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Band gaps of insulators from moment-functional-based spectral density functional theory
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Within the method of spectral moments it is possible to construct the spectral function of a many-electron
system from the first 2P spectral moments (P = 1, 2, 3, . . . ). The case P = 1 corresponds to standard Kohn-
Sham density functional theory (KS-DFT). Taking P > 1 allows us to consider additional important properties of
the uniform electron gas (UEG) in the construction of suitable moment potentials for moment-functional-based
spectral density functional theory (MFbSDFT). For example, the quasiparticle renormalization factor Z , which
is not explicitly considered in KS-DFT, can be included easily. In the four-pole approximation of the spectral
function of the UEG (corresponding to P = 4) we can reproduce the momentum distribution, the second spectral
moment, and the charge response acceptably well, while a treatment of the UEG by KS-DFT reproduces from
these properties only the charge response. For weakly and moderately correlated systems we can reproduce
the most important aspects of the four-pole approximation by an optimized two-pole model, which leaves out
the low-energy satellite band. From the optimized two-pole model we extract parameter-free universal moment
potentials for MFbSDFT, which improve the description of the band gaps in Si, SiC, BN, MgO, CaO, and ZnO
significantly.
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I. INTRODUCTION

Density functionals for KS-DFT are often constructed from
the exchange-correlation energy of the UEG [1,2]. Several
other important properties of the UEG, such as the quasipar-
ticle renormalization factor Z [3], the effective mass m∗, the
Landau liquid parameters, the momentum distribution func-
tion nk [4], and the spectral moments [5] are not built in
explicitly into KS-DFT. In particular, KS-DFT uses Z = 1
by construction. In order to obtain realistic Z factors KS-
DFT may be combined with many-body techniques such as
DMFT [6,7]. Within DMFT the effective mass enhancement
is correlated with the inverse quasiparticle renormalization
factor, m∗/m = Z−1 [8], and consequently DMFT predicts
many-body corrections of this quantity as well.

There are several reasons why standard KS-DFT uses only
the exchange-correlation energy of the UEG explicitly, while
not employing additionally any other of its many well-studied
properties directly. The most important reason is that the
Hohenberg-Kohn theorem establishes a direct relation be-
tween the exchange-correlation energy of the UEG and the
one of the real solid studied by KS-DFT [9,10], while such
relations have either not been suggested for other properties of
the UEG, or, in the case where they have been suggested, their
validity is still under debate or the exact form of the relation is
unknown. For example, several works suggested that the band
narrowing found in experiments and calculations of the alkali
metals [11] can be explained by a band narrowing found in
earlier theories of the UEG [12]. However, recent work [3]
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finds the band narrowing in the UEG to be much smaller than
in the earlier calculations, which suggests that for this quantity
there might not be a useful relation between the UEG and
realistic materials.

On the other hand, it seems plausible that the Z renor-
malization factor of quasiparticles at the Fermi surface of a
realistic material might be related to its counterpart in the
UEG. One reason why Z cannot be included explicitly into
standard KS-DFT is that only one effective potential is used
there, which takes into account only the lattice potential, the
Coulomb potential, and the exchange-correlation potential.

Recently, we have suggested a moment-functional-based
spectral density functional theory (MFbSDFT) [13], which
computes the spectral function matrix Snm(E ) from its spectral
moment matrices

M (I )
nm = 1

h̄

∫
d EEI Snm(E ), (1)

where I = 1, 2, 3, . . . . The key assumption of this approach is
that the spectral moment matrices M (I )

nm can be computed from
the KS-Hamiltonian without correlation, i.e., only with the
local exchange, and additional correction terms M (I+)

nm , which
can be obtained from moment potentials V (I+)(r):

M (I+)
nm =

∫
d3rV (I+)(r)[φn(r)]∗φm(r), (2)

where φn(r) are orthonormalized basis functions. We have
suggested [13] that these moment potentials V (I+)(r) are likely
to be given by universal functionals of the charge density,
similar to the exchange correlation functional.

In practical calculations one will have to choose the maxi-
mal I in Eq. (1), i.e., one will choose I � 3, or I � 5, or I � 7,
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or I � 9, . . . . By increasing the maximum I one increases
the precision of MFbSDFT. By increasing the maximum I
one may also employ more and more properties of the UEG
through the additional moment potentials. For example, I � 1
requires Z = 1, but already with I � 3 it is possible to impose
Z � 1. However, the moment potentials V (I+)(r) with high I
are still unknown. For I = 1 and I = 2 they may be obtained
from models of the spectral moments of the UEG [5].

When MFbSDFT is implemented within a second variation
scheme in FLAPW [13–15], the number N of basis functions
used [the number of φn in Eq. (2) and the number of rows and
columns of M (I+)] can be significantly smaller than the total
number of FLAPW basis functions. Since a PN × PN matrix
has to be diagonalized in the MFbSDFT step, the computer
time requirement of which scales like ∝ (PN )3, the overall
computational burden is similar to a standard KS-DFT calcu-
lation as long as PN does not exceed the number of FLAPW
basis functions.

In Ref. [16] we have suggested computing M (3+)
nm from

the momentum distribution function nk of the UEG when the
second moment correction M (2+)

nm is known. We have shown
that this may improve the spectra in comparison to standard
KS-DFT in some cases. In Ref. [16] we considered nk only in
the vicinity of the Fermi surface. In the present work we refine
the approach of Ref. [16] further; notably we pay attention
to the normalization of nk and to its integral up to the Fermi
wave number kF. We show that these properties of the UEG
can be reproduced when it is modeled within the four-pole
approximation. Since the quasiparticle renormalization factor
Z in the UEG is related to the discontinuity of nk at kF [17],
our four-pole model also includes Z by construction. Our
four-pole model may be used to obtain moment potentials for
I � 7.

There are many cases where KS-DFT does not predict the
spectral properties satisfactorily. In fact, apart from the highest
occupied KS eigenvalue in finite systems, which in principle
predicts the negative ionization energy, the KS eigenvalues
have no mathematically rigorous relation with the experimen-
tal spectra within KS theory [18]. Notably, the KS-band gap in
insulators deviates often substantially from experiment [19].
In strongly correlated materials the upper and lower Hubbard
bands may be missing in the KS spectrum [20,21]. Even in
simple metals such as Na and K the bandwidths may differ
significantly from experiment [11]. To improve all these spec-
tral properties by MFbSDFT might be possible, but this would
require a sufficient number of moment potentials V (I+)(r) with
sufficient accuracy, which are not available yet.

However, band gaps can often be corrected by LDA +
U , while missing upper or lower Hubbard bands or wrong
bandwidths often cannot be corrected easily by LDA + U .
Correcting the band gap may therefore define a goal that
can be achieved by MFbSDFT with a minimum number of
moment potentials. If universal moment potentials can be
found that correct the band gap in many insulators, it corrob-
orates the key assumptions of the MFbSDFT approach. We
show in this work that this is indeed the case: Already the
moments with I � 3 are sufficient to correct the band gap in
many insulators. This provides a strong motivation to develop
suitable models also for the higher spectral moments of the
UEG in order to reproduce the experimental bandwidths and

upper and lower Hubbard bands in future improvements of the
MFbSDFT method.

The rest of this paper is structured as follows: In Sec. II A
we explain how higher spectral moments may be expressed
in terms of lower spectral moments and additional correction
terms. Additionally, we introduce the zero-band-narrowing
approximation of the UEG. In Sec. II B and in Sec. II C
we discuss in detail the three-pole and four-pole approxi-
mations of the UEG, respectively. In Sec. II D we describe
an (n + 1)-pole approximation of the UEG, which further
improves the description in particular of nk . In Sec. II E we
explain how the two-pole approximation can be optimized for
weakly and moderately correlated systems by leaving out the
low-energy satellite band. In Sec. III we present the results of
first-principles MFbSDFT calculations based on the moment
potentials obtained from these models of the UEG. This paper
ends with a summary in Sec. IV. In the Appendixes we discuss
how to obtain M (2+) from the model developed in Ref. [5]
(Appendix A) and how to compute the spectral function from
the first six spectral moments (Appendix B).

