
PHYSICAL REVIEW B 108, 165136 (2023)

Ground state stability, symmetry, and degeneracy in Mott insulators with long-range interactions
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Recently, models with long-range interactions—known as Hatsugai-Kohmoto (HK) models—have emerged
as a promising tool to study the emergence of superconductivity and topology in strongly correlated systems.
Two obstacles, however, have made it difficult to understand the applicability of these models, especially to
topological features: they have thermodynamically large ground state degeneracies and they tacitly assume spin
conservation. We show that neither are essential to HK models and that both can be avoided by introducing
interactions between tight-binding states in the orbital basis rather than between energy eigenstates. To solve
these orbital models, we introduce a general technique for solving HK models and show that previous models
appear as special cases. We illustrate our method by exactly solving graphene and the Kane-Mele model with
HK interactions. Both realize Mott insulating phases with finite magnetic susceptibility; the graphene model has
a fourfold degenerate ground state while the Kane-Mele model has a nondegenerate ground state in the presence
of interactions. Our technique then allows us to study the effect of strong interactions on symmetry-enforced
degeneracy in spin-orbit coupled double-Dirac semimetals. We show that adding HK interactions to a double
Dirac semimetal leads to a Mott-insulating, spin-liquid phase. We then use a Schrieffer-Wolff transformation to
express the low-energy Hamiltonian in terms of the spin degrees of freedom, making the spin-charge separation
explicit. Finally, we enumerate a broader class of symmetry-preserving HK interactions and show how they can
violate insulating filling constraints derived from space-group symmetries. This suggest that additional care is
needed to study topological order in the presence of long-range interactions of the HK type.
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I. INTRODUCTION

The interplay between interactions and topology is one of
the major frontiers in condensed matter physics. On the one
hand, strongly correlated topological systems are predicted
to host robust ground state degeneracies and quasiparticles
with fractional quantum numbers and exotic statistics [1–5].
Several classification schemes and exactly solvable models
for such topologically ordered phases have been proposed
[6–12], and many properties of topologically ordered phases
have been experimentally verified in fractional quantum Hall
systems [13–15]. Furthermore, several strongly correlated ma-
terials such as α-RuCl3 that do not magnetically order at low
temperatures are predicted to host topologically ordered spin
liquid ground states [16–19].

On the other hand, outside of the fractional quantum Hall
effect, the connection between the microscopic Hamiltonian
for interacting electrons and the topological order of the
ground state remains elusive. Topological order is charac-
terized by the absence of a local order parameter and by
the lack of adiabatic continuity to the noninteracting ground
state. Most analytical tools for treating the interacting elec-
tron problem, however, rely on perturbation theory around
a known noninteracting or mean field ground state [20,21],
or else introduce field-theoretic techniques that can obscure
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the connection to microscopic degrees of freedom [22]. While
parton-based mean-field approximations for topologically or-
dered systems exist [23–26], they are generally uncontrolled
and must be justified a posteriori. It is thus desirable to find
a class of analytically tractable models for interacting elec-
trons that could be applied to search for topologically ordered
phases.

Recently, a class of exactly solvable models for interact-
ing electrons proposed by Hatsugai and Komohto (HK) in
Ref. [27] has gained renewed attention. These models include
a long-range ring exchange interaction between electrons that
is diagonal in momentum space, such that crystal momen-
tum remains a good quantum number and the ground state
factorizes as a tensor product over states at different crystal
momentum. This renders these HK models exactly solvable.
Up to this point, the HK interaction has been considered only
for Hamiltonians with a conserved component of spin, with
the HK interaction taken to be diagonal in the energy eigenba-
sis of the noninteracting part of the Hamiltonian. Concretely,
this band-HK Hamiltonian takes the form

Hband−HK =
∑
kmσ

εmσ (k)n̄kmσ + U1

∑
km

n̄km↑n̄km↓, (1)

where m is a band index, σ =↑,↓ indexes the z component
of the electron spin, εmσ (k) is the noninteracting band disper-
sion, U1 is the HK interaction strength, and

n̄kmσ = c̄†
kmσ c̄kmσ (2)
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counts the number of electrons in band m with crystal mo-
mentum k and spin σ (throughout this paper, we will use an
overbar to emphasize operators that are diagonal in the band
basis).

Although band-HK Hamiltonians are easily solvable, they
still capture several key features of strongly correlated elec-
tron systems [28–30]. First, much like the Hubbard model,
the ground state of Eq. (1) is a correlated insulator at half
filling for large U1 (large compared to the bandwidth W of the
noninteracting dispersion). Away from half filling, the system
exhibits spectral weight transfer. Second, the single-particle
self energy at generic filling exhibits divergences, indicating
that the system cannot be obtained from perturbation theory
around a noninteracting limit. Third, it was recently argued
that the Mott insulator transition in the HK model is in the
same universality class as the metal-insulator transition in the
Hubbard model, and that the only instabilities of the ground
state are towards either superconductivity or magnetic order-
ing [31,32]. Finally, since HK interactions preserve transla-
tional symmetry, they can, in principle, be realized experimen-
tally in momentum space lattices. Recently, there has been
progress in realizing these lattices in cold atom systems [33].

The utility of the HK model in understanding the corre-
lated electron problem more generally raises the question of
whether it can be applied to study topology in interacting
electron systems. Indeed, prior work in this direction has
been quite promising. Reference [34] introduced an exactly
solvable model of a quantum anomalous Hall Mott insulator
based on the HK interaction. This was extended in Ref. [35] to
a model of a quantum spin Hall Mott insulator. Additionally,
Ref. [36] initiated the application of tools from noninter-
acting topological band theory to the study of poles in the
single-particle self-energy as part of a larger program to study
topology in correlated electron systems via single-particle
Green’s functions [37].

Despite this progress, the band-HK models present sev-
eral obstacles to extending these lines of inquiry. First, due
to the spin degeneracy in the band-HK model, the zero-
temperature ground state is extensively degenerate at any
filling for sufficiently strong interactions; there is a twofold
degeneracy at every k in the Brillouin zone (BZ) in the Mott
insulating phase. This means that care must be taken when
topological invariants (which are ground state properties) are
to be calculated [38,39]. Additionally, a consequence of this
extensive ground state degeneracy is a strong instability to-
wards ferromagnetic ordering: the zero-temperature magnetic
susceptibility of the HK model diverges, and an infinitesi-
mal Zeeman field leads to magnetic ordering [40]. In many
interesting cases, the ferromagnetically ordered state is adia-
batically connected to a band insulator. This raises questions
as to which aspects of Mottness are essential features of the
HK model and which are accidental features of the ground
state degeneracy.

