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Topological Floquet flat bands in irradiated alternating twist multilayer graphene
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We study the appearance of topological Floquet flat bands in alternating-twist multilayer graphene, which has
alternating relative twist angle ±θ near the first magic angle. While the system hosts both flat bands and a steep
Dirac cone in the static case, the circularly polarized laser beam can open a gap at the Moiré K point and create
Floquet flat bands carrying nonzero Chern numbers. Considering recent lattice-relaxation results, we find that the
topological flat band is well-isolated for the effective interlayer tunneling in n = 3, 4, 5 layers. Such dynamically
produced topological flat bands are potentially observed in the experiment and thus provide a feasible way to
realize the fractional Chern insulator.
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I. INTRODUCTION

Recent progress in twisted bilayer graphene (TBG) puts
graphene back to the center of condensed matter physics
because of the discovery of strong correlation and super-
conductivity in such systems [1–3]. These exotic phenomena
appear to be related to the presence of flat bands, which
is a result of the flattening of Dirac cones at certain spe-
cial twist angles, called magic angles [4,5]. Around charge
neutrality, interaction effects are enhanced by van Hove sin-
gularities coming from the nearly flat bands at these magic
angles. On the other hand, the flat bands in TBG are gener-
ally topologically nontrivial, even in the absence of spin-orbit
coupling [6–10]. A lot of studies were done to explore the
topological feature in the mini Brillouin zone from the large
Moiré superlattice [6–8,11,12]. These narrow enough topo-
logical flat bands are particularly relevant to various exotic
fractional quantum Hall effects [13–16]. However, the small
magic angle and coupling ratio between intrasublattice and
intersublattice hopping parameters make the realization of a
fractional Chern insulator in TBG remains elusive.

Recently, people have turned their attention to multilayer
graphene systems [17–22]. For example, alternating-twist
multilayer graphene (ATMG) is a promising platform to
realize phases seen in TBG [18,23–27], in which the nearest-
neighboring layers are aligned and have alternating relative
twists of ±θ . Remarkably, it can be mapped exactly to a
sequence of decoupled TBG subsystems (plus single-layer
graphene) for an odd (even) number of layers [28–30]. Topo-
logical phases not only have been experimentally observed
in other multilayer systems, including ABC trilayer graphene
on a hexagonal boron nitride [31–35] and twisted double-
bilayer graphene [36–39], they also have been found in ATMG
under an in-plane magnetic field and out-of-plane electric
field [28]. However, after decomposition, the intrasubsystem
interaction of the electromagnetic fields vanishes in odd-layer
ATMG or decays with increasing layer numbers in even-layer
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ATMG [28]. To adjust the intrasubsystem coupling, it is nec-
essary to utilize other experimental techniques.

Optical engineering of the physical properties of a solid
is a highly controllable method. In particular, strong circu-
larly polarized light driving opens the gap between bands by
periodically changing the Hamiltonian and can be described
by Floquet theory [40–50]. Its application can be dated back
to the utilization of photons to open the gap in the Haldane
model [51]. Furthermore, the Floquet method has been gen-
eralized to TBG-related systems [52–63]. Interestingly, it has
been found that Floquet engineering makes the low-energy flat
band topological [52–57]. Thus, it is worthwhile to investigate
ATMG under the driving of circularly polarized light.

In this paper, we study the effect of circularly polarized
light on ATMG. Interestingly, we find that, under the high-
frequency limit, irradiated ATMG can be mapped to irradiated
bilayer subsystems (plus a irradiated single layer), as illus-
trated in Fig. 1. This mapping is similar to those with an
electric field or a magnetic field [28–30], but there is no
decay factor rescaling the light field. In particular, despite
the existence of a Dirac cone at the KM point, the light field
induces gap opening and isolates the central Floquet band (see
Fig. 2), and thus changes the topology of the flat band. The
model is given in Sec. II and the mapping is presented in
Sec. III. In Sec. IV, we calculate the Floquet band spectrum
in trilayer graphene and show the existence of the Floquet
topological flat band. The numerical results for n = 4, 5 layers
are presented in Sec. V. Since the coupling ratio u is layer
dependent and sensitive to lattice relaxation in ATMG [28,64],
we check the existence of Floquet topological flat band at the
first magic angle and its corresponding effective u in different
layers. The advantages of the Floquet method on ATMG are
addressed in the Conclusion in Sec. VI.

