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Intrinsic surface superconducting instability in type-1 Weyl semimetals
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Recent experiments on nonmagnetic Weyl semimetals have seen separate bulk and surface superconductivity
in Weyl semimetals, which raises the question of whether the surface Fermi arcs can support intrinsic super-
conductivity while the bulk stays in the normal state. A theoretical answer to this question is hindered by the
absence of a well-defined surface Hamiltonian since the Fermi arcs merge with the bulk states at their endpoints.
Using an alternate, Green’s functions-based approach on a phenomenological model that can yield arbitrary
Fermi arcs, we show—within mean-field theory—that the surface can support a standard Cooper instability
while the bulk remains in the normal state. Although the surface has lower dimensionality, a higher density of
states compared to the bulk allows it to have a higher mean-field superconducting transition temperature. The
surface superconductivity is presumably of the Berezinskii-Kosterlitz-Thouless type.
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I. INTRODUCTION

Weyl semimetals are three-dimensional (3D) topological
materials defined by the presence of nondegenerate bands that
intersect at discrete points in bulk momentum space [1-18].
These points are known as Weyl nodes because the low energy
dispersion around them resembles that of a Weyl fermion.
Weyl nodes have a well-defined chirality or handedness and
occur in even numbers in a Weyl semimetal, with half of each
chirality. They also carry topological protection in the sense
they cannot be gapped out perturbatively while translational
symmetry of the material persists; when it does not, they can
only be annihilated in pairs of opposite chirality [19-39].

Many experiments have seen superconductivity in Weyl
[40-57] and closely related Dirac semimetals [58—68] but
recent experiments have hinted at independent intrinsic su-
perconducting behaviours in the bulk and on the surface. In
type-I Weyl semimetal t-PtBi,, transport measurements on
bulk single crystals and thin films showed superconductivity
with a T¢ of 0.6 K [56] and 0.275-0.4 K, respectively [69].
The latter saw Berezinskii-Kosterlitz-Thouless behavior in
surprisingly thick films, suggesting that the superconductivity
may be of 2D origin. Scanning tunneling spectroscopy on the
surface revealed a wide range of superconducting gaps with
the largest gaps corresponding to 7¢ in the 100 K range [57].
Additionally, ARPES studies in t-PtBi, found a surface T of
around 10 K where the bulk remained in normal state [70].
Powdered NbP was also found to exhibit superconductivity
[46,47] with a small superconducting volume fraction, and
Ref. [47] speculated that the superconductivity could be oc-
curring on the surface. These observations raise the question,
“Can the surface turn superconducting while the bulk remains
in the normal state?”

The answer is hindered by another fundamental and exotic
property of Weyl semimetals, namely surface states known as
the Fermi arc. These are open strings of zero energy states
on the surface of a Weyl semimetal that connect the surface
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projections of Weyl nodes of opposite chirality. Unlike the
Fermi surfaces of a conventional 2D metal, they do not form a
closed contour; unlike the surface states of topological insula-
tors, their penetration depth into the bulk depends strongly on
the surface momentum and diverges at the end points, causing
their wave function to merge with the bulk Bloch waves at
the Weyl nodes [8—16,71-89]. The inseparability of the bulk
and the surface makes it impossible to define a surface Hamil-
tonian, which hinders theoretical inquiries into the surface
physics of Weyl semimetals. Nonetheless, the question raised
above can be rephrased as “Does the Fermi arc metal support
an intrinsic Cooper instability independently of the bulk?”

In this work, we explore the superconducting instability
of the surface of time-reversal symmetric Weyl semimet-
als (TWSMs), since time-reversal symmetric Fermi surfaces
generically have a superconducting instability, and discover
an affirmative answer to the above question. Such an answer
directly contrasts naive expectations from Bardeen-Cooper-
Schrieffer theory [90]. According to the theory, higher
dimensionality suppresses fluctuations and stabilizes mean-
field superconductivity, suggesting that the bulk of a TWSM
should be more susceptible to superconductivity than the
surface. However, we find that the surface can turn supercon-
ducting before the bulk does. This is because the surface has
a finite density of states due to the Fermi arcs, whereas the
bulk density of states vanishes in the Weyl limit and remains
parametrically small for a slightly doped Weyl node.