Second, it is important to remember that the HK interaction
is infinitely long-ranged. This poses a conceptual difficulty
because topological order is conventionally defined in terms
of short-ranged Hamiltonians. One defining feature of a topo-
logically ordered state is that no short-ranged Hamiltonian can
connect or distinguish topologically degenerate ground states.
Long-ranged Hamiltonians can of course have nonvanishing

matrix elements between topologically degenerate states, and
hence can lift the topological ground state degeneracy. Viewed
from a different perspective, we can say that the characteristic
feature of topological order is long-range entanglement in
the ground state. While this is exotic and robust for ground
states of short-ranged Hamiltonians, long-range entanglement
is rather pedestrian when the Hamiltonian itself has infinite
range.

To see this concretely, let us consider symmetry-enriched
Lieb-Schultz-Mattis (LSM)-type theorems applied to elec-
tronic systems with both time-reversal and crystal symmetries.
As shown in Refs. [41–45], these theorems give us (mostly)
tight bounds on what fillings can host gapped, symmetric,
topologically trivial ground states in a given space group.
These filling constraints provide a powerful tool for iden-
tifying topologically nontrivial systems that do not rely on
computing a complicated invariant: If a system has an en-
ergy gap, a symmetric ground state, and violates a filling
constraint, then it must be topologically nontrivial. However,
proofs of the LSM theorems (beyond Kramers theorem and
the requirement of integer filling per unit cell) all rely on the
short-rangedness of the Hamiltonian in an essential way. For
instance, the geometric proof in Ref. [41] applies Kramers
theorem to the system placed on nontrivial flat manifolds.
Crucial to the proof is the fact that, since all flat manifold
are locally indistinguishable from Euclidean space, deep in
the bulk the system is unaffected by twists in the manifold.
This assumption breaks down if the Hamiltonian is—like the
HK model—infinitely long ranged. In concert with earlier
questions on the ground state degeneracy of HK models, this
raises the question as to what degree LSM theorems can be
used as a tool in these systems.

To address these questions, we will in this paper introduce
a generalized class of HK-like models which we call orbital
HK models. Orbital-HK models have interactions that are
diagonal in momentum space, but crucially are not diagonal
in the band basis. Instead, we will formulate HK-like inter-
actions in terms of creation and annihilation operators for
tight-binding basis states. This allows us to formulate exactly
solvable models for interacting electron systems with spin-
orbit coupling, even when no component of spin is conserved.
We show that the orbital HK model maps to an N-site Hubbard
model at each crystal momentum, where N is the number of
orbitals (per spin) in the unit cell; the band-HK models are a
limiting case where the Hubbard Hamiltonian is diagonal.

We will show through several examples that orbital HK
models do not suffer from the extensive ground state de-
generacy that has plagued the band-HK model. Instead, our
orbital-HK models have order-one ground state degeneracies,
and can even have nondegenerate ground states for certain
choices of interaction. We show that this removes the ten-
dency towards magnetic ordering, rendering the ground state
stable to infinitesimal Zeeman fields. Crucially, we show that
even when the ground state degeneracy is removed by the
orbital HK interaction, signatures of Mottness remain: the
self-energy diverges, signifying that the orbital HK ground
state is distinct from a band insulator. The ground state degen-
eracy of the band-HK model is thus reminiscent of Ref. [46],
where an extensively degenerate toy model was introduced
to demonstrate the failure of Luttinger’s theorem in Mott

165136-2



GROUND STATE STABILITY, SYMMETRY, AND … PHYSICAL REVIEW B 108, 165136 (2023)

insulators; as in Ref. [46], the extensive degeneracy of the
band HK model is not essential to the formation of a Mott
insulator.

Finally, to address the role that LSM theorems can play
in the study of HK-like models, we will focus on spin-orbit
coupled and interacting double-Dirac semimetals in space
group P42/mbc1′ (No. 135) [47]. Space group P42/mbc1′
(No. 135) is a particularly interesting case for two reasons.
First, it allows, although it does not require, a different insu-
lating filling constraint in the interacting and noninteracting
cases. As shown in Refs. [48,49], all single-particle elec-
tronic states at the high-symmetry A point of the BZ come in
eightfold-degenerate multiplets in this space group, with lin-
ear double-Dirac dispersion away from this point. This means
that noninteracting band insulators in space group P42/mbc1′
(No. 135) must have filling ν = 8n electrons per unit cell
[50]. With interactions, however, the situation is less clear:
Space group P42/mbc1′ (No. 135) is one of a handful of space
groups where the LSM bound of Ref. [41] is less tight than
the noninteracting filling bound, admitting the possibility of
a gapped, symmetric, topologically trivial insulator in space
group P42/mbc1′ (No. 135) with ν = 4 electrons per unit
cell in the presence of interactions. Space group P42/mbc1′
(No. 135) is thus a candidate for a unique kind of symmetric,
insulating ground state, which does not have a noninteracting
analog.

Second, there are a number of experimental candidates for
realizing such a material. Layered ternary borocarbide com-
pounds are invariant under P42/mbc1′ (No. 135) and can have
significant interactions strengths [51]. No model Hamiltoni-
ans, however, for nonmagnetic interacting insulators in this
space group have been put forward.

In this paper, we explore the phases accessible from a dou-
ble Dirac semimetal in space group P42/mbc1′ (No. 135) at
half filling (ν = 4) in the presence of orbital-HK interactions.
We show that the simplest orbital HK interaction leads to a
Mott insulator with gapless spin excitations and no magnetic
order, i.e., a gapless spin liquid. Next, we show that there
exist orbital HK interactions which respect the symmetries
of the space group and lead to the emergence of a gapped,
nondegenerate ground state at half-filling, seemingly realizing
the LSM lower bound in this space group. We compare this
model to similar orbital HK models in space groups P4/ncc1′
(No. 130) and P21/c1′ (No. 14) where the LSM bound is
realized by a band insulator, and we provide evidence that
the gapped, nondegenerate ground states realized by orbital
HK models have long-range entanglement due to the infinite-
ranged interaction, calling into question the utility of LSM
theorems for these systems. Furthermore, our model in space
group P4/ncc1′ (No. 130) may be useful for shedding light on
low temperature phases of the antiferromagnetic Mott insula-
tor Bi2CuO4 [49,52].

A. Guide to the results

The structure of the paper is as follows: First, in Sec. II,
we review the HK model in the band basis, and introduce the
orbital HK model in general. In Sec. II A, we show through the
example of graphene that the simplest orbital HK interaction
results in a ground state at half filling that is only fourfold

degenerate, as opposed to the thermodynamically large de-
generacy of graphene with the band-HK interaction. We show
that the zero-temperature ground state is a Mott insulator with
finite magnetic susceptibility. Next, in Sec. II B we extend
our results to models with spin-orbit coupling and analyze
the Kane-Mele (KM) model with orbital HK interaction. We
show that at half filling the ground state of the orbital HK-
KM model is nondegenerate. Our analysis shows how the
orbital HK interaction allows us to treat spin-independent and
spin-orbit coupled systems on equal footing. Furthermore, it
reveals that the extensive ground state degeneracy in band-
HK models is purely accidental, and is not germane to the
underlying Mott physics.