II. THEORY

A. Expressing spectral moments in terms of lower spectral
moments and correction terms

The matrix elements of the spectral moment M (1) are given
by [13]

M (1)
nm = Tnm + V H

nm + V X
nm, (3)

where

Tnm =
∫

d3rφ∗
n (r)

[
− h̄2

2m
� + V (r)

]
φm(r) (4)

comprises the kinetic energy and the crystal potential V (r),
V H

nm are the matrix elements of the Hartree potential, and

V X
nm = − h̄2

ma2
B

(
3

2π

) 2
3
∫

d3rφ∗
n (r)φm(r)

1

rs(r)
(5)

are the matrix elements of the local exchange potential, where

rs(r) = 1

aB

[
3

4πne(r)

] 1
3

(6)

is the dimensionless density parameter [17], and aB is the
Bohr radius. rs depends on the position r through the electron
density ne(r).

We express the second moment matrix M (2) in terms of the
square of the first moment matrix M (1) and the correction term
M (2+) [13]:

M (2) = [M (1)]2 + M (2+). (7)

The correction term M (2+) may be computed from the mo-
ment potential V (2+) according to Eq. (2). A model for V (2+),
which has been derived from the spectral moments of the
UEG, is described in the Appendix A.

In Ref. [13] we suggested using

M (3) = [M (1)]3 + M (3+), (8)
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TABLE I. Minimal (rs,min) and maximal (rs,max) values of the
dimensionless density parameter rs in the MFbSDFT calculations.
Deviation �E gap

PBE = E gap
PBE − E gap

exp of the band gap obtained with
KS-DFT (E gap

PBE) from the experimental band gap (E gap
exp ). Deviation

�E gap
SDFT = E gap

SDFT − E gap
exp of the band gap obtained with MFbSDFT

(E gap
SDFT) from the experimental band gap (E gap

exp ). Large relative errors
|�E gap

PBE/E gap
exp | tend to occur when rs,max is large.

rs,min rs,max �E gap
PBE/E gap

exp �E gap
SDFT/E gap

exp

C 0.12 2.44 4% −6%
Si 0.05 4.28 −49% 4%
SiC 0.05 3.29 −41% 19%
BN 0.1 5.07 −29% −6%
MgO 0.059 2.72 −38% −11%
CaO 0.03 3.32 −48% −13%
ZnO 0.019 3.72 −73% 2%

and we have shown that the spectra can be improved in some
cases using this expression. However, Eq. (8) is not the only
possible form that one may suggest. For example,

M (3) = 1
2 M (1)M (2) + 1

2 M (2)M (1) + M (3+) (9)

is a priori also a possible form.
When we describe the UEG with the method of spectral

moments and set M (2+) and M (3+) to k-independent constants
(in the UEG the M (I+) are real-valued numbers and not ma-
trices; therefore we do not use boldface when M (I+) or M (I )

refers to the UEG) we find that, e.g., the band narrowing may
differ depending on whether Eq. (8) or Eq. (9) is used, because
in general

M (1)M (2) �= [M (1)]3. (10)

For given M (1), M (2), and M (3) Eq. (8) and Eq. (9) can
be solved for M (3+). Therefore, if we used a k-dependent
M (3+) we could obviously obtain the same results from
both Eq. (8) and Eq. (9) [clearly the M (3+) to be used together
with Eq. (8) would differ from the M (3+) to be used together
with Eq. (9) in order to obtain the same M (3) for given M (1)

and M (2)]. However, when we choose M (3+) to be independent
of k the question arises whether Eq. (8) or Eq. (9) is the better
alternative.

More generally, we might even consider

M (3) = γ

2
M (1)M (2) + γ

2
M (2)M (1) + (1 − γ )[M (1)]3 + M (3+)

(11)

with a parameter γ that could be chosen to optimize the
results. For example, one might determine γ so that the band
narrowing of the UEG is reproduced as well as possible by the
method of spectral moments with k-independent M (I+).

At rs = 4 the band narrowing in the UEG is only 4%–7%
according to the variational diagrammatic Monte Carlo cal-
culations of Ref. [3]. However, values of the band narrowing
for the full range of variation of rs (see Table I) as used in
first-principles calculations have not yet been published for
the variational diagrammatic Monte Carlo method. For small
band narrowings that do not exceed 4%–7% it is plausible that
a zero-band-narrowing approximation of the UEG may yield
useful results. It will become clear in Secs. II B, II C, and II D

that it is indeed very instructive and insightful to develop and
to investigate such a zero-band-narrowing approximation of
the UEG.

Interestingly, it is rather easy to determine the coefficient γ

in Eq. (11) so that the band narrowing is precisely zero. The
basic observation is that we may rewrite Eq. (7) as follows:

M (2+) = M (2) − [M (1)]2

= 1

h̄

∫
[E − M (1)]2S(E )dE . (12)

Generalizing this expression to I = 3 we obtain

M (3+) = 1

h̄
Re

{∫
[E − M (1)]3S(E )dE

}

= M (3) + 2[M (1)]3 − 3
2 [M (2)M (1) + M (1)M (2)], (13)

where we define the real-part of a matrix A as

ReA = 1
2 [A + A†]. (14)

Using Eq. (14) ensures that the spectral moment correction
is Hermitian. Comparing Eq. (13) to Eq. (11) we find that
they become equivalent when we set γ = 3. In practice, M (2+)

and M (3+) are computed from suitable moment potentials
according to Eq. (2). Next, one computes M (2) from Eq. (7).
Finally, one computes M (3) from Eq. (13). When one uses
this recipe to compute the band structure of the UEG, one
finds numerically that the band narrowing is zero. It is likely
that this zero-band-narrowing property can also be proven
analytically, which we leave for future work.

This recipe produces also a zero band narrowing in the
UEG when we include more moments. For I = 4 we have

M (4+) = 1

h̄
Re

[∫
[E − M (1)]4S(E ) dE

]

= M (4) − 4Re[M (3)M (1)] + 6Re[M (2)[M (1)]2]

− 3[M (1)]4, (15)

and for I = 5 we have

M (5+) = 1

h̄
Re

[∫
[E − M (1)]5S(E ) dE

]

= M (5) − 10Re[M (2)[M (1)]3] + 10Re[M (3)[M (1)]2]

− 5Re[M (4)M (1)] + 4[M (1)]5. (16)

Hence, the general expression is of the form

M (I ) = M (I+) +
I−1∑
J=1

γJ Re[[M (1)]JM (I−J )], (17)

which contains I − 1 coefficients γJ , which satisfy
∑I−1

J=1 γJ =
1. When these coefficients are determined according to the
expansion of Re[E − M (1)]I S(E ) as in the examples above,
the band narrowing is zero.

Interestingly, with these expressions not only the band
narrowing is zero in the UEG. Importantly, also the spectral
weights ak, j in the n-pole approximation

Sk (E ) = h̄
n∑

j=1

ak, jδ(E − Ek, j ) (18)
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of the spectral function of the UEG are k-independent when
the expressions above are used to obtain the spectral moments
M (I ) from k-independent moment corrections M (I+). In this
case the n bands Ek, j corresponding to the n poles are simply
parabolas,

Ek, j = h̄2k2

2m
+ E0, j, (19)

where the Gamma-point energies E0, j of the bands are deter-
mined by the moment corrections M (I+). When the spectral
weights ak, j are k-independent in Eq. (18), i.e., when ak, j =
a j , the spectral function Sk (E ) depends on k only through the
k-dependence of Ek, j .