In Sec. II, we introduce the general Hamiltonian for the
Weyl semimetal and show how Green’s function formal-
ism bypasses the problem of surface-bulk inseparability. The
interaction is introduced, which is an intralayer Hubbard in-
teraction with pair hopping. This interaction is then used
to calculate the correlation function that induces a surface
superconducting instability. The problem then reduces to cal-
culating the second-order bubble diagram. In Sec. III, we
introduce a model of a TWSM with an arbitrary number
and shape of Fermi arcs and the associated Green’s function.

©2023 American Physical Society
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FIG. 1. The Dyson series for Cx ;,, in the large-Dg limit. Super-
conductivity occurs when C ¢ diverges.

Using this model, the contribution to the correlation function
splits into two parts: the Fermi arcs and the projection of the
bulk Fermi surface on the surface. The contribution due to
Fermi arcs is then calculated in Sec. IV A, and in Sec. IV B we
show the contribution due to the projection of the bulk states
onto the surface. In Sec. V, we calculate the bulk instability.
Finally, in Sec. VI, we discuss the implications of our result in
the context of the experiments performed on NbP and t-PtBij,.

II. GENERAL FORMALISM

In this section, we develop the formalism for study-
ing the surface superconducting instability in a type-I Weyl
semimetal. While a surface Hamiltonian is ill defined, a sur-
face Green’s function is meaningful and is the building block
of our theory. Such an approach has previously been suc-
cessful in evading this problem of bulk-surface inseparability
and studying surface physics such as Friedel oscillations [75],
conductivity [91], and Luttinger arcs [92].

We begin by considering a slab of a time-reversal symmet-
ric Weyl semimetal described by the Bloch Hamiltonian Hy.
We assume 2D, degrees of freedom in the zth layer—the even-
ness mandated by time-reversal symmetry—and decompose
Hy into blocks capturing the surface, the bulk, and the surface

bulk coupling:
HS
(iR o
Iy HY

Here, Hlf is the 2Dg x 2Dy in-plane Bloch Hamiltonian of
the z = 0 surface layer, HP is the Bloch Hamiltonian of all
the other layers that we collectively refer to as “bulk,” while
hy., hy capture the coupling between the bulk and the sur-
face. The coupling terms can be strong, making it difficult
to write an effective surface Hamiltonian, but an effective
surface Green’s function can be written. Specifically, writing
Matsubara Green'’s function for the full slab in block form and
evaluating the 2Dg-dimensional block corresponding to the
surface degrees of freedom yields an effective surface Green’s
function [92]

Sk = (i — HY — GE 1), @)

where G, = (iw, — H})™'. gk, can alternately be ob-
tained by 1ntegrating out the bulk fermions from a Euclidean
path integral, see Appendix A. Importantly, g ;,, can be cal-
culated analytically for certain local hopping models, as we
demonstrate shortly.

Next, in anticipation of deriving a large-Dg mean-field
theory, we introduce local, intralayer attractive Hubbard and
pair-hopping interactions that are invariant under O(D,) rota-
tions within each layer. Explicitly,

mt— ZZ_CTran¢ran¢rzn/CTrvn, (3)

rznn

K )
E+k,lwn

——k,—iw,

FIG. 2. The second order bubble diagram — yx helps us calculate
Ck 0. Dashed (solid) lines denote bosons (fermions). The two fermion
lines give two Green’s functions that need to be summed over the
internal momentum and frequency.

where U > 0, n indicates the orbital index, and r is the 2D
position vector. Fourier transforming in-plane,
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where K, Kk, and kK’ are 2D momenta and fk = f % Veell
is the volume of the unit cell, which will be set to one going
forward for brevity.

We decouple H;,; on the surface in the superconducting
channel by introducing complex bosonic fields A ;,,; see
Appendix B for details. The superconducting instability then
corresponds to the divergence of the correlation function
Ck.iv, = (AK.v, AK.iv,) at K =0, iv, = 0. Long wave length
equilibrium fluctuations about the mean-field state are sub-
sequently captured by Ck . In the large Dy limit, Ck ;, is
dominated by RPA-like bubble diagrams, which enables a
straightforward resummation of the Dyson series, Fig. 1. The
upshot is

U/Ds

Cko=——"7— (%)
1= 5oxx

where — xk is the bubble shown in Fig. 2 and is given by

1 , .
=52 [ AR T IO

Ly k
see Appendix C. Here, we have introduced a phenomeno-
logical Debye frequency wp to model conventional, phonon-
mediated pairing. The superconducting instability now corre-
sponds to the condition xo = Dgs/U.

