram of Fig. 2,
where the boundaries of the excitonic region are solid black
lines, we clearly see that the EC region is roughly centered
around the normal state transition toward the V-Mott state.
The picture is simple: Increasing V before the interaction is
large enough to drive the system to insulating leads to the
binding of electrons and holes on different layers into exci-
tons. However, the effect of U changes the position and the
nature of the transition.

For small and moderate U , the EC establishes only when
V prevails over U (above the V = U line, marked with a
dashed gray line) in agreement with previous work [23–25].
We notice that we find an unambiguous excitonic solution for
U = 0 only when V is larger than a critical value. Indeed, we
cannot rule out the possibility of an exponentially small order
parameter that we cannot easily resolve with our algorithm
which has an intrinsic low-energy cutoff.

A much less expected result emerges when we increase U
and approach the boundary of the U-MI phase. Here, we find
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FIG. 3. Excitonic order parameter �0 (top), stiffness Ds (center),
and coherence length ξ for (from left to right) U/D = 0.0, 2.0, 3.0,
and 4.0, with the same color codes as Fig. 1. The vertical dashed
line indicates the first-order metal-exciton condensation (EC) phase
transition.

that the stability region of the EC increases, and remarkably,
it extends into the region where U < V , signaling a nontrivial
intrinsic many-body effect due to the interplay of the two in-
teractions. As a result, for U � 3D, the whole metallic region
between the two Mott insulators is replaced by an excitonic
state.

The positive effect of Hubbard repulsion on the excitonic
order is evident in Fig. 3(a), where we plot the order parameter
� as a function of V for the same cuts of Fig. 1. Here, we
show that the EC for large U is not only stable in a wider
range of V , but its amplitude is also larger. For instance, for
U/D = 4, the maximum value of � is more than twice the
U = 0 maximum. For every value of U , the transition from the
metal to the EC appears of first order, while the transition from
the EC to the V-MI state is associated with a continuously
vanishing �.

A. Exciton ordering and Mott physics

In this section, we link the enhancement of the EC re-
gion for V < U and large U/D to the magnetic correlation
between orbitals near the V-MI phase that is enhanced by
the nearby U-MI phase. The main effect of U is to drive
a standard Mott localization within each layer. Hence, the
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FIG. 4. Local magnetic moments (intraorbital spin correlations)
(top) and interorbital magnetic correlation (bottom). Dotted and solid
lines indicate, respectively, the normal and the excitonic phase solu-
tion. Data are for U/D = 0.0 (black), 2.0 (green), 3.0 (red), and 4.0
(blue).

double occupation on each layer dm is strongly reduced. For a
half-filled nonmagnetic system, this directly reflects in the for-
mation of local moments as measured by 〈Sz

mSz
m〉 = 1

4 〈(nm,↑ −
nm,↓)2〉 = 1

2 ( 1
2 − dm), which approaches 1

4 . While the spins
on the two layers are uncorrelated in the normal state, when
we reach the EC region and U � 3D, the interlayer spin
correlations 〈Sz

ASz
B〉 become sizable and negative, eventually

approaching the limit − 1
4 , as shown in Fig. 4. The local

quantum state (computed from the impurity model within
DMFT) approaches for large U |ψ〉 ∼ 1√

2
(|↑A↓B〉 + |↑B↓A〉),

for which 〈Sz
ASz

A〉 = 1
4 and 〈Sz

ASz
B〉 = − 1

4 .
Note, however, that the interplay between Mott localiza-

tion and exciton ordering is not trivial. The singlet atomic
excitonic state is indeed a linear combination of |↑A↓B〉
and |↑B↓A〉, which are favored by increasing U , but also
of the states |↑A↓A, 0〉 and |0,↑B↓B〉, which are instead
depleted by U . Hence, while the magnetic correlations de-
velop approaching the U-Mott state, they first contribute to
the onset of excitonic ordering, but as we exceed a given
optimal distance from the Mott state, the EOP decreases,
leading to the existence of a bell-shaped behavior of the order
parameter.