In the next sections we discuss the three-pole and four-
pole approximations in detail and show that one may even
take the limit of an infinite number of poles. Thereby, we
show that as the number of poles increases one can repro-
duce more and more properties of the UEG. In particular,
the momentum distribution function, the second moment, and
the charge response are very well reproduced when the num-
ber of poles is sufficient (Sec. II D). In Secs. II B, II C, and
II D we will always use Eq. (13) and its generalizations to
higher I , e.g., Eq. (15) and Eq. (16); i.e., we will always
neglect the band narrowing. The observation that we may
reproduce the momentum distribution function, the second
moment, and the charge response therefore shows that the
zero-band-narrowing approximation suggested in this sec-
tion works very well for the UEG.

In future refinements of this approach one might include
the effect of the band narrowing in the UEG. In general, the
weights ak, j will then become k-dependent. Moreover, the
bands will then not simply be mutually shifted parabolas as
in Eq. (19). This will turn the mathematically very simple
recipes to construct the moment potentials for MFbSDFT as
presented in Secs. II B, II C, and II D into very complex high-
dimensional multivariate optimization problems, because the
necessary integrations can only be performed analytically
when the weights ak, j are k-independent and when the band
dispersions are available in a simple analytical form, such as
Eq. (19). However, this is only the case when the zero-band-
narrowing approximation is used.

The moment potentials V (I+) tend to become steeper and
steeper in rs with increasing I: An important contribution to
the moment potentials is [13]

V (I+)(r) = c(I+)

[rs(r)]I
+ · · · . (20)

When one evaluates the integral Eq. (2) within the FLAPW
method one expresses V (I+)(r) on a radial grid inside the MT
spheres. In the interstitial region one employs a representation
of V (I+)(r) in reciprocal space, which is obtained from a fast
Fourier transform. A priori one may therefore expect that the
convergence of the integral Eq. (2) may be hampered by the
steep increase from [rs]−I . However, there is a simple solution
to avoid this potential difficulty: We compute the moment po-
tentials V (I+)(rs) from the UEG as explained in the following
sections. Instead of using them directly in the integral Eq. (2)
we compute the Ith root:

V̄ (I+)(rs) = [V (I+)(rs)]
1
I . (21)

Using the Ith root moment potentials we first compute the
matrix elements

M̄ (I+)
nm =

∫
d3rV̄ (I+)(r)[φn(r)]∗φm(r), (22)

and from them we obtain the spectral moment corrections:

M (I+) = [M̄ (I+)]I . (23)

B. The three-pole approximation

In the three-pole approximation of the UEG the spectral
function Sk (E ) is given by

Sk (E ) = h̄
3∑

j=1

ak, jδ(E − Ek, j ), (24)

where ak, j and Ek, j are the spectral weights and the spectral
poles, respectively. This model predicts the momentum distri-
bution to be

nk =
3∑

j=1

f (Ek, j )ak, j . (25)

We assume that Ek,1 < EF, Ek,3 > EF, and EkF,2 = EF, i.e.,
only Ek,2 crosses the Fermi level EF at the Fermi wave number
kF. Consequently, setting akF,1 = nkF+ , akF,2 = nkF− − nkF+ and
akF,3 = 1 − nkF− in Eq. (25) ensures that we reproduce nkF+ ,
nkF− , and hence also the step Z = nkF− − nkF+ of nk at kF.
Suitable models for nkF− and nkF+ are given in Ref. [4]. They
can be used to determine the spectral weights akF, j at the Fermi
wave number.

Due to the assumption EkF,2 = EF we can determine the
energy of the second pole at the Fermi wave number by
the Fermi energy. When we model the UEG within KS-DFT
the band energy is given by

EKS
k = h̄2k2

2m
+ d

dne
[neExc(ne )], (26)

where Exc(ne ) is the exchange-correlation energy per particle
of the UEG with charge density ne. Consequently, KS-DFT
predicts the Fermi energy of the UEG to be EF = EKS

kF
, where

kF = (ᾱrsaB)−1 (27)

is the Fermi wave number, and ᾱ = [4/(9π )]1/3. EF as pre-
dicted by KS-DFT is consistent with the theorem of Seitz,
which relates the Fermi energy to the ground state energy per
particle Eg [17]:

EF = d

dne
[neEg(ne )]. (28)

Therefore, we may expect that KS-DFT predicts the Fermi
energy of the UEG sufficiently accurately. This provides us
with a relation for the energy of the second pole EkF,2:

EkF,2 = h̄2

2ma2
B

1

[ᾱrs]2 + V xc, (29)

where

V xc = d

dne
[neExc(ne )] (30)
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is the exchange-correlation potential.
The retarded Green’s function can be obtained easily from

the spectral function [22]:

Gk (E ) =
∫ ∞

−∞
dE ′ Sk (E ′)

E − E ′ + i0+

= h̄
3∑

j=1

a j

E − Ek, j + i0+ , (31)

where we set ak, j = a j , which is valid within the zero-
band-narrowing approximation of the UEG. Defining the
noninteracting retarded Green’s function by

G0,k (E ) = h̄

E − EKS
k + i0+ , (32)

we may compute the retarded self-energy from

�k (E ) = h̄
[
G−1

0,k − G−1
k

]
= E − EKS

k + i0+ − 1∑
j=1,3

a j

E−Ek, j+i0+
. (33)

We find

∂�kF

∂E

∣∣∣∣
E=EF

= 1 − 1

a2
. (34)

Consequently, the renormalization coefficient at E = EF is
[17]

ZF = 1

1 − ∂�kF
∂E

∣∣∣
E=EF

= a2 = nkF− − nkF+ . (35)

The Green’s function of the three-pole approximation yields
therefore a renormalization coefficient that is consistent with
the jump of the momentum distribution function. This cor-
roborates the overall consistency of our three-pole spectral
function.

Many applications of the method of spectral moments
[22–24] do not consider a finite imaginary part of the self-
energy. Similarly, in Eq. (31) and in Eq. (32) we use i0+
(where 0+ is a positive infinitesimal) only to ensure the
proper analytical behavior of the Green’s function. How fi-
nite imaginary parts of the self-energy may arise within the
method of spectral moments is a very interesting question.
Reference [25] has already suggested using Gaussians instead
of delta functions in the n-pole approximation as a possible
way. Before turning back to the discussion of the three-pole
approximation we describe in the following an alternative
perspective on the question of finite imaginary parts of the
self-energy within the method of spectral moments, because it
extends the discussion of Eq. (31) through Eq. (35) to the case
n → ∞, where n is the number of poles in the n-pole model,
which will be discussed again in Sec. II D.

The generalizations of Eq. (24) and Eq. (31) to n poles are

Sk (E ) = h̄
n∑

j=1

ak, jδ(E − Ek, j ) (36)

and

Gk (E ) = h̄
n∑

j=1

a j

E − Ek, j + i0+ . (37)

In the limit of n → ∞ the discrete spectral weights in Eq. (36)
turn into a continuous distribution function:

Sk (E ) =
∫ ∞

−∞
dE ′δ(E − E ′)Sk (E ′); (38)

i.e.,

h̄ak, j → Sk (E ′) (39)

and
n∑

j=1

→
∫ ∞

−∞
dE ′ (40)

are the transformations to be performed on Eq. (36) in order
to transform it from its discrete form into the continuous form
of Eq. (38). The continuous form of Eq. (37) is given by the
first line of Eq. (31). Thus, in the limit n → ∞ the n-pole ap-
proximation can describe any given spectral function, because
Eq. (38) is a trivial identity that holds for any given spectral
function, and the first line of Eq. (31) is generally valid as
well.