If gk iw, were the electron Green’s function in a conven-
tional metal, its only nonanalyticity would have been simple
poles on the real axis. For the surface of a Weyl semimetal,
the Green’s function also has branch cuts on the real axis, so
the Matsubara sum must be done with greater care. We carry
out this exercise for an explicit model below. Nonetheless, the
branch cuts do not change the result qualitatively in meaning-
ful limits.

III. TRACTABLE LAYERED MODEL

We consider a minimal model consisting of alternating
layers of spinful electron and hole metals with dispersion
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FIG. 3. Minimal layered model of a time-reversal symmetric
Weyl semimetal showing two Fermi arcs with opposite spins.

+&, x — 1 stacked along z and alternating, real interlayer cou-

plings t5 k, —t(’,!k [Fig. 3]. Its second-quantized Hamiltonian
for an L-layered slab is given by
L—1
H= [ 3 30 11 b il
k z=0 o=1,]
T b4
+ |:COS2 <7Z)l‘a’k — Sill2 (?Z)t;,k:lcj; k.:Cok,z+1 +H.c.,
@)
§

where ¢, | . creates an electron with spin o at layer z and
2D momentum k = (ky, k). The model clearly conserves spin
and has two layers in each unit cell. Its bulk Bloch Hamilto-
nian in the bilayer basis in the o sector is

Ea,k — M to,k - t(;,ke_%kzc
Ha,k - ’ 2ik,c ’ (8)
Iok — to"ke N _'i:a,k — MK

where c is the interlayer spacing, assumed constant within and
between unit cells for simplicity. The interlayer terms are phe-
nomenologically chosen to produce Fermi arcs on the z =0
surface along &, x = ¢ when t(% K < t(’rzk [Fig. 4]. This results
in bulk Weyl nodes in the k, =0 plane whenever f5x =1 .
Near the jth Weyl node in the o sector, at (k, k;) = (K, ;, O),
the low energy Hamiltonian can be written as

H)M = (Vo P)T + (o j - PITe + (Wojp)Ty — . (9)
N\
N
& \
FAy \ \ FA,
\ /
/
N 7

D t,l,k < tl,k
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FIG. 4. Surface layer of Weyl semimetal with Fermi arcs. The
Fermi arcs form when ¢, > t, x and &, = 0.

where 7; are Pauli matrices in the bilayer basis; (p, p;)
is the 3D momentum relative to the Weyl node; and
Voj = Vikéoklk=k, ;> Wo.j = Vk(tokx — 1, )lk=xk,,, and
Wo,j = —21, g, ¢ are Weyl velocities.

For this model 8k.iv, can be calculated analytically in
the semi-infinite limit, L — oo, following [75]. Itis a2 x 2
diagonal matrix in the spin basis given by

5 Ao K,iw, + Y, b(f k, la),,bU k,iw,

800’ k,iw, = Ooo’ - , (10)
oo w, oo 2[(;2’1((1(1)” + w— Ea,k)
as Kk, iw, = (lwn + M)z - ‘53 kK lik + tz/fz,k’
bi:kzw _(lw"+u’)2 Uk’
2
B, =82+ (o 21, (11)

8k.» has nonanalyticities on the real frequency axis in the
form of poles at w = &, x — p that represent the Fermi arcs
when w = 0, and a pair of square root branch cuts defined by
Ey <lo+pul <E] + « that corresponds to w being inside the
bulk conduction and valence bands and capture the projection
of these bands onto the surface. Along &, x = u, the surface
also carries Luttinger arcs, defined as zeros of det(gk o), which
form closed loops with the Fermi arcs when u = 0 [92].

This model is a variant of the spinless model introduced
in Ref. [75]. Here, we assume two decoupled copies of the
model, one for each spin, and ensure time-reversal symmetry
by requiring #, x, # ,, and &; x to be unchanged under the
simultaneous reversal of spin and momentum, 0 — —o,k —
—k. It contains a single orbital degree of freedom in each
layer, D, = 1V z, so we will suppress the index n, henceforth.
We also suppress the spin index below for brevity and assume
all functions to be the ones for spin-up, i.e., §k = &, i, etc.