II. MODEL

Now we consider a general system of n-layer ATMG ir-
radiated by a beam of circularly polarized light. The relative
twist between two neighboring layers has the same magnitude
but alters in sign (±θ ). Here, the relative displacement is
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FIG. 1. Illustration of decomposition of ATMG irradiated by circularly polarized light A(t ) = A(cos �t, sin �t ) into TBG and graphene
subsystems for n = 3, 4, 5 layers. The light is marked by the yellow arrow. For n = 4, the intersubsystem coupling ratio is φ = 1+√

5
2 and its

inverse. The terms generated by the light field act within subsystems. Inset: The Moiré Brillouin zone.

neglected since the zero shift configuration is energetically
favorable [28]. The electromagnetic vector potential of the
light is given by A(t ) = A(cos �t, sin �t ), with t the time, �

the frequency, and A the field strength. The multiplication of
� and A is the electric field amplitude, E = �A.

The low-energy physics of the system for one of the valleys
can be modeled by

H (t ) =

⎡
⎢⎢⎢⎣

hθ/2(t ) T 0 · · ·
T† h−θ/2(t ) T† · · ·
0 T hθ/2(t ) · · ·
· · · · · · · · · · · ·

⎤
⎥⎥⎥⎦, (1)

where hθ/2(t ) = vF [−ih̄∇ − eA(t )] · σθ/2, with rotated Pauli
matrices σθ/2 ≡ e−iθσz/4(σx, σy)eiθσz/4 and Fermi velocity vF ,
is the low-energy Dirac Hamiltonian of a valley of a single
graphene sheet twisted by angle θ/2. The time-dependent
electromagnetic potential A(t ) is introduced into the Hamilto-

FIG. 2. The schematics of low-energy band structure of n = 3
ATMG near KM point at a magic angle. The static (Floquet) bands
E ′s (ε ′s) are represented by dashed (solid) lines. The first (second)
lowest energy level E1 and ε1 (E2 and ε2) in blue (yellow) are from
the TBG (graphene) subsystem. The gap opening of the first (second)
lowest energy level at KM point is marked by the blue (yellow) region
�1(2) = ε1(2) − E1(2). The distance from the lowest static (Floquet)
bands to zero energy is denoted by E1g/2 (ε1g/2). The gap between
the two static (Floquet) bands is denoted by E2g (ε2g). Note that
particle-hole asymmetry is not considered here.

nian by way of minimal substitution. The interlayer tunneling
matrix T = ∑3

n=1 Tne−ikθ qn·r, with

Tn = wAAσ0 + wABqn · σπ/2, (2)

where the unit vectors q1 = (0,−1), q2,3 = (±√
3/2, 1/2)

encode the tunneling wAA and wAB between the AA- and AB-
stacked regions of the TBG. kθ = 8π sin(θ/2)/3a is the wave
vector of the Moiré pattern and a is the Bravais lattice spacing
of graphene.

In the Floquet theory, the periodically changed vec-
tor potential modifies the static Hamiltonian to Hk(t ) =
Hk(t + T ). One focuses on quasienergies εks and periodi-
cally changed Floquet modes |φks(t )〉 = |φks(t + T )〉, where
T is the period and k is the crystal momentum, by solving
the Floquet-Schrödinger equation [Hk(t ) − ih̄∂t ]|φks(t )〉 =
εks|φks(t )〉. The quasienergies fall into a so-called Floquet
zone with size h̄� similar to the concept of the Brillouin
zone but in the time dimension. The relation between Flo-
quet modes |φks(t )〉 and the wave function governed by the
time-dependent Schrödinger equation |φks(t )〉 is |φks(t )〉 ≡
eiεkst/h̄|ψks(t )〉.