In Sec. III, we move to examine a three-dimensional model
of an interacting double-Dirac spin liquid. We consider a
spin-orbit coupled double Dirac semimetal at half filling in
space group P42/mbc1′ (No. 135) in the presence of the
simplest uniform orbital HK interaction. In Sec. III A, we
review the properties of the space group and introduce the
microscopic model. Next, in Sec. III B we compute the ground
state, neutral excitation spectrum, and single-particle Green’s
function for the model. We show that the ground state is a
Mott insulator with a 16-fold degenerate ground state. The
neutral excitation spectrum is gapless, consisting of spinon
excitations near the A point in the BZ. To make this precise,
we show in Sec. III C how to apply a Schrieffer-Wolff trans-
formation to orbital HK models. For our particular case of a
double-Dirac semimetal at half filling, this gives an effective
long-range spin Hamiltonian that approximates the neutral
excitation spectrum of our model.

Next, in Sec. IV we consider more general orbital HK
interactions consistent with the space group symmetries. To
begin, we show that the 16 degenerate ground states can be
labeled by irreducible representations of the space group. By
identifying copies of the trivial representation, we are able
in Sec. IV A to construct generalized orbital HK interac-
tions that project onto the trivial representation which yields
a nondegenerate, symmetric ground state. We compute the
single-particle Green’s function in the nondegenerate ground
state to verify that this represents a symmetric Mott insulating
ground state that is not adiabatically connected to a band insu-
lator. Thus, our system is a candidate for a gapped, symmetric,
topologically trivial insulator at ν = 4 in this space group, as
allowed for by the LSM theorem of Ref. [41].

To further understand the nature of this insulator and its
relation to LSM theorems, we construct for comparison an
orbital HK model in space group P4/ncc1′ (No. 130). At
ν = 4, the LSM theorem forbids the existence of a gapped,
nondegenerate, short-range entangled ground state. Neverthe-
less, using a similar procedure as in space group P42/mbc1′
(No. 135), we are able to construct a generalized orbital HK
model with a gapped, symmetric, nondegenerate ground state.
Taken together, this suggests that the nondegenerate ground
states of orbital HK models are long-range entangled, due
to the long-ranged interaction in position space. Thus, these
models evade generalized LSM theorems that rely on locality
of the Hamiltonian. The ground states take the form of cat
states, which are stabilized by the long-ranged interactions.

We conclude in Sec. VI by discussing the implications of
our results for the use of HK models to understand correlated
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topological phases. We additionally include several appen-
dices with details of derivations and additional supporting
results.

II. ORBITAL HATSUGAI-KOHMOTO INTERACTIONS

We consider tight-binding models defined on a parent lat-
tice with additional degrees of freedom within the parent unit
cell. We denote these orbital degrees of freedom with the
Greek letters μ, τ, . . . and index a collection of them with
Latin letters as i = (μ, τ, . . .). We let σ = ±1 index the z
component of the electron spin and we denote the chemical
potential by μ0.

In the simplest case of a noninteracting, spin-independent,
tight-binding model with no orbital degrees of freedom, we
can straightforwardly diagonalize the noninteracting Hamil-
tonian to obtain the dispersion ξ (k). The original HK model,
introduced in Ref. [27], is the simplest example of what we
earlier called a band HK model in Eq. (1). It adds to the
noninteracting model an energy cost U1 for doubly occupying
each momentum state through the interaction Hamiltonian:

HHK =
∑
kσ

ξ (k)n̄kσ + U1

∑
k

n̄k↑n̄k↓. (3)

HK showed that the model undergoes a metal-insulator transi-
tion when the interaction energy U1 exceeds the bandwidth W ,
and that the energy gap in Eq. (3) at half filling corresponds
to the energy gap of the 1D Hubbard model in the large U1

limit. This raises the hope that there may be other features of
the Hubbard model that can be learned from the HK model.

This program is complicated by two consequences of the
original HK model, which are shared by band HK models
generally. In the insulating phase U > W , all possible config-
uration of spins in the lower band have the same energy. This
means that in an N particle system, there is an exponentially
large 2N ground state degeneracy. This makes it difficult to
define properties of the HK model that depend on the ground
state wave function, which is especially important for analyz-
ing the topology of the ground state.

Second, it is implicitly assumed in Eq. (1) that the spin
projection Sz commutes with the Hamiltonian. For a generic,
spin-orbit coupled single-particle Hamiltonian, it is no longer
clear how to write such a band HK interaction. To deal with
this problem, Ref. [36] introduced spin-dependent terms per-
turbatively to a non-spin dependent HK ground state.

Neither the ground state degeneracy nor the presence
of spin conservation are necessary consequences of an HK
model. In this paper, we will instead consider HK-type inter-
actions which impose an energy penalty on doubly occupied
orbital degrees of freedom i. In momentum space, the simplest
such interaction is

H1
HK = U1

∑
kiσ

nkiσ nki−σ . (4)

We note that a similar interaction emerged in Ref. [53], where
a translation-symmetry-breaking potential was added to the
one-band HK model Eq. (3). To warm up, we show in the
next section, Sec. II A, that adding the orbital HK interaction
Eq. (4) to a tight-binding model of graphene leads to a ground
state that is no longer thermodynamically degenerate. Instead,
the ground state is only twofold degenerate at the K and
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FIG. 1. Sublattices, nearest-neighbor, and next-nearest neighbor
vectors for the graphene and Kane-Mele tight binding models on the
honeycomb lattice. The red arrows represent the ai nearest-neighbor
lattice vectors. For lattice spacing a, the nearest-neighbor vectors are
given by a1 = a(1, 0), a2 = a(− 1

2 ,
√

3
2 ), a3 = a(− 1

2 ,−
√

3
2 ). The blue

arrows are the next-nearest neighbor lattice vectors bi, given by b1 =
a(0,

√
3), b2 = a( 3

2 , −
√

3
2 ), b3 = a(− 3

2 , −
√

3
2 ).

K ′ high-symmetry points. This order-one degeneracy comes
from the fact that we can map an orbital HK model to a
finite-site Hubbard model at every k point. From the perspec-
tive of the equivalent finite-site Hubbard models, band HK
models correspond to the special case where the equivalent
Hubbard model has zero hopping, and hence has a ground
state degeneracy at each k point.

We then show in Sec. II B that we can easily extend orbital
HK models to noninteracting Hamiltonians which depend on
spin. To illustrate this, we consider adding H1

HK to a KM
model and solve for the resulting spectrum.

A. Lifting the thermodynamic degeneracy: Graphene

1. Band and orbital HK models

To analyze the ground state of an orbital HK model, we
start with the standard noninteracting tight-binding model
for graphene with nearest-neighbor hopping between differ-
ent sublattice sites [54]. The second-quantized single-particle
Hamiltonian is given by

H0
g = t

∑
kσ

g(k)c†
kBσ

ckAσ + H.c. − μ0

∑
kμσ

nkμσ , (5)

where the hoppings g(k) are

g(k) =
∑

i

eik·ai , (6)

with ai vectors to the nearest-neighbor sites, as shown in
Fig. 1.