When a retarded Green’s function is given in the form

Gk (E ) = 1

E − Ek − �k (E )
, (41)

the spectral function can be obtained from [22]

Sk (E ) = − 1

π
Im[Gk (E )]

= − 1

π

Im[�k (E )]

{E − Ek − Re[�k (E )]}2 + {Im[�k (E )]}2 .

(42)

Therefore, in the limit n → ∞ the n-pole approximation be-
comes exact, and it can accommodate the finite imaginary part
of the self-energy, because the Green’s function in Eq. (41)
can be recovered from the first line in Eq. (31) when Eq. (42)
is inserted into it.

At the Fermi energy the imaginary part of the self-energy is
often zero. In those cases one can model the spectral function
by [17]

Sk (E ) = S̄k (E ) + aFkδ(E − EF), (43)

where S̄k (E ) is a smooth function of E . For E �=
EF Sk (E ) = S̄k (E ) can be obtained easily from Eq. (42) when
Im[�k (E )] < 0. In order to extract the coefficient aFk in
Eq. (43) at the Fermi wave number kF one may substitute

Im[�kF (EF)] → −
 (44)

when Im[�kF (EF)] = 0 and take the limit 
 → 0:

aF,kF
= − 1

π
lim
η→0

lim

→0

∫ EF+η

EF−η

Im[GkF (E )]dE

= lim
η→0

lim

→0

∫ EF+η

EF−η



π

dE

{E − Ek − Re[�kF (E )]}2 + 
2
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= lim
η→0

∫ EF+η

EF−η

δ{E − EkF − Re[�kF (E )]}dE

= 1

1 − ∂Re�kF (E )
∂E

∣∣∣
E=EF

, (45)

where EF = EkF + Re[�kF (EF )]. This result corresponds to
Eq. (35) in the limit n → ∞.

Now we return to the discussion of the three-pole model.
In order to determine the remaining two poles EkF,1 and EkF,3

we may employ the models for the spectral moments M (1)
k and

M (2)
k that have been developed in Ref. [5]. The first moment is

M (1)
kF

= h̄2k2
F

2m
− h̄2

ma2
B

(
3

2π

) 2
3 1

rs
, (46)

and the expressions for M (2)
kF

are given in Appendix A. This
provides us with the two equations

M (1)
kF

= akF,1EkF,1 + akF,2EkF,2 + akF,3EkF,3 (47)

and

M (2)
kF

= akF,1E2
kF,1 + akF,2E2

kF,2 + akF,3E2
kF,3 (48)

for the two yet unknown poles EkF,1 and EkF,3. In general these
equations have two solutions. However, due to the assumption
Ek,1 < Ek,2 < Ek,3 of our model we need to consider only the
solution

EkF,1 = −B − √
B2 − 4AC

2A
, (49)

where

A = akF,1akF,3 + a2
kF,1, (50)

B = −2akF,1
[
M (1)

kF
− EKS

kF
akF,2

]
, (51)

and

C = [
M (1)

kF
− EKS

kF
akF,2

]2 − M (2)
kF

akF,3 + [
EKS

kF

]2
akF,3akF,2.

(52)

Finally, the energy of the third pole may be computed from

EkF,3 = M (1)
kF

− akF,1EkF,1 − akF,2EkF,2

akF,3
, (53)

and the spectral moments M (I )
kF

with I = 3, 4, 5 may be ob-
tained from

M (I )
kF

= akF,1EI
kF,1 + akF,2EI

kF,2 + akF,3EI
kF,3. (54)

From these results one may extract the moment potentials
V (3+), V (4+), and V (5+) as explained in the preceding section.
Using them, one may perform MFbSDFT calculations using
the first six spectral moments. In Ref. [13] we have already
explained in detail how MFbSDFT calculations are performed
based on the first four spectral moment matrices. The only
major change when using the first six spectral moments is
the construction of the spectral function, which we describe
in detail in Appendix B. While this approach improves the
spectra in some cases, it also has a severe shortcoming:

The momentum distribution function should be normalized
[26]; i.e., ∫

dkk2[nk − θ (kF − k)] = 0 (55)

should be satisfied, which is not the case, because Eq. (25)
is so constructed that nk is reproduced at the Fermi surface,
while no use is made of this normalization constraint.

In the following we will refer to the bands Ek, j < EKS
k as

satellite bands. In the three-pole approximation discussed in
this section Ek,1 is a satellite band, while Ek,2 could be called
the KS band. The motivation for the name satellite band comes
from the observation of a low-energy valence-band satellite
peak in the spectrum of Ni, which can be reproduced with
the method of spectral moments [23,24]. While a quantitative
relation between the satellite bands in the n-pole approxima-
tion of the UEG and the satellite peaks in the photoemission
spectra of several real materials has not yet been established,
it seems at least plausible that the satellite bands in the n-pole
approximation of the UEG may be considered as precursors of
the satellite peaks in the spectra of real materials. The problem
of the three-pole approximation proposed above is that it may
give too much relative weight to the satellite bands.

We define an averaged momentum distribution by

N< = 3

k3
F

∫ kF

0
k2nk dk, (56)

which considers only k < kF in the average. A similar aver-
aged momentum distribution can be defined for k > kF:

N> = 3

k3
F

∫ ∞

kF

k2nk dk. (57)

Due to the normalization of nk we have

N< + N> = 1. (58)

While we can satisfy the constraint of Eq. (56) by using
the modified weights a1 = N< − Z , and a2 = Z , and the con-
straint of Eq. (57) by choosing E0,1 appropriately, this choice
still attributes too much relative weight to the satellite band,
unless the band Ek,3 cuts the Fermi level. However, if we so
specify a k at which Ek,3 cuts the Fermi level that the satellite
band has the appropriate weight, we have determined all three
energies Ek, j without making use of the first moment M (1)

kF
.

Since the MFbSDFT approach suggested in Ref. [13] assumes
that the correct first moment is used in the construction of the
moment potentials, not using the right M (1)

kF
is not expected

to work. In the next section we show that the problem of
normalization of nk can be solved within the four-pole approx-
imation.

C. The four-pole approximation

In order to determine the energies of the four poles we start
by setting

E2 = EKS (59)

and

a2 = Z = nkF− − nkF+ (60)
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like in the three-pole model. Here, to simplify the notation, we
define EKS = EKS

kF
= EF and Ei = EkF,i. In order to find E1 we

assume that the corresponding band cuts the Fermi energy at
kF1 and has the weight

a1 = nkF+ . (61)

Therefore, we solve

3a1

∫ kF1

kF

k2 dk = a1
(
k3

F1 − k3
F

) = k3
FN> (62)

for kF1 and use it to compute E1 according to

E1 = EKS + h̄2
[
k2

F − k2
F1

]
2m

. (63)

The final solution is

E1 = EKS + h̄2k2
F

[
1 − (

1 + 1−N<

a1

) 2
3
]

2m
. (64)

Using E1 ensures that the four-pole model n(4p)
k of nk satisfies

Eq. (57).
Next, we determine E3 assuming that the corresponding

band cuts the Fermi energy at kF3 and has the weight

a3 = n0 − nkF− . (65)

Consequently, we require that

3(a1 + a2)
∫ kF

0
k2 dk + 3a3

∫ kF3

0
k2 dk = k3

FN< (66)

be satisfied. We use this equation to determine kF3, which is
given by

kF3 = kF

[
N< − a1 − a2

a3

] 1
3

. (67)

Thus, we find

E3 = EKS + h̄2k2
F

[
1 − (N<−a1−a2

a3

) 2
3
]

2m
. (68)

Employing E3 ensures that the four-pole model n(4p)
k of nk

satisfies Eq. (56).
Finally, we compute E4 from

E4 = M (1)
kF

− a1E1 − a2E2 − a3E3

a4
(69)

using

a4 = 1 − a1 − a2 − a3 = 1 − n0. (70)