We finally notice that the spin-singlet correlations follow
from our choice to study spin-singlet excitons, and we ex-
pect the same picture to hold for a spin-triplet exciton. The
key idea is that Mott localization within each layer leads
to localized moments which are naturally prone to acquire
any interlayer correlation when exciton ordering is allowed.
Finally, in the U-MI state, the EOP vanishes, and the SU(2) ×
SU(2) spin symmetry with four independent ground states is
recovered.
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B. Characterizing the excitonic state via a mapping
on superconductivity

A particle-hole transformation on layer B:

c†
iσB → ciσB(−1)σ , (6)

maps our model for α = −1 onto a two-orbital model with the
same form of Eq. (1), in which the two orbitals share the same
hopping tA = tB = t , and the interorbital interaction becomes
attractive (−V ), while the intralayer remains repulsive. This
model can indeed host an interorbital s-wave superconduct-
ing state, which maps onto our excitonic state via the same
particle-hole transformation in Eq. (6). We can exploit this
mapping to compute some observable which characterizes the
superconducting state and allows us to better characterize the
EC.

The superfluid stiffness Ds [42] is a crucial parameter that
controls the critical temperature. It measures the coherence of
the superconducting state and its rigidity to fluctuations of the
phase of the order parameter. Indeed, a superconductor with
small Ds has a small critical temperature, even if the zero-
temperature absolute value of the order parameter is large,
as it happens in the strong-coupling limit in a single-orbital
attractive Hubbard model [43]. In the effective model with
interlayer attraction −|V | obtained via the transformation in
Eq. (6), Ds reads

DS

πe2
= 〈−Ekin〉 − χ j j (q → 0, ω = 0), (7)

where j is the current operator and Ekin is the expectation
value of the hopping part of the Hamiltonian. For a Bethe
lattice, we obtain [43]

Dex
S

e2π
= −4α

β

∑
iωn,σ

∫
dεV (ε)D(ε)|GAB(ε, iωn)|2, (8)

where V (ε) = 4t2−ε2

2 is the square of the current vertex for
orbital A and α = tB/tA (see Appendix A for derivation).

We underline that the total current of the attractive model
corresponds, in the model in Eq. (1), to the operator:

jex(q, iωn) = jA(q, iωn) − jB(q, iωn), (9)

which is clearly different from the current operator associated
with the total charge. Hence, Ds can be considered a real
superfluid stiffness only for the auxiliary attractive model.

However, Ds also provides direct information about the
coherence and stability properties, which translates into anal-
ogous information about the EC phase of our model in Eq. (1).
It has been shown that quantum geometry could play a role in
enhancing the superfluid stiffness [44], but we only consider
the full contribution.

The coherence length ξ indeed naturally has the same
meaning in the two frameworks, namely, it measures the
length over which the constituents of the pair/exciton retain
quantum coherence. It is given by [45,46]

ξ 2 =
∑

k |∇kF (k)|2∑
k |F (k)|2 , (10)

where

F (k) =
∑
iωn

exp(iωn0+)GAB(εk, iωn). (11)

The results for Ds and ξ are reported in panels (b) and
(c) of Fig. 3 to compare their behavior with the EOP. The
results for U = 0 are qualitatively like an attractive model,
and they reflect the BCS-to-Bose-Einstein condensate (BEC)
crossover as a function of the coupling. Indeed, both Ds and ξ

are maximal in the weak-coupling side, and they decrease as
the interaction grows.

Increasing |V |, we have a progressive reduction of
the coherence length, associated with a more localized
pairs/excitons characteristic of the BEC limit. Also, Ds

decreases as a result of the smaller coherence of the
pairs/excitons, and it vanishes at the continuous transition to
the V-MI state.