The simulation parameters are chosen from the experimen-
tally known electronic structure [65] as follows: a = 2.4 Å,
h̄vF /a = 2.425 eV, and wAB = 112 meV. Correspondingly,
α ≡ wAB/h̄vF kθ = 1.1×10−2/2 sin(θ/2) is a function of the
twist angle θ . Throughout this paper, the laser parameters are
chosen to be A = 0.08a−1 and � = 6 eV/h̄, which are ex-
perimentally attainable. Under this circumstance, the relevant
energy scales of the low-lying bands are much lower than the
Floquet sidebands, and thus the admixture with the Floquet
sideband can be neglected in our following discussions.

The interlayer tunneling around the magic angle is af-
fected by atomic relaxation. Especially, this relaxation effect
becomes stronger with the number of layers being increased
[28,66]. The relaxation of atoms in multilayer geometry will
decrease the interlayer distance at AB stacking and increase
the one at AA stacking. This reduces the AA tunneling w0 and
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increases the AB tunneling w1, and thus changing their ratio
u = w0/w1. In trilayer graphene (n = 3), the first-principles
calculation gives the value of the first magic angle θ = 1.49◦
and the effective u = 0.585. For n = 4, 5, the distinction be-
tween tunneling at inner and outer interfaces changes the
value of the magic angle. For n = 4, the value of the first
magic angle is θ = 1.68◦ and the effective u = 0.614. For n =
5, the second magic angle is within reach. The value of the
first and second magic angles are θ = 1.79◦ and θ = 1.14◦,
and the corresponding effective u are 0.627 and 0.45 [28].

III. THE REDUCTION OF EFFECTIVE HAMILTONIAN
IN THE HIGH-FREQUENCY LIMIT

In the high-frequency limit, light does not directly
excite electrons and instead effectively modifies the elec-
tron band structures. Its influence can be represented by
an effective static Hamiltonian �HF = ih̄/T logU , where
U = T exp[−i/h̄

∫ T
0 H (t )dt] is the time-evolution opera-

tor, with T being the time-ordering operator. For A2 � 1,
we consider the δHF = [H (−1), H (1)]/h̄�. Here, H (n) =∫ 1

0 e−2π inτ H (2πτ/�)dτ for n = 0, 1, 2, . . . are the Fourier
components of the periodic Hamiltonian.

Now we have the effective Hamiltonian HF = H (0) + δHF ,
where H (0) the static part with A being set to zero and the
modification part being

δHF = B(1 ⊗ σz ). (3)

Here, B = (evF A)2

h̄�
and 1 is an n-dimensional identity matrices

for an n-layer system. σz is a Pauli matrix acting on the
individual layer’s sublattice degree of freedom and thus breaks
time-reversal symmetry.

Following a similar procedure in static systems [29], we
continue to decompose the effective Hamiltonian HF for n =
3, 4, 5 layers irradiated ATMG using a unitary transforma-
tion. The transformation V is a 2n-dimensional transformation
matrix, which is given in Refs. [29,64]. Using the unitary
transformation on the static part and the modification part
of HF separately, we have V T (H (0) + δHF )V = V T H (0)V +
V T δHFV .