In the calculations we use the parametrizations of n0 and
nkF+ given in Ref. [4]. Due to the differences in the quasipar-
ticle renormalization Z as obtained from Ref. [4] and Ref. [3]
(see the discussion at the beginning of Sec. III and Fig. 5) we
take Z from Ref. [3] and use it to compute nkF− = nkF+ + Z . In
Fig. 1 we plot the momentum distribution function obtained
within the four-pole approximation and compare it to the
models of Ref. [4] and Refs. [26,27]. In the four-pole model
nk can change only at discrete points k, which is why n(4p)

k
exhibits three jumps. Only the major jump at kF is also present
in the models of Ref. [4] and Refs. [26,27], while nk changes

0 0.5 1 1.5 2
k/kF

0

0.2

0.4

0.6

0.8

1

n k

4-Pole
OB
GGZ

FIG. 1. Comparison of the momentum distribution function ob-
tained within the four-pole model (4-Pole) to the one given in
Refs. [26,27] (OB) and to the one given in Ref. [4] (GGZ). The
dimensionless density parameter is set to rs = 3.

smoothly otherwise in the latter models. Since one may expect
that the correct description of the Fermi surface is particularly
important, the two additional jumps in n(4p)

k are not expected
to introduce major errors. However, these additional jumps
in n(4p)

k are required to ensure the proper normalization of
n(4p)

k . Clearly, n(4p)
k is a significant improvement over standard

KS-DFT, which uses nk = θ (kF − k).
In order to test additional properties of our four-pole model

we start with observing that we have not used the model of
V (2+) discussed in Appendix A in its construction. Conse-
quently, we may compute V (2+) from our four-pole model and
compare it with the result obtained from the expressions in
Appendix A. In Fig. 2 we compare V (2+) as obtained from
the four-pole model to V (2+) as given by the expressions in
Appendix A. The agreement is surprisingly good in view
of the independence of these two models. Note that the ex-
pressions in Appendix A are not exact but use the single
Slater determinant approximation for one of the higher-order
correlation functions. Moreover, different parametrizations of
the structure factor are available in the literature, and the
model of Appendix A yields different results for different

0 1 2 3 4 5rs
0

1

2

3

4

5

6

M
(2

+)
 [R

y2 ] 4-Pole model
VZN model
81-Pole model

FIG. 2. Comparison between M (2+)
kF

= V (2+) as obtained from the
four-pole model, the (n + 1)-pole model of Sec. II D with 81 poles,
and the model of Ref. [5] discussed in Appendix A (VZN). The
vertical axis employs the unit of Ry2, where Ry = h̄2

2ma2
B

= 13.6 eV.
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parametrizations. In Sec. II D we introduce an n + 1-pole
model. We show its results for V (2+) in Fig. 2 as well. At
rs = 1 it agrees with the result from the expressions in Ap-
pendix A quite well, while at rs = 2, rs = 3, and rs = 4 it is
instead closer to the four-pole model.

Another property of the UEG that can be used to test our
four-pole model is the charge response P(q, h̄ω), which is
related to the dielectric function ε(q, h̄ω) by [17]

ε(q, h̄ω) = 1 − vqP(q, h̄ω). (71)

Within RPA ε(q, h̄ω) is given by the Lindhard function and
the corresponding charge response is

P̄(q, E ) = 1

V

∑
kσ

f (Ekσ ) − f (Ek+qσ )

Ekσ − Ek+qσ + E + i0+ . (72)

When we model the UEG within KS-DFT we obtain

P̄0 = P̄(0, 0) = −D(EF), (73)

where

D(EF) = 4ma2
B

(2π h̄)2ᾱrs
(74)

is the density of states (DOS) at the Fermi energy. However,
in KS-DFT the induced charge δne changes the exchange-
correlation potential, which in turn affects the induced charge
[28]. Therefore, the induced charge is related to the single-
particle charge response P̄0 by

δne = P̄0

[
δφ + ∂V xc

∂ne
δne

]
; (75)

i.e., the external perturbing field δφ needs to be combined with
(∂V xc/∂ne )δne into the effective perturbation field

δφeff = δφ + ∂V xc

∂ne
δne. (76)

Consequently, the full P0 = P(0, 0) is given by

P0 = δne

δφ
= P̄0

1 − P̄0
∂V xc

∂ne

. (77)

In Fig. 3 we show the charge response P0 as a function
of the dimensionless density-parameter rs as computed from
Eq. (77) using the parametrization of V xc given in Ref. [1].
Slightly above rs = 5.2 there is a well-known charge insta-
bility, which is why −P0/D(EF) starts to increase rapidly for
rs > 4. Recent calculations of P0 by variational diagrammatic
Monte Carlo [29] are in excellent agreement (squares in the
figure).

In order to compute P0 in the four-pole approximation
of the UEG we need to consider all bands that cross the
Fermi energy. All bands feel a different effective potential V xc

i .
Therefore, we need to modify Eq. (75) as follows:

δne =
Nmax∑
i=1

P̄0,i

[
δφ + ∂E0, j

∂ne
δne

]
, (78)

where Nmax is the index of the highest band cutting the
Fermi energy (Nmax = 3 in the derivations above), P̄0,1 =
D(EF)a1kF1/kF, P̄0,2 = D(EF)a2, P̄0,3 = D(EF)a3kF3/kF, and

0 1 2 3 4 5rs
0

1

2

3

4

5

-P
0/D

(E
F)

VWN
VDMC
4-Pole
81-Pole

FIG. 3. Ratio of the charge response P0 and the density of
states of the corresponding KS system at the Fermi energy D(EF )
[Eq. (74)]. Four methods are compared. VWN: Eq. (77) using the
parametrization of V xc given in Ref. [1]. VDMC: Results from vari-
ational diagrammatic Monte Carlo as given in Ref. [29]. 4-Pole:
Results for the four-pole model as computed from Eq. (79). 81-Pole:
Results for the (n + 1)-pole model as computed from Eq. (93).

E0, j is the Gamma-point energy defined in Eq. (19). Conse-
quently, we obtain in the four-pole approximation

P(4p)
0 = δne

δφ
=

∑Nmax
i=1 P̄0,i

1 − ∑Nmax
i=1 P̄0,i

∂E0, j

∂ne

. (79)

Figure 3 shows that the charge response P(4p)
0 obtained within

our four-pole model of the UEG is in reasonable agreement
with the variational diagrammatic Monte Carlo results.

In Sec. II D we will describe how to increase the num-
ber of poles further. However, the results obtained with 81
poles improve the charge response only slightly (circles in
Fig. 3). The remaining discrepancies between the n-pole ap-
proximation and the VDMC results might result from the
zero-band-narrowing approximation used in this section. An-
other possible explanation is that the n-pole approximation
differs at least partly from the VDMC results because the
exact nk is not known and calculations as well as models of
nk differ in the literature (see, e.g., Fig. 5).

Overall, our four-pole model reproduces the momentum
distribution nk (Fig. 1), the charge response function P0

0 0.5 1 1.5 2
k/kF

0

0.2

0.4

0.6

0.8

1

n k

41-Pole
GGZ

FIG. 4. Comparison of the momentum distribution function ob-
tained within the 41-pole model to the one given in Ref. [4] (GGZ).
The dimensionless density parameter is set to rs = 3.
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FIG. 5. Quasiparticle renormalization factor Z as obtained from
the model of Ref. [4] (solid line) and from the variational diagram-
matic Monte Carlo calculations of Ref. [3] (circles). Dotted lines are
linear interpolations and extrapolations of the variational diagram-
matic Monte Carlo data.

(Fig. 3), and the second moment (Fig. 2) quite well. In con-
trast, we can reproduce only P0 within the KS-DFT model of
the UEG.