When we introduce and increase U , we find an important
difference on the weak-coupling side of the crossover. Indeed,
both Ds and ξ are also depleted close to the smallest values
of V required to establish the EC. As a result, for large U ,
the two quantities have a maximum around the U ∼ V line.
These results clearly confirm the U -induced localization of
the excitons that we discussed above and the crucial role of
the interplay between the two interactions to induce an EC
for V < U .

V. CONCLUSIONS

We used DMFT to assess the existence of an excitonic state
in the zero-temperature phase diagram of a two-layer Hubbard
model with intralayer (U ) and interlayer (V ) density-density
repulsive interactions. Working at half-filling, we can study
how the excitonic long-range order is affected by the Mott
physics.

We find a sizable region of exciton ordering when the two
interactions are comparable. The transition from the EC phase
to the Mott insulating phase is continuous, while the transition
from metal to EC is of the first order.

For small and intermediate U , the excitonic state is present
only if V > U , as one can expect intuitively. On the other
hand, for U � 3D, i.e., close to a standard Mott transition
within each layer, we also find an exciton state when V < U .
We have indeed shown that the enlargement of the excitonic
phase in the proximity of the intralayer Mott transition can be
connected with the U -driven development of local magnetic
moments that, in turn, favor magnetic correlations between the
two layers (singlets in our case). We expect this mechanism to
be general and to also be present for models where the exciton
and the magnetic correlations have a triplet symmetry.

This interaction-driven stabilization of the excitonic state
is clearly associated with the proximity to the Mott transition,
and it is accompanied by the development of spin correlations
between the layers. These effects cannot be described by a
static mean-field calculation, which indeed does not show
the extension of the excitonic region. In this sense, the sta-
bilization of excitons for V < U is due to dynamical quantum
correlations which are included in DMFT via frequency-
dependent self-energies. Notice that these dynamical effects
are nonperturbative, as DMFT contains corrections at any
order within a momentum-independent self-energy.

Exploiting a simple mapping onto a model with attrac-
tive interlayer interactions, we have been able to further
characterize the excitonic state. The coherence length, which
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has essentially the same interpretation of that of a supercon-
ductor, shows that the proximity to the V-driven Mott state
leads to localized pairs with very short coherence length.
Analogously, the equivalent of the superconducting superfluid
stiffness shows that the coherence of the EC state tends to
vanish when the V-Mott insulator is reached. In other words,
when we approach the Mott transition, the EC state is driven
toward the strong-coupling limit, which in superconducting
language corresponds to the BEC limit [43]. We notice in
passing that the BEC nature and its evolution from a BCS
limit can be experimentally assessed via both thermodynamic
[43] and spectral properties [47,48]. These results further
strengthen our picture where the charge localization induced
by U is central in the stabilization of the EC for V < U and in
determining its properties.

The existence of excitonic states for V < U is important
because, in a real bilayer system or in a multiorbital correlated
material, we always expect V < U . We notice, however, that
an electron-phonon coupling of the Holstein type (coupled
with the total local electron density) can effectively reduce
U , making in principle the effective U closer or even smaller
than V [41,49,50].

We emphasize that we have decided not to consider
spatially ordered states to highlight the general mechanism
connecting Mott physics with EC which are realized in a
generic lattice. In a bipartite lattice, a staggered orbital order
is stable for V > U , partially covering the excitonic region.
However, the most important region where the EC is favored
by the proximity to the Mott transition is not affected.

As we anticipated in the introduction, our model has been
introduced as a minimal model for a bilayer system in which
excitonic phases can be present and, at the same time, Mott
physics is effective. The results we have obtained must be
considered as a basis to build the understanding of richer and

more involved models including, among others, different and
more complex hopping structures, energy difference, and/or
hybridization between the two bands and a richer structure of
the interactions. Even if our results are directly relevant for
any specific material because of the simplicity of the model,
they can provide a solid basis for the research of materials
where the Coulomb interaction is strongly screened, such as
transition metal oxides or twisted transition metal dichalco-
genides where narrow moiré bands can be obtained.
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APPENDIX A: SUPERFLUID STIFFNESS