IV. SURFACE INSTABILITY

We now use the above Green’s function to evaluate x( in
Eq. (6) to obtain the instability. The trace over spin simply
gives a factor of two. The pair of Green’s functions yields
two poles, at w = &x1k/2 — 4, —§k—K,2 + U, and four branch
cuts, defined by Ek_JrK/2 <|xw+ul < El:’+K/2. Branch cuts
from one Green’s function factor can overlap with poles and
branch cuts from the other, so the frequency integrals must
be performed carefully. Summing over Matsubara frequencies
gives separate contributions from the poles and branch cuts of

8k,0» X0 = XFA T Xproj-

A. Fermi arc contribution

The first contribution is

_ Ek — 1 @(a)D—|§k—,U«|)
S R

B2 — i A — )+ \/AI_—[i(ZM — &0 — (B’

X
72 ’
2

12)

where R(x) = (x + |x|)/2 is the ramp function. For wp much
less than the hopping energy scales, it is useful to work in
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momentum coordinates (kj, k| ) parallel and perpendicular to
the contour §x = pu. Near this contour, we can approximate
&k = 1 + v k. This turns the above expression into a sum
of integrals around each Fermi arc, xps = Zi XFa;» With

2

tk tanh[vk kJ_/ZT]
XEA, & / R(1--1 f — = (13)
| €FA, fy ) Jikl< 2 g,k L

For wp > T, the k; integral is dominated by the region 27 <
|vg, k1| < wp, where |tanh[v k1 /2T]| ~ 1 and evaluates to
(1/7 v, D) In(wp /2T ). As aresult,

2
@p 1 2 Yy

XFA; '\’h’l( )/ R[1-— — |
2T k €FA; T['Uku | tkﬁ

lea, 1
~oesin (2 )(=) (14)
272 2T 7\ ] [,

where [ga, is the length of the ith Fermi arc and (...)pa,
denotes a weighted average over this Fermi arc with k; de-
pendent weight R*(1 — tk2u /t,ﬁ). Equation (14) matches the
corresponding result for a 2D metal if Iga, is replaced by the
perimeter of the Fermi surface and the weight is & indepen-
dent. Thus, Fermi arcs behave like a metallic Fermi surface
for harbouring a Cooper instability.

B. Contribution from bulk states

Next, we evaluate xpj, the contribution to xo from the
projection of the bulk states onto the surface, captured by the
branch cuts in gk +,. Explicitly, we find

w
Xproj = —2// tanh ( — ,/|b+wb‘w|sgn(w+u)
e k JweBC ( T) ook
a—o + R[btfa)b; 70)]
» : .

ffw? = (1 — &)?]

O(wp — |wl), 15)

where w € BC denotes the branch cut region E < |w + u| <
Elj and the factor of sgn(w + @) comes from selecting the
principal values of the square roots.

In the regime, wp K E + the conditions +w € BC reduce
to E_ < |Z w+ u|. Physically, this ensures that y.; re-
ceives contributions only from k-space regions defined by
surface projections of bulk Fermi surfaces enclosing the Weyl
nodes. Hence, we can linearize around the Weyl points as
Ep~Vj-p, tp~tj+u;-p/2 and 1, ~¥t; —u; - p/2. Then,
EZ ~/(v;-p)’ + (u;-p)? =€, axo, ® —2ju; -p, b , &
(@ + u)* — €5 and b}  ~ —417 near the jth node. xproj can
then be written as xproj = ) j Xproj,j where

wp

; 2
Pl Sp—— dwtanh (ﬂ)/
J 7-[[/2 0 2T |

w—|pu||<ep<wt|u|
JI@+ 117 = g][e3 — (@ — |ul?] 1
. (il —v; pY — o? - 19

The pseudorelativistic form of €, makes the p integral ana-
lytically tractable but rather unwieldy. The complications can
be avoided by assuming u; L v; at the cost of O(1) prefactors.