We then add orbital HK interactions H1
HK to obtain an

orbital HK model of graphene Hg:

Hg = H0
g + H1

HK

= t
∑
kσ

g(k)c†
kBσ ckAσ + H.c.

+ U1

∑
kμ

nkμ↑nkμ↓ − μ0

∑
kμσ

nkμσ , (7)
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TABLE I. The six basis states for the two particle sector for our
model of graphene with orbital-HK interactions, used to form the
matrix Hg(k).

Index State Label

1 c†
kA↑c†

kB↑|0〉 |A ↑; B ↑〉
2 c†

kA↑c†
kA↓|0〉 |A ↑; A ↓〉

3 c†
kA↓c†

kB↑|0〉 |A ↓; B ↑〉
4 c†

kA↑c†
kB↓|0〉 |A ↑; B ↓〉

5 c†
kB↑c†

kB↓|0〉 |B ↑; B ↓〉
6 c†

kA↓c†
kB↓|0〉 |A ↓; B ↓〉

where μ = ±1 indexes the sublattice sites A and B, respec-
tively. Since Hg is diagonal in momentum space, we can
consider a block at given k, Hg(k):

Hg(k) = t
∑

σ

g(k)c†
kBσ ckAσ + H.c.

+ U1

∑
μ

nkμ↑nkμ↓ − μ0

∑
μσ

nkμσ . (8)

The key observation for our technique is that the block
Hg(k) is equivalent to a two-site Hubbard model with complex
hopping coefficients. We can see this explicitly by construct-
ing a representation of this Hamiltonian on a basis and solving
it by the same exact diagonalization procedure as is used in
the Hubbard model [55]. First, we note that Hg(k) commutes
with the number operator at a given k and σ , summed over the
sublattice indices μ,⎡

⎣∑
μ

nk,μσ , Hg(k)

⎤
⎦ = 0, (9)

which in turns allows us to further block diagonalize Hg(k)
into blocks of fixed particle numbers at each k point. At half
filling (here two electrons per unit cell), we can construct the
matrix elements of Hg(k) in the two-particle sector. We first
choose an ordering for the six two-particle basis states at each
k, defined in Table I. The matrix elements Hg,2(k) of Hg(k)
in this basis are then given by

Hg,2(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 U1 −tg∗ tg∗ 0 0

0 −tg 0 0 −tg∗ 0

0 tg 0 0 tg∗ 0

0 0 −tg tg U1 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2μ0I6,

(10)

where I6 is the 6 × 6 identity matrix. Equation 10 is the same
Hamiltonian as a two-site Hubbard model in the two-electron
sector, with a complex hopping coefficient t̃ ≡ tg(k),

HH = t̃
∑

σ

1∑
<a,b=0>

c†
aσ cbσ + H.c.

+ U1

1∑
i=0

na↑na↓ − μ0

∑
σ

1∑
i=0

niσ , (11)

where a, b are labels that run over sites 0 and 1.

Since we can solve the two-site Hubbard model analyti-
cally, we can immediately write the energy eigenvalues at half
filling for a given k point,

E±
2 (k, μ0) = 1

2

(
U1 ±

√
U 2

1 + 16|tg(k)|2) − 2μ0,

E0
2 (k, μ0) = −2μ0, (12)

EU
2 (k, μ0) = U1 − 2μ0,

with the ground state energy in the two-particle sector given
by E−

2 (k, μ0) in the first line. In the left three panels of Fig. 2,
we plot the spectrum of Hg(k) in the two-particle sector at
each k point, Ea

2 (k, μ0), along the high-symmetry points of
the graphene BZ for the noninteracting (U1 = 0), interme-
diate interaction (U1 ∼ t), and strongly interacting (U1 
 t )
regimes.

To find the ground state of the entire N-particle system,
we then need to find the number of particles at each k point,
nk, that minimizes the total energy. In general, this requires
solving the corresponding optimization problem.

For particle-hole symmetric systems at half filling, how-
ever, the solution is straightforward. Since adding a particle
at half filling necessitates double occupying an orbital state,
it results in a higher energy. Since the system is particle-hole
symmetric, this energy penalty cannot be made up by creating
a hole elsewhere. This means that at half filling the ground
state of the particle-hole symmetric, N-particle system half
fills the unit cell at every k point. In our graphene example,
this means the ground state of the particle block with two
electrons per unit cell at any k point is the lowest energy
state.

We can see this explicitly from the graphene spectrum in
Eq. (12). We first set the chemical potential to μ0 = −U1

2 . This
makes the spectrum manifestly particle-hole symmetric. We
introduce the particle-hole symmetry operator P which acts
on creation operators as

Pckμσ P−1 = c†
kμ′σ ′τ

μ′μ
z σσ ′σ

x . (13)

P maps the n-particle sector of the Hilbert space to the 2 − n
particle sector (n = 0, 1, 2). Using the canonical anticommu-
tation relations, we have that when acting on each fixed-k
block of the graphene Hamiltonian given in Eq. (8):

PHg(k)P−1 = Hg(k). (14)

Hence, when μ0 = U1/2, the spectrum of Eq. (7) is particle-
hole symmetric. Explicitly, the ground states of the one-, two-,
and three-particle block Hamiltonians Hg(k) are given by

E−
1 (k,U1/2) = −U1/2 − |tg(k)|, (15)

E−
2 (k,U1/2) = −1

2

(
U −

√
U 2

1 + 16|tg(k)|2), (16)

E−
3 (k,U1/2) = −U1/2 − |tg(k)|. (17)
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FIG. 2. A comparison of the spectrum at half filling (two electrons per unit cell) for a graphene tight-binding model with band HK
interactions H̄g (top row) and orbital HK interactions Hg (bottom row). (a) Single-particle spectrum for the noninteracting Hamiltonian H0

g .
(b) The spectrum in the two-particle sector Ē2(k) for the graphene band HK model with interactions strength U1 equal to half the bandwidth
(U1 = 3t). The ground state is degenerate when the green line is below the black. (c) The spectrum in the two-particle sector in the band
basis HK model with interactions larger than the bandwidth U1 = 2W (U1 = 12t). (d) shows the (repeated) single particle spectrum for
the noninteracting Hamiltonian H0

g with t = 1. (e) The spectrum in the two-particle sector E2(k) for the graphene orbital HK model with
interactions strength U1 equal to half the bandwidth (U1 = 3t). (f) E2(k) for the orbital HK model with U1 = 2W . The parameters of the
noninteracting Hamiltonian are everywhere t = 1, μ0 = U1/2. We can see from the spectrum in the two-particle sector E2(k) [(b), (c)] that the
ground state of the band model is degenerate across the region in the Brillouin zone where U1 < 2|tg(k)|. For the orbital HK model, we can
see from (e) and (f) that, for all U1 > 0, the ground state is only degenerate at the K and K ′ points.