After the transformation, the static Hamiltonian generates
a TBG subsystem H1. For different layers of ATMG, the
remaining subsystems H2,H3, . . . that arise from the static
Hamiltonian can be graphene, non-TBG, or their combina-
tions. For the modification part, since V is independent of
the sublattices, the transformation leaves δHF unchanged,
that is, V T δHFV = δHF . From the fact that the modification
parts can be written as a direct sum of σz terms, δHF =
B(σz ⊕ σz ⊕ · · · ), we have

Hdec = (H1 + Bσ0 ⊗ σz ) ⊕ (H2 + Bσ0 ⊗ σz ) ⊕ · · · . (4)

For TBG, the corresponding term becomes Hi + Bσ0 ⊗ σz.
For single-layer graphene, the corresponding term becomes
Hi + Bσz. From Eq. (4), the effect of a beam of circularly
polarized light on the ATMG can be presented by multi-
ple independent beams of circularly polarized light on each
subsystem, as shown in Fig. 1. One of the remarkable con-
sequences is that the δHF modifies the low-energy electron
band structure. To illustrate the effect of light, we consider a

three-layer ATMG as shown in Fig. 2. We focus on the two
lowest positive energy bands. For static bands (E ′s), while
the lowest one (E1) is a flat band in the TBG subsystem, the
second one from the other subsystem (E2) hosts a Dirac cone
at the KM point. The effect of light on the two subsystems can
be shown by the shifts of the two lowest Floquet energy levels
(ε′s). Actually, as evident in Fig. 2, the gap openings in the
low-energy subsystems at the KM point isolate the central Flo-
quet band ε1. The band gap between the positive and negative
central Floquet bands ε1g is nonzero and is twice the distance
between ε1 and zero energy ε1g/2 = E1g/2 + �1, with �1

being the gap opening of the lower energy level in TBG
subsystem. For the band gap above the positive central Floquet
band ε2g, we should discuss u = 0 and u > 0 cases separately.
In the chiral limit (u = 0), the static bands E1 and E2 touch
each other at zero energy, i.e., E1g = 0. The Floquet band gap
ε2g = �2 − �1. The shift of the Dirac cone under Bσz term
is �2 = B. �1 can be calculated from the eigenenergies of
δHF as B. Thus, the ε2g gap keeps closing at KM points for
u = 0. In contrast, for u > 0, ε2g = �2 − �1 − E1g/2. �2 is
independent of u and always equal to B. In TBG system, ε1g =
2�1 + E1g is always smaller than the value at zero u [52],
which means ε1g < B. Therefore, for finite u, �1 + E1g/2 is
smaller than �2 and leads to the opening of gap ε2g.

From the above analysis, we can see that the polarized light
on the ATMG opens the gaps ε1g and ε2g at the KM point and
isolate the flat band with u > 0. This can be generalized to
ATMG with n > 3.

Actually, the phase difference φ0 between the x and y
components of the circularly polarized light can be differ-
ent, which is the elliptically polarized light case A(t ) =
(Ax cos �t, Ay cos(�t + φ0)). In this case, the above analy-
sis can also be true with the factor in Eq. (3) being B =
(evF )2AxAy

h̄�
sin φ0, except for the linearly polarized case in which

φ0 = 0 leads to the vanishing of the δHF term.

IV. THE TRILAYER CASE (n = 3)

To check the isolation of the central Floquet band, we now
examine the n = 3 ATMG Floquet spectrum numerically.

The Floquet spectrum can be calculated numerically by the
Hamiltonian Eq. (1) via the Floquet-Schrödinger approach.
The Floquet spectrum shown in Fig. 3(a) is at the first magic
angle and the corresponding tunneling ratio chosen from
the lattice relaxation result. The spectrum exhibits apparent
electron-hole asymmetry due to the relaxation [10]. Similar
to the TBG case, the hole side gets much wider than the
electron side. The positive (negative) central Floquet energy
bands ε1+(−) corresponds to the lower band of the TBG sub-
system. And the Floquet band next to the central one ε2+(−)

corresponds to the graphene subsystem and hosts a steep Dirac
cone at KM point, which is absent in TBG system.