D. The n-pole model and the limit n → ∞
The agreement between the properties of the UEG and

those predicted by the four-pole model can be improved fur-
ther by considering the following (n + 1)-pole model (n is an
even number). We assume that band n/2 is the KS-band:

E n
2

= EKS (80)

and

a n
2

= Z. (81)

The bands n/2 + 1, . . . , n are higher in energy than the KS
band, but they are all assumed to cut the Fermi energy. The
bands 1, . . . , n/2 − 1 are lower in energy than the KS band
and therefore they cut the Fermi level as well.

We divide the range from k = 0 to k = kF into n/2 pieces,
where the ith piece is defined by the lower boundary

kmin,i = kF
1 − δ

n
2

(n − i) (82)

and the upper boundary

kmax,i = kF
1 − δ

n
2

(n + 1 − i), (83)

where i = n
2 + 1, . . . , n, and the positive infinitesimal δ en-

sures that kmax, n
2 +1 < kF.

Typically, n(2kF ) 	 nkF . Consequently, we consider the in-
terval from k = kF up to k = 2kF and divide it into n/2 − 1
pieces, where the ith piece is defined by the lower boundary

kmin,i = kF

(
1 + δ +

n
2 − 1 − i

n
2 − 1

)
(84)

and the upper boundary

kmax,i = kF

(
1 + δ +

n
2 − i
n
2 − 1

)
. (85)

Here i = 1, . . . , n
2 − 1, and the positive infinitesimal δ ensures

that kmin, n
2 −1 > kF.

We define the corresponding weights as

ai = nkmin,i − nkmax,i (86)

for i = 2, . . . n
2 − 1 and for i = n

2 + 1, . . . , n. These weights
are always positive if the derivative

dnk

dk
< 0 (87)

is always negative. This is the case for the parameterization of
nk given in Ref. [4]. The weight of the first band we set to

a1 = n0 −
n∑

i=2

an. (88)

The corresponding energies at kF are given by

Ei = EKS + h̄2

2m

[
k2

F − (kmin,i + kmax,i )2

4

]
(89)

for i = 1, . . . n
2 − 1 and for i = n

2 + 1, . . . , n. Finally, we as-
sume that the band n + 1 is highest in energy and does not cut
the Fermi energy. We set its weight to

an+1 = 1 − n0 (90)

and determine its energy from the first moment:

En+1 = 1

an+1

(
M (1)

kF
−

n∑
i=1

anEn

)
. (91)

The moments M (I )
kF

for I > 1 can be computed from

M (I )
kF

=
n+1∑
j=1

a jE
I
j , (92)

while the charge response may be obtained from

P([n+1]p)
0 = δne

δφ
= G

1 − ∂V xc

∂ne
G

, (93)

where

G = D(EF)
n∑

i=1

ai
kmin,i + kmax,i

2kF
. (94)

In Fig. 4 we illustrate the basic idea of the (n + 1)-pole
model by comparing the momentum distribution function nk

that it produces to the one of Ref. [4]: The bands in the
(n + 1)-pole model of the zero-band-narrowing approxima-
tion of the UEG are given by the set of parabolas, Eq. (19).
Here n of these bands cut the Fermi level. When one of these
bands cuts the Fermi level at a given k, i.e., when Ek,i = EF,
the momentum distribution is reduced by the weight ai of this
band. As Fig. 4 shows, with n = 40 the model of Ref. [4] can
be reproduced reasonably well. One may of course increase
the number of poles further, until these two curves become
indistinguishable. However, the effect of increasing the num-
ber of poles on M (2+)

kF
and the charge response P0 is small, as

Fig. 2 and Fig. 3 show. Thus, reproducing Z , N<, and N> by
the four-pole approximation is already a major improvement
over KS-DFT, while increasing the number of poles further
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mainly improves nk below and above the Fermi surface, as the
comparison between Fig. 1 and Fig. 4 shows.

Interestingly, we may even take the limit n → ∞ and con-
sider a continuum model. In the continuum model the energy
of the highest band is

E∞ = 1

n∞

{∫ kF−

0

[
EKS + h̄2

2m

(
k2

F − k2
)]dnk

dk
dk

+
∫ ∞

kF+

[
EKS+ h̄2

2m

(
k2

F − k2
)]dnk

dk
dk − EKSZ+M (1)

kF

}
,

(95)

which may be rewritten as

E∞ = 1

n∞

[
−EKSZ + M (1)

kF
− n0

(
EKS + h̄2k2

F

2m

)

−
∫ kF−

0

h̄2

2m
k2 dnk

dk
dk −

∫ ∞

kF+

h̄2

2m
k2 dnk

dk
dk

]
, (96)

where

n∞ = 1 − n0. (97)

The Ith moment is given by

M (I ) = n∞EI
∞ + ZEI

KS −
∫ kF−

0

dnk

dk
E I

k dk

−
∫ ∞

kF+

dnk

dk
E I

k dk, (98)

where

Ek = EKS + h̄2

2m

(
k2

F − k2
)
. (99)

E. An optimized two-pole model

In weakly and moderately correlated systems the low-
energy satellite band is often of little interest, while a good
description of band gaps and bandwidths is desirable. In this
case, the most important benefits of the four-pole approxima-
tion may be reproduced effectively by an optimized two-pole
model. In this model we leave away the low-energy satellite
band completely. We assume that at the Fermi surface we have
E1 = EKS (Seitz theorem). For a1 we may choose either nkF−
or Z . It might be that one of these two possible options is
better, which we have not investigated systematically yet. The
argument to use a1 = Z is that the weight of the quasiparticles
on the Fermi surface at kF is Z in the four-pole approximation.
However, one may also argue that a1 = nkF− might be more
correct, because the weight of the low-energy satellite band
should be included in a1, if it is not described explicitly. In
this work we choose a1 = Z .

We assume that the band E1 cuts the Fermi level at kT > kF,
because this is the only way to achieve normalization of nk

when the low-energy satellite band is not described explicitly.
In general both bands, E1 and E2, may cut the Fermi energy.
When both bands cut the Fermi level

a2
(
k3

F − a1k3
T

)2 = (
k2

F + V c − a1k2
T

)3
(100)

is a nonlinear equation for kT, which can be solved numeri-
cally. Here a2 = 1 − a1, and

V c = d

dne
[neE c(ne )] (101)

is the correlation potential, where E c(ne ) is the correlation
energy per particle in the UEG with electron density ne.

In practice, one may first solve Eq. (100) at all relevant
parameters rs. Next, at a given rs one checks if

E2 − h̄2k2
T

2m
> EKS (102)

is satisfied. If it is, the band E2 does not cut the Fermi energy.
In these cases one needs to replace kT by

kT = kF

a1/3
1

. (103)

The energy of the second band is computed from

E2 = M̄ (1)
kF

− a1EKS

a2
, (104)

where

M̄ (1)
kF

= h̄2k2
T

2m
− h̄2

ma2
B

(
3

2π

) 2
3 1

rs
. (105)

Ignoring the low-energy satellite bands according to these
equations affects the determination of the Fermi energy: In in-
sulators one will automatically include part of the conduction
band electrons into the ground state charge density in order
to achieve charge neutrality. In the calculation of the DOS,
this problem can be avoided simply by setting aj = 1 in the
determination of the Fermi level. By this choice one assumes
that the missing charge is provided by the satellite bands and
amounts effectively to

a j → 1. (106)

When computing the charge density in the self-consistency
loop we could in principle use aj as obtained from the state
vectors [13]. However, in order to minimize the inconsistency
between these two options, we use

a j → 1
2 (1 + a j ) (107)

in the self-consistency loop.