From this, we see that for any k, U , t , and g, E−
2 (k,U1/2) <

E−
1 (k,U1/2) = E−

3 (k,U1/2). This means it is never ener-
getically favorable to create a one- and three-particle state
from two two-particle states. Hence, the minimum energy
N-particle state at half filling half fills every k point.

More generally, for the graphene Hamiltonian with orbital
interactions Hg, so long as μ0 is in the range

|tg(k)| −
√(

U1

2

)2

+ 4|tg(k)|2 < |μ0 − U1/2|, (18)

the ground state of Hg will be at half filling at every k. In
this range, the ground state will be the tensor product of the
ground states of the half-filled states at every k point. Since
only μ0 = U1/2 is particle-hole symmetric, this illustrates that
the ground state is robust to particle-hole symmetry breaking,
within a range. Away from half filling, this is only true for
sufficiently large values of the interaction; in general, the
ground state can have different numbers of electrons at each k
point. We also note that since the many-body ground state is a
product state in momentum space,

|GS〉 = 1√
N

⊗
k

|k〉, (19)

the representation of the ground state in localized real space
orbitals is given by

|GS〉 = 1√
N

⊗
k

(∑
R

eik·R|R〉
)

. (20)

Hence the ground state has a high degree of long-range entan-
glement in real space. This follows from the long range of the
HK interaction.

Having found the ground state, we can now also see
why the ground state becomes degenerate at the K and
K ′ points. At these points, g(K) = g(K′) = 0 and so both
E−

2 (K,U1/2) = E0
2 (K,U1/2) = −U1 and E−

2 (K ′,U1/2) =
E0

2 (K ′,U1/2) = −U1 become degenerate.
From this perspective, we can also see that adding band HK

interactions is a limiting case of orbital HK interactions. If we
define creation operators for eigenstates of graphene in energy
band m, c̄†

kmσ , such that the noninteracting Hamiltonian is
diagonal,

H̄0
g =

∑
kmσ

ξm(k)c̄†
kσmc̄kmσ , (21)

and add HK interactions in this basis,

H̄g =
∑
kmσ

ξm(k)c̄†
kmσ c̄kmσ + U1

∑
k

n̄km↑n̄km↓ − μ0

∑
kmσ

n̄kmσ ,

(22)
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then following the same procedure as above but in the band basis leads to the two-particle matrix elements H̄g,2,

H̄g,2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1 + ξ2 0 0 0 0 0

0 U1 + 2ξ1 0 0 0 0

0 0 ξ1 + ξ2 0 0 0

0 0 0 ξ1 + ξ2 0 0

0 0 0 0 U1 + 2ξ2 0

0 0 0 0 0 ξ1 + ξ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 2μ0I6, (23)

which corresponds to the two-site Hubbard model with zero
hopping and a site-dependent chemical potential −ξm:

HH =
1∑

m=0

∑
σ

(ξm − μ0)n̄mσ + U1

1∑
m=0

n̄m↑n̄m↓. (24)

Unlike the two-site Hubbard model with nonzero hopping,
this Hamiltonian has a fourfold degenerate ground state when-
ever ξ1 + ξ2 < U1, as in the orbital graphene model at the
K and K ′ points. This is why band HK models can have
thermodynamically large ground state degeneracies, whereas
orbital HK models do not.

In Fig. 2, we illustrate this difference by comparing
the two-particle spectra for models of graphene with the
band and with orbital HK interaction in the noninteracting
[Figs. 2(a) and 2(d)], weakly interacting [Figs. 2(b) and 2(e)]
and strongly interacting [Figs. 2(c) and 2(f)] limits. We see
that the ground state energy of the orbital HK model is smooth
as a function of k, whereas the band HK ground state energy
at intermediate interaction strength has a kink at the momenta
where the interaction energy becomes comparable to the
single-particle energy. We can also see from the comparison
of the band and orbital HK spectra that the nonzero hopping in
orbital models changes the shape of the noninteracting bands,
whereas in band HK models the bands simply shift in overall
energy.

We can understand the nature of the ground state in the two
models by calculating the real-time retarded Green’s function
matrix in the zero temperature limit, G+

i, j , obtained via ana-
lytic continuation of the Matsubara Green’s function. In the
Lehmann representation, the matrix elements are

G+
i, j (k, ω) ≡Z−1

g

∑
mn

〈n|cki|m〉〈m|c†
k j |n〉

ω − (Em − Eg,n) + iη

+ 〈n|c†
ki|m〉〈m|ck j |n〉

ω − (Eg,n − Em) + iη
, (25)

where m labels the energy eigenstates, η → 0+ is an infinites-
imal positive number, and we have allowed for the possibility
of a degenerate ground state by letting n label the nth linearly
independent ground state, Eg,n the corresponding ground state
energy, and Zg the partition function over the degenerate
ground states.

From the properties of the retarded real-time Green’s func-
tion matrix G+ we can readf a number of important properties
that help characterize the nature of the ground state. Most
importantly, the presence of a band of zero eigenvalues of
this matrix at every k point in the BZ, known as a Luttinger

surface, signifies a divergence of the single-particle self-
energy. This indicates that the effect of interactions is
nonperturbatively large. In turn, this implies that the system
cannot be adiabatically connected to a trivial band insulator
or Fermi liquid in the noninteracting limit. This is the defining
feature of a Mott insulator [46].

Conversely, poles of G+ correspond to single-particle
charge excitations. As pointed out in Ref. [36], both the de-
generacies of the poles of G+ and the degeneracies of the
zeros of G+ are constrained by crystal symmetries at the high-
symmetry points; the zero eigenvectors of both G+ (zeros)
and of [G+]−1 (poles) transform in irreducible representations
of the space group. Here, we also observe the fact that zeros
and poles can be created and eliminated together. This is an
important feature of the discontinuities in the single-particle
Green’s function of the graphene band-HK model (Fig. 3).

We have plotted the absolute value of the determinant
| det(G+)| and the spectral function 1

π
Im Tr(G+(k, ω)) in

Fig. 3 for our graphene model with the band (top row) and
the orbital (bottom row) HK interaction. We see that for in-
teraction U1 equal to half the single-particle bandwidth W ,
the band HK interaction does not open a charge gap in the
ground state, as evidenced by poles (bright regions) in both the
spectral function and determinant crossing zero frequency. On
the other hand, the orbital HK model leads to a ground state
with a charge gap at every k. Additionally, both the band and
orbital HK models have Green’s functions with zero eigenval-
ues, depicted as dark regions in the determinant. In the orbital
model, there is a band of Green’s function zeros throughout
the entire BZ, and the zero surface traverses the charge gap.
This indicates that graphene with the orbital HK interaction
is in a Mott insulating state with a Luttinger surface, and so
cannot be adiabatically connected to a noninteracting band
insulator [46]. We thus see that graphene with the orbital
HK interaction is a Mott insulator with a fourfold degenerate
ground state. For the band HK model, the Green’s function
only contains zeros at k points for which the eigenvalues of the
noninteracting Hamiltonian are less than half the interaction
energy ξ (k) < U1/2. In this regime, the retarded, real-time
Green’s function matrix is diagonal with elements given by