While the gap opening at the KM point for finite u is proved
in the last section, the indirect gap between the minimum
value of ε2+ and the maximal value of ε1+ is not always
opened. Figure 3(a) shows that the minimal of ε2+ at �M point
is lower than the maximal value of ε1+ at KM point, giving
a negative indirect gap. Thus, we should use the direct gap
instead of the indirect one to characterize the band feature.
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FIG. 3. (a) The band structure of irradiated trilayer ATMG at
the first magic angle α = 0.425 and the corresponding effective
interlayer tunneling u = 0.585, which is pointed out by a red star in
Fig. 4(c). The central bands are nontrivial and have Chern number
±4. (b) The band structure of irradiated trilayer ATMG at a gap
closing point (α, u) = (0.5, 0.8024), which is pointed out by a black
arrow in Fig. 4(d). The red circle marks the ε2+g gap closing, indicat-
ing the central band ε1+ trivial. The laser frequency and electric field
are set at h̄� = 6 eV and E = 2×104 kV/cm.

A numerical calculation of Chern numbers at (u, α) =
(0.585, 0.425) [Fig. 3(a)] gives a nontrivial topological
number ±4. This can be understood from the fact that
time-reversal breaking induces valley and spin degeneracies
in the irradiation ATMG system, similar to the TBG case
[52]. In Fig. 3(b), for (u, α) = (0.5, 0.8024), however, a gap
closing takes place at the �M points and gives a trivial Chern
number. Thus, it is necessary to investigate the band features
under different effective interlayer tunneling u and twist
angle α.

Now we show the phase diagrams for the bandwidth and
band gaps of the central Floquet band. The bandwidth of the
two central bands is shown in Fig. 4(a), sharing many similar-
ities to the irradiated TBG. In particular, the irradiated ATMG
has advantages over static cases. First, the flat bands exist over
a wider range of twist angles. This is true in both regions:
the one around the magic angle (α = 0.425) in the whole
range of u and the one at α > 0.425 and large u. Second, the
bandwidths of the lowest energy bands in the irradiated case
are smaller than those in the static case. This is obvious near
the chiral limit (u < 0.2) and small twist angle (α > 0.5). The
most important characteristic of n = 3 ATMG is that the flat
band regions are at larger twist angles than irradiated TBG.
This can be understood from the fact that the magic angle of
three-layer ATMG is

√
2θTBG, which is larger than the one

of TBG.

FIG. 4. (a) The bandwidth for the central band ε0, (b) the Floquet
band gaps between central bands ε1g, (c) the Floquet band gaps
between the central negative band and the next band ε2−g, and (d) the
Floquet band gaps between the central positive band and the next
band ε2+g as a function of twist angle and the ratio of interlayer
tunneling u. In (c) and (d), the red star denotes the first magic angle
and its corresponding u from lattice relaxation. The laser parameters
are the same as in Fig. 3.

Before searching the topological region of the flat band,
we should find the band isolation regions by calculating the
band gaps. The gap ε1g can be seen in Fig. 4(b). It becomes
smaller with increasing u but remains nonvanishing in the
entire region. This is consistent with the TBG case since the
ε1+(−) bands belong to the TBG subsystems.

The situation for the ε2g gap is more complicated. Due to
the electron-hole asymmetry, the ε2+g and ε2−g gaps for the
electron and hole parts are not the same. Figure 4(c) exhibits
fewer dark regions, which correspond to fewer gap closings.
This can be understood from the fact that the hole part of the
spectrum is wider than the electron part.

For the ε2−g gap, we found two gap closings. The first gap
closing at KM point is around the chiral limit u = 0, as dis-
cussed in Sec. III. As the interlayer tunneling ratio increases,
another gap closing appears at the �M point for large u, as
given in Fig. 3(b). The region between the two gap closings
is topological. Remarkably, the flat band at the first magic
angle and its corresponding effective interlayer ratio from
lattice relaxation calculation falls into this topological region
(marked by a red star).