III. RESULTS

Unless stated otherwise, the results shown in this sec-
tion are obtained with the optimized two-pole model of
Sec. II E. An important ingredient of this model is the quasi-
particle renormalization factor Z , for which many calculations
have been performed [3,30]. Reference [3] reports a very
small error bar for recent variational diagrammatic Monte
Carlo computations of this quantity. In Fig. 5 we compare
these recent results to the model of Ref. [4]. At the parameters
rs = 2, rs = 3, and rs = 4 the deviations are large, while the
agreement is good at rs = 1.

We need a model for Z (rs) which captures the full range of
variation of rs in our first-principles calculations. The minimal
and maximal values of rs are listed in Table I for all systems
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FIG. 6. Density of states (DOS) of Si vs energy E as obtained in
KS-DFT and in MFbSDFT. EF is the Fermi energy.

studied in this work. Clearly, we need Z also for values be-
low and above the range considered in Ref. [3], which lists
values of Z only for rs = 1, rs = 2, rs = 3, and rs = 4. There-
fore, we construct a model of Z (rs) as follows: For rs < 1
we use the model of Ref. [4]. This is justified, because at
rs = 1 this model does not deviate much from the variational
diagrammatic Monte Carlo results of Ref. [3] (see Fig. 5).
The variational diagrammatic Monte Carlo results in
the range 1 � rs � 4 almost follow a linear trend. Therefore,
we use linear interpolation to determine Z (rs) for values in
the range 1 < rs < 4 (dotted lines in Fig. 5). According to
Table I we need Z (rs) up to rs = 5.07. Therefore, we linearly
extrapolate the variational diagrammatic Monte Carlo results
for rs > 4.

A. Silicon, diamond, and silicon carbide

Silicon crystallizes in the diamond structure with the lattice
parameter a = 5.43 Å. Employing the PBE [31] functional we
obtain a band gap of 0.6 eV within KS-DFT. This is smaller
than the experimental band gap of 1.17 eV by roughly a factor
of 2. In Fig. 6 we compare the DOS obtained from MFbSDFT
to the one obtained from KS-DFT. Within MFbSDFT the band
gap is 1.22 eV, which is close to the experimental value.

In the cubic 3C-SiC polymorph of silicon carbide one half
of the sites of the diamond lattice are occupied by Si and the
other half by C. The lattice constant is a = 4.36 Å. Experi-
mentally, the band gap is determined to be 2.36 eV. Employing
the PBE functional we obtain a band gap of 1.4 eV in KS-DFT.
The band gap of 2.8 eV obtained within MFbSDFT is too large
compared to the experiment, but significantly closer to the
experimental value than the PBE result. In Fig. 7 we compare
the DOS obtained from MFbSDFT to the one obtained from
KS-DFT.

The lattice parameter of diamond is a = 3.567 Å. Employ-
ing the PBE functional we obtain a band gap of 5.7 eV in
KS-DFT, which is in good agreement with the experimental
band gap of 5.47 eV. Within MFbSDFT we obtain a band gap
of 5.14 eV, which also agrees acceptably well with experi-
ment, while the agreement is slightly better for the PBE result.
In Fig. 8 we compare the DOS obtained from MFbSDFT to
the one obtained from KS-DFT.
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FIG. 7. Density of states (DOS) of SiC vs energy E as obtained
in KS-DFT and in MFbSDFT. EF is the Fermi energy.

It is remarkable that KS-DFT almost reproduces the exper-
imental band gap in diamond, but is significantly off in the
isoelectric compounds SiC and Si. To some extent this de-
pends on the functional used. For example, KS-DFT predicts
a band gap of only 4.11 eV when LDA is employed. However,
this underestimation of the band gap by 25% is still relatively
small compared to the typical band gap error in KS-DFT.

Since an important contribution to the moment functional
corrections comes from the quasiparticle renormalization fac-
tor Z , the question arises whether this correction might be
particularly small in diamond, which might contribute to the
good performance of PBE for the band gap in this wide-gap
semiconductor. According to Fig. 5 the Z factor starts to devi-
ate strongly from 1 when rs becomes larger than 1. Therefore,
we show in Table I the minimal and maximal values of rs.
Indeed, diamond is characterized by a relatively small value
of rs,max = 2.44. Thus, to some extent Table I suggests that the
importance of taking Z < 1 into account when rs increases is
reflected in the error �Egap

PBE/Egap
exp . A more quantitative inves-

tigation of this hypothesis might be possible by computing the
unit-cell average

1

V

∫
d3r[1 − Z (rs)], (108)

which we do not consider here and leave for future work.
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FIG. 8. Density of states (DOS) of diamond vs energy E as
obtained in KS-DFT and in MFbSDFT. EF is the Fermi energy.
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FIG. 9. Density of states (DOS) of BN vs energy E as obtained
in KS-DFT and in MFbSDFT. EF is the Fermi energy.

B. Boron nitride

We consider hexagonal BN, which exhibits a layered struc-
ture similar to graphite. It is a semiconductor with a wide
band gap of 5.955 eV [32]. The in-plane lattice parameter
is a = 2.504 Å and the interlayer distance is a = 3.33 Å.
KS-DFT with the PBE functional significantly underestimates
the bandgap and predicts it to be 4.25 eV. In contrast, the
band gap obtained from MFbSDFT is 5.61 eV, which is in
good agreement with experiment. In Fig. 9 we compare the
DOS of the MFbSDFT calculation to the one obtained within
KS-DFT.

C. MgO and CaO

MgO crystallizes in the rock-salt structure with the lattice
parameter a = 4.212 Å. Using KS-DFT with the PBE func-
tional we obtain a band gap of 4.8 eV, which is much smaller
than the experimental band gap of 7.77 eV. In MFbSDFT we
obtain a band gap of 6.95 eV. This is in acceptable agreement
with experiment considering that GW calculations deviate
from the experimental band gap as well in this case even when
quasiparticle self-consistency is imposed [19]. In Fig. 10 we
compare the DOS of the MFbSDFT calculation to the one
obtained within KS-DFT.
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FIG. 10. Density of states (DOS) of MgO vs energy E as ob-
tained in KS-DFT and in MFbSDFT. EF is the Fermi energy.
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FIG. 11. Density of states (DOS) of CaO vs energy E as obtained
in KS-DFT and in MFbSDFT. EF is the Fermi energy.

The isoelectric compound CaO crystallizes in the rock-
salt structure with the lattice parameter a = 4.815 Å. Using
KS-DFT with the PBE functional we obtain a band gap of
3.67 eV, which is much smaller than the experimental band
gap of 7.1 eV. In MFbSDFT we obtain a band gap of 6.17 eV,
which is a significant improvement. In Fig. 11 we compare the
DOS of the MFbSDFT calculation to the one obtained within
KS-DFT.

D. ZnO

ZnO crystallizes in the wurtzite crystal structure. The lat-
tice parameters are a = 3.25 Å and c = 5.2 Å. When we
employ the PBE functional we obtain a band gap of 0.88 eV
from KS-DFT, which is much smaller than the experimental
band gap of 3.3 eV. In MFbSDFT we obtain a band gap of
3.37 eV, which is very close to the experimental value. In
Fig. 12 we compare the DOS of the MFbSDFT and of the
KS-DFT calculations.

E. The optimized two-pole model vs
the three-pole approximation

In Ni correlation effects are very important and standard
KS-DFT fails to predict the correct exchange splitting, the cor-
rect bandwidth, and the valence-band satellite peak [23,24].
Our optimized two-pole model of Sec. II E excludes the

-8 -6 -4 -2 0 2 4 6 8
E-EF [eV]

0

5

10

15

20

D
O

S 
[S

ta
te

s/
(u

.c
. e

V
)] KS-DFT

MFbSDFT

FIG. 12. Density of states (DOS) of ZnO vs energy E as obtained
in KS-DFT and in MFbSDFT. EF is the Fermi energy.
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FIG. 13. Density of states (DOS) in the spin-unpolarized phase
of Ni. KS-DFT and MFbSDFT (optimized two-pole model) are
compared.

low-energy satellite band by construction. At the same time it
is possible to obtain the satellite peak in Ni using the first four
spectral moments obtained from a lattice model [23,24]. The
question therefore arises whether our prescription in Sec. II E
to construct the moment potentials for MFbSDFT suppresses
the valence band satellite in Ni.