G+
±,σ ;±,σ (ω, k) = 1

2

[
1

ω − (±ξ (k) + U1/2) + iη

+ 1

ω − (±ξ (k) − U1/2) + iη

]
, (26)

Where here we have used ± as the band index m, and
ξ (k) is defined as the positive non-interacting Hamiltonian
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FIG. 3. A comparison of the real-time retarded Green’s function G+ for band (top) and orbital (bottom) HK models of graphene. In the
left two panels [(a), (c)], we show the absolute value of the determinant | det(G+)|, and in the right two panels [ (b), (d)] the spectral function
− 1

π
Im Tr(G+(k, ω)). (a) | det(G+)| for the intermediate interaction strength regime U1 = W/2 (U1 = 3t) for the band HK model. Since the

band of zeros is not present across the whole Brillouin zone, the band model in the intermediate regime is not a Mott insulator, but a general
non-Fermi liquid. (b) The spectral function, − 1

π
Im Tr(G+(k, ω)), in the intermediate interaction strength regime for the band HK model.

(c) | det(G+)| for the orbital HK model with U1 = W/2. The band of zeros is present across the whole Brillouin zone. (d) Spectral function
for the orbital HK model in the intermediate interaction strength regime U1 = W/2. The parameters of the noninteracting Hamiltonian are
everywhere: t = 1, μ0 = U1/2. The band of zeros in the determinant of the orbital model demonstrates that it is a Mott insulator even for
interaction strengths lower than the bandwidth U1 < W .

eigenvalue. Zeros occur when the two contributions to
G±,σ ;±,σ (ω, k) cancel, which occurs when ω = ±ξ (k).

Once the single-particle energy |ξ (k)| exceeds the inter-
action energy |U1|, the ground state of the band HK model
changes discontinuously as a function of k from having one
electron in the lower and upper single-particle bands, to hav-
ing both electrons in the lower single-particle band. In this
regime, the diagonal elements of the Green’s function matrix
become

G+
±,σ ;±,σ = 1

ω − (±ξ (k) − U1/2) + iη
. (27)

This leads to the discontinuous disappearance of the upper and
lower poles, along with the zeros in the Green’s function at
ξ (k) = U1/2. Notice that the zeros and poles are created and
annihilated in pairs at the discontinuity.

We mention one more important general property of the
ground state for any HK model which preserves crystal and
time-reversal symmetries. On general grounds, the ground
state of such a system, if it is nondegenerate, has no mag-

netic order. This follows from the fact that the ground state
preserves the time-reversal symmetry of the Hamiltonian. Al-
though, in principle, it is possible that there is spontaneous
symmetry breaking, this only happens in the thermodynamic
limit. Since the HK model is diagonal in momentum space,
we can consider the Hamiltonian formed from the k and −k
blocks:

Hk̃ = Hk ⊕ H−k. (28)

This Hamiltonian is invariant under time reversal, since time-
reversal merely permutes the k and −k blocks. Since this
is a finite-rank Hamiltonian, it cannot spontaneously break a
symmetry and hence its ground state manifold must also be
time-reversal symmetric. The overall Hamiltonian for a HK
model can be written as a direct sum of the Hk̃ Hamiltonians,

H =
⊕

k

Hk =
⊕
k̃�0

Hk̃, (29)
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FIG. 4. Energies and Green’s functions for band (top row) and orbital (bottom row) graphene HK models with Zeeman interactions H̄ ′
g

and H ′
g in the strongly interacting limit U1 = 2W with a small Zeeman field B = W/20. (a) Energy spectrum in the two-particle sector for the

band model H̄ ′
g. (b) | det(G+)| for the band model. There are no Green’s function zeros, indicating that the ferromagnetic state is adiabatically

connected to a trivial insulator. (c) Spectral function for the band model. (d) Energy spectrum in the two-particle sector for the orbital model
H ′

g with the same parameters as the band model. (e)| det(G+)| for the orbital model. The presence of Green’s function zeros indicates that
the orbital model remains a non-Fermi liquid. (f) Spectral function of the orbital model. Both models have parameter values in the strongly
interacting regime: t = 1, U1 = 12, B = 0.3, μ0 = 6. We see that the band model becomes a trivial ferromagnetic insulator, whereas the orbital
model retains some of the Green’s function zeros and hence remains a Mott insulator.

and so the ground state is the tensor product of the neces-
sarily time-reversal symmetric ground states of Hk̃, and so is
itself time-reversal symmetric. This forbids magnetic order-
ing. Hence, typical nonthermodynamically degenerate ground
states of orbital-HK models have a single-particle charge gap
with no magnetic order; this is what we will define as a spin
liquid ground state. The only way to have a magnetically
ordered ground state in an HK model is then to have a thermo-
dynamically large ground state degeneracy which is unstable
to magnetic ordering, as in band-HK models.

2. Band and orbital graphene models in a magnetic field

One of the consequences of the thermodynamically large
degeneracy in the band HK model of graphene Eq. (22) is a
ferromagnetic instability. This comes from the fact that wher-
ever the interaction energy is greater than the hopping energy,
U1/2 > ξ (k), the ground state at k is an equal weight mixture
of all spin combinations. The addition of an infinitesimal mag-
netic field lowers the energy of the spins aligned with the field
at every k point, and so forces the available spins in the ground
state of the whole N-particle system to align. Typically, the
resulting ferromagnetic state is adiabatically connected to a
noninteracting magnetic band insulator [38,40]. In orbital HK
models, however, the tendency towards the spins aligning is
stabilized by the nondegeneracy of the ground state. In our
particular case of graphene, we see from Eq. (8) that the
ground state subspace at every k is supported on states 2–5
from Table I. The energies of these states are unaffected by a
Zeeman field.

To understand the response of the system to a Zeeman field,
we calculate the real-time retarded Green’s function matrix

elements G+
i, j for the band and orbital HK models with a Zee-

man field. For the band model, we consider the Hamiltonian

H̄ ′
g =

∑
kmσ

ξm(k)c̄†
kmσ c̄kmσ + U1

∑
k

n̄km↑n̄km↓

+ Bσc†
kμσ ckμσ − μ0

∑
kμσ

nkμσ . (30)

This band HK model with a Zeeman term has already been
analyzed in Ref. [35] and we provide the spectrum in the two-
particle sector and the Green’s function in Fig. 4 for ease of
comparison with the orbital model.

The Hamiltonian for the orbital HK model of graphene
with a Zeeman field is given by

H ′
g = t

∑
kσ

g(k)c†
kBσ ckAσ + H.c.

+ U1

∑
kμ

nkμ↑nkμ↓ +
∑
kμσ

Bσc†
kμσ ckμσ − μ0

∑
kμσ

nkμσ .