For the positive energy, the phase diagram of ε2+g

[Fig. 4(d)] exhibits two additional gap closings at the �M point
for smaller twist angles closing to u = 1. They are very close
to the gap closings in the TBG case (see Fig. 3(b) in Ref. [52])
with a

√
2 amplification factor on the y axis.

Therefore, although the gap closings at the �M point make
the phase diagram for n = 3 ATMG more complicated, they
have no influence on the existence of the topological isolated
flat bands at the first magic angle, whose twist angle is larger
than the one of TBG.
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FIG. 5. The bandwidth and band gap for n = 4 layer. The labels
and laser parameters are the same as in Fig. 4.

V. n = 4, 5

For an ATMG system with more layers, more subsystems
appear after decomposition. We should look at their influences
on the central Floquet bandwidth and band gaps.

According to the discussion in Sec. III, we know that the
laser field opens gaps in the TBG subsystem for ATMG with
different layer numbers. Most importantly, for ATMG, except
the interlayer tunneling, both the laser parameter B = (evF A)2

h̄�

and intralayer tunneling in the TBG subsystem do not depend
on the layer number. We expect that the bandwidth δε0 and the
band gap ε1g phase diagram in Figs. 5(a), 5(b), 6(a), and 6(b)
are similar to the bilayer and the trilayer cases.

Actually, the increment of subsystems changes the ε2g gap.
The ε2−g gap for n = 4 and n = 5 are shown in Figs. 5(c) and
6(c). As a result of particle-hole asymmetry, the ε2+g gap is
more complicated and is shown in Figs. 5(d) and 6(d). For
n = 4, the ATMG decomposes into a TBG subsystem and a
nonmagic TBG subsystem. The nonmagic TBG subsystem,
which is away from the magic angles, hosts Dirac cones at
KM and K ′

M points. When these Dirac cones touch the lowest
energy level ε1, they close the band gap ε2−g. This is similar
to the effect of the Dirac cone of the graphene subsystem in
the trilayer system. In Fig. 5(d), we can see that the ε2+g gap
closing changes the phase diagram. However, the ε2+g gap at
the first magic angle is opened, and thus the central band is
topologically nontrivial.

For the n = 5 case, there are a non-TBG subsystem and
a graphene subsystem besides the TBG subsystem. The ap-
pearance of Dirac cones in either the nonmagic TBG or the
graphene subsystem closes the ε2g gap. As a result, a more
complicated phase diagram is found in Figs. 6(c) and 6(d).
The bands at the two first magic angles are in the gapped and
topological phases.

FIG. 6. The bandwidth and band gap for n = 5 layer. The labels
and laser parameters are the same as in Fig. 4. In (c) and (d), the red
and blue stars denote the first and the second magic angles and their
corresponding u from lattice relaxation.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated irradiated ATMG at
charge neutral. By mapping the multilayer system into a
direct sum of bilayer systems (plus a single-layer system),
we have shown that the laser field opens gaps between the
central Floquet flat bands and between the ones next to them
for u > 0. Numerical results of n = 3, 4, 5 further show that
the gap opening makes the Floquet flat bands topological in
certain twist angle and tunneling ratio regions despite the
complicated gap closing features at KM and �M points induced
by the coexisting Dirac cones. These findings extend the Flo-
quet study on TBG and other multilayer graphene systems,
confirming the existence of the topological Floquet flat band
in ATMG.

Floquet engineering ATMG is a promising platform to
realize the Floquet fractional Chern insulators, which can be
seen in two ways. First, compared to other multilayer systems
studied in the literature, the flat band in ATMG is more stable.
Distinguishing from ABC trilayer graphene stacked on hexag-
onal boron nitride or twisted double bilayer graphene, does
not exhibit magic angles or flat bands when realistic effects,
e.g., trigonal warping terms, are included. Most notably, we
study the ATMG by decomposing it into several subsystems
and find that the coupling of the laser field to the system is
intrasubsystem and does not decay with the increasing layer
number, which is more controllable to open gaps than other
techniques.
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