Under this assumption,

i Slul? /
o~ doann (2)
J 3712t |ujvj| @ Vo,
37le |ijj| ’

Importantly, this is a small number compared to xpa as it
is suppressed by powers of 11/t; and wp/t;. Thus, xo ~ xga,
and the surface instability is determined mainly by the FAs
and resembles that of an ordinary 2D metal. The transition
temperature follows from setting o = 1/U. Explicitly,

2

T3~ “p ex 2 :|, 18

¢ 2 b |: Ucheﬁ Zi lFAi(ﬁ)FA,v 4
where we have reinstated V22 Strictly speaking, this is ex-
pected to be a Berzinskii-Kosterlitz-Thouless transition rather
than a true superconducting transition. This is because the
main role of the FAs is to contribute a 2D density of states
to enable an instability, and their topological nature are essen-
tially irrelevant.

V. BULK INSTABILITY

We now study the superconducting instability in the bulk.
We begin with the Hamiltonian near a Weyl node, Eq. (9),
and compute the appropriate susceptibility xpu following the
procedure described in Sec. II. We continue to suppress the
spin index to avoid notational clutter, use spin-up functions
only (e.g., & = &, k etc.), and note that the spin sum merely
contributes a factor of two to xpux. See Appendix D for
details.

The Green’s function near the jth Weyl node is

1

Gipiw, = . 19
St iwn + M —Vj- | u; - PTx — W;p:Ty ( )

Thus, xouk,j=27T > i, Jy TG iy, Gjip.—ies, 1O (@p — licwy])

is given by

Xk =or Z O(wp — liwy])

iwy,

n? — (iw,)* + &3, — 2(w;p.)*

, 20
p [ l—s [(iwn+su)2—£l%p] 20)

where &, ), = /€p + (w;p.)* is the pseudorelativistic dis-

persion near the Weyl node. Once again, the integrals are
analytically tractable in this limit and yield x™'* = Z Xb““‘
with

2

bulk M @p
n(22). 21
Xi T 3r2(u; x v;)-w;| o \2T @D
forop > T.
Readding erﬁ back into the expression, the bulk transition
temperature is given by
wp 372
Tk ~ — exp [ } (22)
3 1
2 UVceﬁ“’ Zj [(ujxv;)-w;|
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FIG. 5. Illustration of the parametric regime where the surface
is superconducting while the bulk is in the normal phase. TCsurf is
expected to depend weakly on 1« while T ~ ¢~/ For |u| < 1.,
Tk < T2 5o T between these critical values will see surface-only
superconductivity.

Naturally, 72" — 0 as u = 0 and grows smoothly with 1.
Crucially, there exists a parametrically large regime in which
TCbulk < Tcsurf, namely when || < w., where

I
_ 2 3vczeﬁ Zi lFAl<m>FA,-
S TAT I

cell £—j [(u;xv;)-w)]

(23)

In this regime, the surface will superconduct while the
bulk will remain metallic (see Fig. 5) with the caveat that
the surface superconductivity will presumably be of the
Berezinskii-Kosterlitz-Thouless type. We have assumed the
same p relative to the Weyl node for each node, i.e., u; =
u Vj. In real materials, Weyl nodes not related by symmetry
occur at different energies. Then, the appropriate condition
for T2 < T2 is fimax = max; || < .. Intuitively, this
is the condition that the bulk density of states is smaller
than the surface density of states after appropriate scaling by
the unit cell volume in each dimension. Thus, surface-only
superconductivity can occur in principle even if the bulk con-
tains trivial Fermi surfaces, provided they are small enough.
Estimating realistic parameters, i.e., Ip4 ~ 10'%/m, |vpa| ~
103 m/s, V20 ~ 107 m?, V3P ~ 107*"m’, and |(u; x v;) -

w;| ~ 102 m3/s3, we estimate ., ~ 1072 eV.

VI. EXPERIMENTAL RELEVANCE

This result is pertinent to the observations of supercon-
ductivity in t-PtBi,. In particular, Schimmel et al. saw a
wide range of surface superconducting gaps in the tunneling
spectrum of t-PtBi,, with the largest gaps corresponding to
Te ~ 100K range [57]. In comparison, transport measure-
ments in bulk crystals and thin films displayed 7¢ ~ 0.6 K
[56] and T¢ ~ 0.275-0.400 [69], respectively. The latter
saw a Berezinskii-Kosterlitz-Thouless transition in films up
to 60 nm thick whereas such a transition is expected only
in 2D superconductors, typically no more than a few nm in
thickness. In a similar vein, Kuibarov et al. using ARPES
inferred a surface T of 14 £2 K and 8 + 2 K for the two
surface terminations [70] where the bulk was inferred to be
in a normal state. The authors of Ref. [57] speculated that the
higher 7 on the surface was due to a transition from bulk
to surface superconductivity and asked whether the surface
superconductivity is connected to the topologically nontrivial

states found on the surface of a type-I Weyl semimetal. We
have shown, in a toy model, that the dominant part of surface
superconductivity indeed emerges from FA states and yields a
higher T¢ on the surface than in the bulk. Moreover, we argued
that the surface superconductivity is essentially 2D and should
exhibit a Berezinskii-Kosterlitz-Thouless transition.