(31)

Note that the Zeeman energy is invariant under the particle-
hole symmetry operation P given in Eq. (13), and hence the
ground state at half filling still has two particles at every k.
In Fig. 4(d), we show the spectrum of the Hamiltonian in the
two-particle sector. We see that the primary effect of the Zee-
man field is to spin split the threefold degenerate E0(k, μ0)
band. The exact two-particle energies as a function of B are
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given by

E±
2 (k, μ0, B) = 1

2

(
U1 ±

√
U 2

1 + 16|tg(k)|2) − 2μ0,

E0↑
2 (k, μ0, B) = −2B − 2μ0,

E00
2 (k, μ0, B) = −2μ0, (32)

E0↓
2 (k, μ0, B) = 2B − 2μ0,

EU
2 (k, μ0, B) = U1 − 2μ0. (33)

The eigenstates with energies E±
2 , E00

2 , and EU
2 are supported

on states 2–5 in Table I. The ferromagnetic state |A ↑; B ↑〉
aligned with the field has energy E0↑

2 (k, μ0, B), while the
antialigned state |A ↓; B ↓〉 has energy E0↓

2 (k, μ0, B). The
ground state at every k will either have energy E−

2 (k, μ0, B) or
E0↑

2 (k, μ0, B). The absolute value of the resulting determinant
and the spectral function are plotted in the large U1 (U1 = 2W )
and small B (B = W/20) limits in Fig. 4. In the band model
with Zeeman interactions, shown in Fig. 4(b), the Green’s
function zeros disappear. This means that the ferromagnetic
state is adiabatically connected to a trivial band insulator,
obtained by filling the spin-up states in each single-particle
band. In the orbital model, however, the Green’s function
zeros remain wherever the ground state has antialigned spins,
i.e., for those k at which E±

2 (k, μ0, B) < E0↑
2 (k, μ0, B). This

shows that the ground state of the orbital model in the large
U1 limit is not adiabatically connected to a trivial insulator
when an infinitesimal magnetic field is added, and retains it’s
non-Fermi liquid behavior. Ultimately, this is a consequence
of the difference in ground state degeneracies between these
two models.

We can further analyze the response of the orbital-HK
model to a Zeeman field by computing the magnetic suscep-
tibility in the ground state. For small B, the region where
E0↑

2 (k, μ0, B) < E−
2 (k, μ0, B) will be small, centered in two

small pockets surrounding the K and K ′ points where g(k)
vanishes. The net magnetic moment per unit volume m(B) in
the ground state will then be 2h̄NFM/V , where NFM is the num-
ber of k states surrounding the K point where E0↑

2 (k, μ0, B) <

E−
2 (k, μ0, B) (so the ground state is ferromagnetic in this

region), V is the volume of the system, and the factor of
2h̄ = 4h̄/2 comes from the number of valleys (2) times the
magnetic moment per state (2h̄/2). To determine NFM/V for
small B, we can Taylor expand E−

2 (k, μ0, B) about the K point
and solve for the critical k∗ such that

−B = 1

2

(
U1 −

√
U 2

1 + 16|tg(δk)|2) ≈ −4v2
F

U 2
1

|δk|2, (34)

where we have introduced the Fermi velocity vF = 3at/2,
and the deviation δk = k∗ − K . NFM is thus given by the
number of states inside a circle of radius U1

√
B/4vF . Letting

� = 3
√

3/2a2 denote the volume of the unit cell, we find

NFM/V = �

4π2
π |δk|2 (35)

= BU 2

8
√

3πt2
, (36)

yielding a ground state magnetic moment of

m(B) = BU 2h̄

4
√

3πt2
. (37)

We thus find that the magnetic susceptibility of the ground
state is given by

χ = ∂m

∂B

∣∣∣∣
B=0

= h̄U 2

4
√

3πt2
, (38)

which is finite for all values of U1 and t �= 0. Other ther-
modynamic quantities can be calculated in a similar way, as
was done for the band-HK model in Ref. [56] and for the
Hall conductivity in Ref. [38]. A calculation of the magnetic
instability from the partition function of a band-HK model
was carried out in Ref. [32].

B. Extending to spinful models: HK Kane-Mele

Having demonstrated that we can lift the thermodynami-
cally large degeneracy in band HK models, we now illustrate
the second difference between band and orbital HK mod-
els: that orbital models can be extended to spin-dependent,
noninteracting Hamiltonians without any assumption of spin
conservation. The KM model has a spin-dependent noninter-
acting Hamiltonian, and the interacting KM-Hubbard model
has been extensively studied [25,57,58].

Previously, Ref. [35] considered adding band HK inter-
actions to the KM model. It is possible to write a band
KM-HK model because the spin projection Sz commutes with
the noninteracting Hamiltonian. Here we consider the orbital
KM-HK model. In general, the orbital model does not require
that the noninteracting Hamiltonian commutes with Sz. This
allows us to define and solve HK models for arbitrary spin-
dependent Hamiltonians. This will allow us to solve the orbital
model for space group P4/ncc1′ (No. 130) and space group
P42/mbc1′ (No. 135) in Sec. III.

To demonstrate this, we will first obtain the orbital HK
Kane-Mele model from our interacting graphene Hamiltonian
Hg. We add a spin-dependent hopping so our total Hamilto-
nian is now

HKM = t
∑
kσ

g(k)c†
kBσ ckAσ + iλ

∑
kμσ

σμg1(k)c†
kμσ ckμσ + H.c.

+ U1

∑
kμ

nkμ↑nkμ↓ − μ0

∑
kμσ

nkμσ , (39)

where the new hopping

g1(k) =
∑

j

eik·b j (40)

is to next-nearest-neighbor sites, as shown in Fig. 1. The block
Hamiltonian at a given k point HKM(k) is then given by

HKM(k) = t
∑

σ

g(k)c†
kBσ ckAσ + H.c.

+ 2λ
∑
μσ

σμg̃1(k)c†
kμσ ckμσ + U1

∑
μ

nkμ↑nkμ↓,

(41)
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FIG. 5. A comparison of the spectra in the two-particle sector for band (top row) and orbital (bottom row) HK Kane-Mele models.
(a) Single-particle spectrum for the noninteracting Kane-Mele model. (b) Two-particle spectrum ĒKM,2(k) for the band HK Kane-Mele
model with intermediate interaction strength H̄KM for U1 = W/2 (U1 = 3t). (c) Two-particle spectrum ĒKM,2(k) for the band-HK Kane-Mele
model H̄KM with large interactions U1 = 2W (U1 = 12t). (d) Single-particle spectrum (repeated) for the noninteracting Kane-Mele model. (e)
Two-particle spectrum EKM,2(k) for the orbital HK Kane-Mele model HKM with intermediate interaction strength U1 = W/2 (U1 = 3t). (f)
Two-particle spectrum EKM,2(k) for the orbital HK Kane-Mele model HKM with large interactions U1 = 2W (U1 = 12t). Note that the ground
state remains everywhere nondegenerate in the orbital model. The parameters of the noninteracting Hamiltonian are everywhere t = 1, λ = 0.1.
The topological gap in the noninteracting Hamiltonian means that the ground state of the orbital model is everywhere nondegenerate, whereas
the ground state of the band HK model is only nondegenerate when the interaction energy is less than the topological gap.