In this Appendix, we provide some details for the cal-
culation of the superfluid stiffness for the attractive model
obtained through the canonical transformation in Eq. (6).
From the definition [42]:

DS

πe2
= 〈−Ekin〉 − χ j j (q → 0, ω = 0). (A1)

we need to compute the kinetic energy and the current-current
response function. We make use of the previously defined
spinorial representation to define the Green’s function as

Ĝσ (k, τ ) =
〈
T

[
ckAσ (τ )
ckBσ (τ )

]
⊗ [

c†
kAσ

(0) c†
kBσ

(0)
]〉 =

[
GAA(k, τ ) GAB(k, τ )
GBA(k, τ ) GBB(k, τ )

]
. (A2)

From now on, we consider it diagonal in the spin; therefore, we can avoid explicitly writing the spin index σ . In single-site
DMFT, where the self-energy is local and site independent, the Dyson equation for the interacting Green’s functions reads

Ĝ0(k, iωn)−1 = Ĝ(k, iωn)−1 + �̂(iωn), (A3)

where the hat indicates that all of these are matrices as in the previous Eq. (A2). This means that the diagonal and of-diagonal
component are

GAA(ε, iω) = iω − αε − �BB(iω)

[iω − ε − �AA(iω)][iω − αε − �BB(iω)] − |�AB(iω)|2 , (A4)

GBB(ε, iω) = iω − ε − �AA(iω)

[iω − ε − �AA(iω)][iω − αε − �BB(iω)] − |�AB(iω)|2 , (A5)

GAB(ε, iω) = �AB(iω)

[iω − ε − �AA(iω)][iω − αε − �BB(iω)] − |�AB(iω)|2 = G∗
BA(ε, iω), (A6)

where α = tB/tA; therefore, ε (A) = ε and ε (B) = αε.
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In this derivation, we will set the energy splitting to zero (M = 0) for simplicity, but the results remain valid for any value of
M. In DMFT, the kinetic energy for orbital m can be easily computed since the Green’s function is known:

E (m)
kin =

∑
kσ

ε
(m)
k 〈c†

kσmckσm〉

= lim
η→0+

β−1
∑
iωn

∑
kσ

ε
(m)
k Gmm(k, iωn) exp(iωnη)

= lim
η→0+

β−1
∑
iωn,σ

∫
dεD(ε)ε (m)Gmm(ε, iωn) exp(iωnη), (A7)

computing it explicitly for the two orbitals and performing a partial integration using the relation −εD(ε) = ∂ε[D(ε)V (ε)],
where V (ε) = 4t2−ε2

3 = [v(A)
ε ]2 is the square of the current vertex in orbital A, α2V (ε) = [v(B)

ε ]2 is the square of the current

vertex in orbital B, and D(ε) = 1
2πt2

√
(2t )2 − ε2 is the density of states:

Ekin,A = β−1
∑
iωn,σ

∫
dε V (ε)D(ε)G2

AA(ε, iωn)

{
1 + α

|�AB(iωn)|2
[iωn − αε − �BB(iωn)]2

}

= β−1
∑
iωn,σ

∫
dε V (ε)D(ε)

[
G2

AA(ε, iωn) + α|GAB(ε, iωn)|2], (A8)

Ekin,B = β−1
∑
iωn,σ

∫
dε V (ε)D(ε)G2

BB(ε, iωn)

{
α2 + α

|�AB(iωn)|2
[iωn − ε − �AA(iωn)]2

}

= β−1
∑
iωn,σ

∫
dε V (ε)D(ε)

[
α2G2

BB(ε, iωn) + α|GAB(ε, iωn)|2], (A9)

from which one can check that, if there is no orbital off-diagonal self-energy and α = ±1, the kinetic energy is the same in the
two orbitals. The computation of the current-current response in DMFT in infinite dimensions is simplified since all the vertex
corrections are canceled [32] and only the elementary bubble contributions survive; therefore:

χ j j (q, τ ) = −〈 jex(q, τ ) jex(−q, 0)〉, jex(q, τ ) = jA(q, τ ) − jB(q, τ ), (A10)

χ j j (q → 0, iω = 0) = [
χAA

j j − χAB
j j − χBA

j j + χBB
j j

]
(q → 0, iω = 0), (A11)

χmm′
j j (q, iω) = −β−1

∑
k,iν,σ

v
(m)
kσ v

(m′ )
k+qσ Gmm′ (k, iν)Gm′m(k + q, iν + iω), m, m′ = A, B, (A12)

where the current vertices for the two orbitals are related by
v(B) = αv(A). Merging the DMFT results for the kinetic en-
ergy and the current-current response function, the superfluid
stiffness for the selected model is

DS

e2π
= −4α

β

∑
iωn,σ

∫
dε V (ε)D(ε)|GAB(ε, iωn)|2. (A13)

This interesting result carries some important information.
Since the superfluid stiffness must be a positive quantity,
the naïve two-orbital Hubbard model with symmetric bands
(α = 1) would not allow any finite DS . This is in agreement
with some results showing that local excitonic correlations are
dumped for α > 0 [51] in favor of a bipartite antiferro-EC
state that corresponds to a model with a shift of the B band
of the vector Q of bipartite lattices for which εk = −εk+Q,
e.g., for the square lattice in D dimensions, the vector is
Q = (π, π, ..., π ). For α = 0 (Falikov-Kimball model with
spin), it correctly predicts no superfluid excitonic state since
one of the species is not mobile and since, in this limit, no
excitonic phase is expected [52]. This special case prohibits

excitonic ordering since, in the limit α → 0+, there must be an
antiferro-EC state, while in the limit α → 0−, there must be a
ferro-EC state; thus, α = 0 is an unstable point between these
two phases [29]. Our choice of opposite bands α = −1 is
therefore optimal, and in this situation, the superfluid stiffness
can be rewritten as

DS

e2π
= 4

β

∑
σ,iωn

∫
dε V (ε)D(ε)|GAB(ε, iωn)|2. (A14)

This results tells us that the opposite band dispersion is the
optimal ground for the research of a superfluid EC.

APPENDIX B: CALCULATION
OF THE COHERENCE LENGTH

For the Bethe lattice, we have no access to the momenta but
only energy; therefore, we must pass from ∇k to something we
can treat. Starting from the numerator of the coherence length
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definition [45,46]:

∑
k

|∇kF (k)|2 =
∑

k

∣∣∣∣(∇kεk )
∂F (ε)

∂ε

∣∣∣∣
ε=εk

∣∣∣∣
2

=
∑

k

∣∣∣∣∣(∇kεk )

×
⎡
⎣ 1

β

∑
iωn

exp(iωn0+)
∂

∂ε
F (ε, iωn)

∣∣
ε=εk

⎤
⎦

∣∣∣∣∣
2

,

(B1)

where F (ε, iωn) = GAB(ε, iωn), as previously defined (see
Appendix A), and ∇kεk = vk is the group velocity of the non-
interacting particles (we take h̄ = 1). Now the dependency on

k is present only through εk via the relation |vk| =
√

4t2−ε2
k

3 =
v(ε); therefore, we can pass to the integral in energy, and the

result for the numerator is

∑
k

|∇kF (k)|2 =
∫

dε D(ε)

∣∣∣∣∣
1

β

∑
iωn

exp(iωn0+)v(ε)

× G2
AB(ε, iωn)

2ε + �BB(iωn) − �AA(iωn)

�AB(iωn)

∣∣∣∣∣
2

.

(B2)

For the denominator, no change is needed, and the substitution
of F (k) directly gives

∫
dε D(ε)

∣∣∣∣∣∣
1

β

∑
iωn

exp(iωn0+)GAB(ε, iωn)

∣∣∣∣∣∣
2

. (B3)
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