In Fig. 13 we show that the valence band satellite is indeed
absent when the moment potentials are constructed from the
model of Sec. II E. However, the comparison to KS-DFT
shows that at least the bandwidth is smaller in MFbSDFT
and therefore in better agreement with experiment. Since we
do not consider the spin-polarized case in this work, Fig. 13
illustrates the DOS of a spin-unpolarized phase of Ni. This
interesting result shows that the presence or absence of a
valence band satellite peak in the spectrum is dependent on
not only the number of poles used, but also on the prescription
used to obtain the moment potentials.

In Sec. II B we have discussed that the three-pole model
gives too much weight to the satellite band. This can be seen
clearly in Fig. 14. While the experimentally observed satellite
peak slightly below −6 eV is now present in the MFbSDFT
spectrum, there is overall too much spectral density below
−4 eV relative to the main band. A possible solution might
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FIG. 14. Density of states (DOS) in the spin-unpolarized phase
of Ni. KS-DFT and MFbSDFT (three-pole model) are compared.

be to optimize the three-pole model using part of the ideas of
Sec. II E, which we leave for future work.

On the one hand the valence-band satellite in spin-
unpolarized Ni has been investigated before theoretically, on
the other hand the ultimate test of a new theoretical approach
is the comparison to experiment. The question of the existence
of valence band satellites in the spectra of spin-polarized Ni,
Fe, and Co has been given much attention theoretically and
experimentally [23,33–38], while few data are available for
the spin-unpolarized phases of these materials. Unfortunately,
there are also very few data in the literature on the momentum-
distribution function in the spin-polarized UEG. An important
task left for future work is therefore the development of reli-
able models of the Z renormalization and of the momentum
distribution function in the spin-polarized UEG. Once these
are available, one may develop a spin-polarized MFbSDFT
and compare the MFbSDFT spectra of spin-polarized Ni, Fe,
and Co with the experimental ones.

IV. SUMMARY

Considering the three-pole and the four-pole approxima-
tions of the spectral function of the UEG we corroborate the
idea that more and more properties of the UEG can be de-
scribed when the number of poles is increased. Our four-pole
model describes the charge response, the momentum distri-
bution, and the second moment of the UEG acceptably well,
while the KS-DFT approximation of the UEG describes from
these quantities only the charge response well. Focusing on
the most important aspects that the four-pole approximation
improves in comparison to KS-DFT in weakly and moderately
correlated systems we construct an optimized two-pole ap-
proximation which we use to extract parameter-free universal
moment potentials for MFbSDFT. Using these we show that
the band gaps in the insulators Si, SiC, BN, MgO, CaO, and
ZnO are significantly closer to the experimental band gaps in
MFbSDFT than in KS-DFT with the PBE functional. Finally,
we show that the three-pole approximation highly overesti-
mates the satellite bands in strongly correlated materials, and
therefore it needs to be optimized to mimic the behavior of
the four-pole approximation. In this work we consider only
the spin unpolarized case. The inclusion of magnetism is an
important extension left for future work.
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APPENDIX A: MODEL OF THE SECOND MOMENT
FOR THE UEG

Reference [5] derives a model for the second spectral
moment of the UEG, where M (2)

k is expressed in terms of
the exchange self-energy, the pair correlation function, and
a remaining higher correlation function, which is assessed by
the single-Slater-determinant approximation. From this model
we obtain

M (2+)
k = �

(1)
loc + �

(1)
nl,k, (A1)

where

�
(1)
loc =

(
h̄2

2ma2
B

)2
32

3π2

kF

(ᾱrs)2

∫ ∞

0

d k′

k′2 S(k′) (A2)

is a k-independent contribution [5], and

�
(1)
nl,k = − (

�
(0)
k

)2 −
(

h̄2

2ma2
B

)2
2

(ᾱrs)3πkkF

×
∫ ∞

0
d k′ k′ �(0)

k′ (1 − 2nk′ ) ln

∣∣∣∣k − k′

k + k′

∣∣∣∣ (A3)

is a k-dependent contribution [5]. Here ᾱ = [4/(9π )]1/3, kF =
(ᾱrsaB)−1,

S(k) = 1 + 4πne

∫
d rr

sin(kr)

k
[g(r) − 1], (A4)

is the structure factor, g(r) is the pair correlation function, and

�
(0)
k = − h̄2

2ma2
B

2

πkkFᾱrs

∫ ∞

0
d k′ k′ nk′ ln

∣∣∣∣k + k′

k − k′

∣∣∣∣ (A5)

is the exchange self-energy.
In order to extract the moment potential V (2+) from this

model we set k = kF, because we need k-independent moment
potentials. Thus, we use

V (2+) = �
(1)
loc + �

(1)
nl,kF

. (A6)

V (2+) depends on rs because Eq. (A2) and Eq. (A3) depend
explicitly on rs. Additionally, it depends on rs because kF and
S(k) depend on rs. In the literature several models have been
suggested for the pair correlation function g(r) and for the
structure factor S(k). We use the model of Ref. [39] in the
numerical results shown in Fig. 2.

APPENDIX B: MFBSDFT WITH THE FIRST SIX
SPECTRAL MOMENTS

In Ref. [16] we describe an efficient algorithm to obtain the
spectral function from the first 2P spectral moment matrices

of size N × N . In the special case of P = 3, i.e., when the
first six spectral moment matrices M (0)

k , M (1)
k , M (2)

k , M (3)
k ,

M (4)
k , M (5)

k are used, the 3N poles Ek, j ( j = 1, . . . , 3N) of the
spectral function are given by the eigenvalues of the 3N × 3N
matrix

Hk =
⎛
⎝M (1)

k B1,k

B†
1,k D1,k

⎞
⎠, (B1)

where B1,k is a N × 2N matrix, and D1,k is a 2N × 2N matrix.
B1,k is given by the first N rows of the 2N × 2N matrix BBB,
which may be computed by taking the square root of the
Hermitian positive definite matrix

BBBBBB† =
⎛
⎝ M (2)

k − [
M (1)

k

]2
M (3)

k − M (1)
k M (2)

k

M (3)
k − M (2)

k M (1)
k M (4)

k − [
M (2)

k

]2

⎞
⎠. (B2)

The matrix D1,k may be computed from

D1,k = BBB−1

⎛
⎝B2,k − M (1)

k B1,k

B3,k − M (2)
k B1,k

⎞
⎠, (B3)

where the N × 2N matrix B2,k is given by the last N rows of
the matrix BBB and the N × 2N matrix B3,k may be computed
from the 2N × N matrix

B†
3,k = BBB−1

⎛
⎝M (4)

k − M (1)
k M (3)

k

M (5)
k − M (2)

k M (3)
k

⎞
⎠ (B4)

by taking the complex conjugate.
The single-particle spectral function is given by

Ski j (E )

h̄
=

3N∑
l=1

aklVkilV∗
k jlδ(E − Ekl ), (B5)

where

Vki j = Uki j√
ak j

, (B6)

with i = 1, . . . , N , j = 1, . . . , 3N , is the matrix of state vec-
tors, and

ak j =
N∑

i=1

Uki j[Uki j]
∗ (B7)

are the spectral weights. The 3N × 3N matrix Uk holds the
3N eigenvectors of Hk in its 3N columns.
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