Our work is also relevant to the observation of super-
conductivity with T of 6 K-9 K in powdered samples of
NbP, a type-I Weyl semimetal, by Baenitz et al. [47]. This
was in agreement with another published value, T ~ 7.5 K
[46], for powdered NbP compounds. Baenitz et al. reported a
superconducting fraction of only 6.2% and gave two possible
explanations based on grain size effects for the small fraction.
The first one involved strain on the grains, turning the material
into a type-II Weyl semimetal, which has a bigger Fermi
surface and is thus more likely to superconduct. The second
explanation involved superconductivity developing on the sur-
face, which can lead to a sizable signature in powder samples.
We have shown that the second latter picture is possible, at
least within mean-field theory in a phenomenological model.
Moreover, we note that in the first picture, different samples
would likely turn into type-II Weyl semimetals with differing
sizes of electron and hole pockets and exhibit vastly different
Tc, unlike what was observed. In contrast, intrinsic surface
superconductivity is more likely to yield similar transition
temperatures in different samples. Our picture can be tested
by studying superconductivity in bulk and thin films of NbP.
If superconductivity intrinsically occurred on the surface, thin
films would display a larger superconducting fraction than
bulk crystals in sharp contrast to the behavior of conventional
metallic superconductors.

VII. SUMMARY

We have shown that under a mean-field limit in a
phenomenological model of a TWSM, there exists a paramet-
rically large regime where the surface has a superconducting
instability, whereas the bulk remains in the normal state. Fur-
thermore, we find that the instability is governed mainly by
the Fermi arc surface states, and the contribution from the
surface projection of the bulk Fermi surface is negligible. This
result pertains to recent experiments on NbP and t-PtBi, that
raised the possibility of intrinsic surface superconductivity in
TWSMs.
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APPENDIX A: SURFACE GREEN’S FUNCTION

Let HE denote the Bloch Hamiltonian of an L-layered time-
reversal symmetric system that has 2D, degrees of freedom
in the zth layer. Time-reversal symmetry (TRS) ensures that
each layer has an even number of degrees of freedom. The
layers are unrelated in general but repeat periodically in lattice
models. Now, let us add a layer at z = O that we refer to as the
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“surface.” The Hamiltonian for the full system is of the form

HS Iy
Hy = ( k )
by, HY

We will use b, b to denote Grassman variables for fermions
in layers 1,...,L, and §,s for surface fermions. Con-
tractions over layers (z), orbitals (n;), and spin (o)
will be denoted by *“” while integrals will be writ-
ten in shorthand as fk = fo dt f O )2 In this notation,
the Euclidean path integrals for the L- and (L + 1)-
layered systems are Z¥ = [ D[b, b] exp[—SE(b, b)] and Zy =
[ Db, b, 5, s]exp[—So(b, b, 5, 5)], where

(AD)

80(57[9) f Z Z bk7111785(zn ,0),(Z\ny,0")
k,z z,7=1o,0'et,|
HH 00, 0n0,07) Pl o (A2)
— / B [GE)]”! (A3)
k.t
So(b, b,5,5) = — | (G, bx) - (3 + Hy) - <;';) (A4)
k,t
Gk i) - [Gie(D)] ™" (Z“) (AS)
k.t k

We have introduced imaginary time Green’s functions G (7)
and Gk () for the L- and (L + 1)-layered system. Integrating
out the b fermions yields an effective surface Green’s function
gk (7) as follows:

Z

75 = Z—g = /D[S, slexp[—8; 5. 5)]. (A6)
0

S35, s) = _/ Sk - [0 + Hy + hGE(Dh] sk, (AT)
Kk,

= (1) = — (0, + HS + mGEn) . (A8)

The Matsubara Green’s functions Gﬁ (iwy), Gk(iwy,), and
gk (iwy,) can be obtained straightforwardly by the replacement
d; — —iw, in the above equations.

APPENDIX B: INTERACTION

Since the interaction is local, the path integral for the full
interacting system factorizes between the bulk and the surface:
7 = 7875, where

= / Db, blexp [—S§ (b, b) — S5, (b, b)], (B1)

U -
S8.(5,b) = /K LpBeB. @
Z/bk+k7n¢b5—kzn 4 (B3)
n,=1

and

Z8 = /D[E,s] exp[—S5 (5, 8) — S5, (5, 9)], (B4)

S JK,t

Spi(3,5) = SkSk. (B5)

SK - Z /SK+kng¢S7—kn§ 4 (B6)

ng=1

The fermion bilinears Bk ; and Sk are bosonic variables, and
Dg = Dy is the number of degrees of freedom in the z =0
surface layer.

To investigate surface superconductivity, we focus on Z5.
Decoupling the interaction term in the s-wave pairing channel
through another bosonic field A,k gives

= / DIs, slexp [~S; 5, 5)]
x fD[A, Alexp[-S'(A, A,5,5)],  (B7)
where

_ Dg _ _ _
S'(A,A,5,8) = / —FSAKAK-FSKAK-FAKSK.
K.t
(B3)

APPENDIX C: GREEN’S FUNCTION TRACE

In this section, we show how the expressions for y can
be simplified and written as the trace of a product of Green’s
functions:

Xo = / (8w ()57 [8—k(—iwn)]7 . (ChH
K,iw,

— [ latio i (TadionT 7. (©)
k,iw,

_ / te[ L (o) T g ieon) T1]. (C3)
k,iw,

where the trace runs over both spin and orbital indices,
Jeio =T Y00 | & (2n L and T denotes time reversal. We have
used the action of 7 on the matrix elements of gk (iw,):

[T gk (i) T 129 = [g_x(—iw)]S (C4)

and used the identity tr(AB”) = tr(A” B) to reduce notational
clutter. Since the system is 7~ symmetric, 7 gy (iw,)T ' =
gx(—iw,). This gives

o= f tu[gl (Gn)gi(—ieon)]. (©5)
k,iw,

Above, we separated the o and n indices for clarity and
assumed the orbitals to be 7 symmetric. However, the expres-
sion in terms of tr(gg” ) should work even if the orbitals are
not 7 symmetric. In general,

XK = f [gK/2+k(lwn)]nsn [gk/2- k(_lwn)]nsn , (Co)
K,iw,

- / (g2 o2 [ Tk 2ealion) T~ 1%, (CT)
K,iw,

= / tr( gy k2 ((0n)gk—K 2 (—iwn)]. (C8)
K,iw,
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APPENDIX D: INTEGRALS FOR CALCULATING ypuix

In this section, we describe the integration steps for
computing xpyx- We begin with Eq. (20) from the main
text:

where &, = /€2+(w;p.)? and e, =/(v;-p)>+(u; - p)?
are massless relativistic dispersions in 3D and 2D. To bring
the integrals into a spherically symmetric form, we rotate and
rescale the momenta as

qx Vj 0 0 COSGj —sin 9j 0 Pl
oy [y Z A 7 B N L G R S 1 U
! o~ Jo T [Goon + 5100 = 3, 1O(ep — lion])’ - i o
(DD This gives
|
bulk __ d*q u? — (ion)* + qi + q)g —q? ]
X =27 Y : C I T " o wp — o).
o UjVjU)j(27T) Hs:i [(la)n + SM) —q ]
1 0 1 — (i0,)* + ¢*/3 .
= z—TZ/ 7dq— — ———O(wp — |io,)). (D3)
2UiViw; 4= Jo [Gw, + w)* — ¢*l[(iw, — )= — g=]
Performing the Matsubara sum and some algebra gives
1 H+wp 3 — _
N —— / 2dq 2= ann (u) (D4)
TUViwit Jy-ap q— K T
Shifting g by u results in a symmetric integration range and causes several terms to vanish. We are then left with
2 ,
% > tanh(q/2T)
th.’““‘ = 2—/ dg————. (D5)
6 UjVj Wi J—wp
Forwp > T,
2
bulk K [in (52) + o] D6
X 372 (u; X v;) - Wil 2T ] (D6)
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