where, for convenience, we have defined

g̃1 =
∑

j

sin(k · b j ). (42)

We can solve the model by solving HKM(k) at every k point
using the same procedure we used for our graphene tight-
binding model. Note that the spin-orbit coupling Hamiltonian
is invariant under the particle-hole symmetry operation P
given in Eq. (13), and hence the ground state at half filling
still has two particles at every k. In the same basis as before
(Table I), the matrix elements of the Hamiltonian at half filling
HKM,2(k) are given by

HKM,2(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 U1 −tg∗ tg∗ 0 0

0 −tg −4λg̃1 0 −tg∗ 0

0 tg 0 4λg̃1 tg∗ 0

0 0 −tg tg U1 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(43)

A comparison of the resulting spectrum in the two-particle
sector for the band and orbital HK models is given in Fig. 5.
Since the noninteracting spectrum is gapped at the K and K ′
points, the resulting ground state is everywhere gapped and
nondegenerate for all U1 > 0.

In Fig. 6, we provide the determinant | det(G+(k, ω))| and
spectral function − 1

π
Im Tr(G+(k, ω)) for the band HK KM

[Figs. 6(a) and 6(b)] and the orbital HK KM [Figs. 6(c) and

6(d)] models. We see that even for intermediate interaction
strength U = W/2, the orbital model has a charge gap in the
ground state.

As in the graphene model, we can understand the tendency
towards ferromagnetism of the band and orbital KM models
by considering adding a small Zeeman term to the Hamilto-
nian. For the model with band HK interactions, we consider
the Hamiltonian

H̄KMZ =
∑
kmσ

ξnmσ (k)n̄kmσ + U1

∑
km

nkm↑n̄km↓

+ B
∑
kmσ

σ n̄kmσ − μ0

∑
kmσ

n̄kmσ , (44)

and for the model with orbital HK interactions we have the
Hamiltonian

HKMZ = t
∑
kσ

g(k)c†
kBσ ckAσ + iλ

∑
kμσ

σμg1(k)c†
kμσ ckμσ

+ H.c. + U1

∑
kμ

nkμ↑nkμ↓

+ B
∑
kμσ

σnkμσμ0 −
∑
kμσ

nkμσ . (45)

Note that the orbital model Hamiltonian HKMZ is particle-hole
symmetric for μ0 = U1/2, with the particle-hole symmetry
operator given by Eq. (13). The resulting determinant and
trace of the Green’s function matrices G+ are plotted in Fig. 7
for each case in the strongly interacting limit U > W . As in
the graphene model, we see that the orbital KM model has a
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FIG. 6. A comparison of the real time retarded Green’s function G+ for band (top) and orbital (bottom) HK-KM models. In the left
two panels [(a), (c)], we show the absolute value of the determinant | det(G+)|, and in the right two panels [(b), (d)], the spectral function
− 1

π
Im Tr(G+(k, ω)). (a) | det(G+)| for the intermediate interaction strength regime U1 = W/2 (U1 = 3t) for the band HK model. Since the

band of zeros is not present across the whole Brillouin zone, the band model in the intermediate regime is not a Mott insulator, but a general
non-Fermi liquid. (b) The spectral function, − 1

π
Im Tr(G+(k, ω)), in the intermediate interaction strength regime for the band HK model.

(c) | det(G+)| for the orbital HK model with U1 = W/2. The band of zeros is present across the whole Brillouin zone. (d) Spectral function
for the orbital HK model in the intermediate interaction strength regime U1 = W/2. The parameters of the noninteracting Hamiltonian are
everywhere t = 1, λ = 0.1, μ0 = U1/2, and we have used a logarithmic scale for the heat map. The gap in the spectral function of the orbital
model demonstrates that it has an insulating ground state even for interaction strengths lower than the bandwidth U1 < W .

finite magnetic susceptibility as indicted by Fig. 7(d). Further-
more, the ground state retains its non-Fermi liquid behavior
in the presence of a small magnetic field—indicated by the
midgap Green’s function zeros near M—whereas the band HK
interaction leads to a ferromagnetic state that is adiabatically
connected to a band insulator.

We have demonstrated that orbital HK models do not have
thermodynamically large ground state degeneracies, and as
a consequence are stable to small external magnetic fields.
Furthermore, we have seen how orbital HK models can be ex-
tended to spin-dependent noninteracting Hamiltonians. These
results provide the necessary tools to study the applicability
of the LSM theorems to the HK models. Since we have lifted
the degeneracy in band HK models, we can now ask whether
an orbital HK model can have a topological degeneracy at
a given filling. Since we can define orbital models even for
systems that do not conserve spin, we can apply our method
to filling constraints in the presence of spin-orbit coupling, as
considered for short-range entangled systems in Ref. [41].

In the next section, we will use these observations to in-
troduce and solve interacting models for spin-orbit coupled
Hamiltonians invariant under space groups P42/mbc1′ (No.
135) and P4/ncc1′ (No. 130). Crucially, the models we will
consider do not conserve any component of the spin. In space
group P42/mbc1′ (No. 135), it is known that noninteracting
systems with fewer than ν = 8 electrons per unit cell cannot
be insulators; however, the tightest LSM theorem currently
known allows for an interacting featureless insulator at ν = 4
electrons per unit cell. We will show that adding orbital HK
interactions leads to a spin liquid ground state at ν = 4 and
that adding a more general class of HK interactions leads to a
nondegenerate, symmetric gapped phase at four electrons per
unit cell. By considering space group P4/ncc1′ (No. 130) (and
space group P21/c1′ (No. 14) in Appendix C), we will then
show that generalized HK interaction are not subject to the
same filling constraints as short-range entangled systems. This
raises the question of how to understand and identify topology
in a long-range interacting system.

165136-12



GROUND STATE STABILITY, SYMMETRY, AND … PHYSICAL REVIEW B 108, 165136 (2023)

FIG. 7. The Green’s function for band and orbital HK-KM models with a small Zeeman field in the large U1 limit. (a) Spectrum in the
two-particle sector for the band HK-KM model with Zeeman interactions. (b) | det(G+(k, ω)) for the band model. There is no band of Green’s
function zeros, which confirms that it is adiabatically connected to a trivial insulator. (c) Spectral function for the band model. (d) Spectrum in
the two-particle sector for the orbital HK-KM model with Zeeman interactions at the same parameters as the band model. (e) | det(G+(k, ω))
for the orbital model, in which we see that a band of zeros exists in the spectral gap along the � − M line. (f) Spectral function for the orbital
model. The parameter values for both models are t = 1, U1 = 12t , λ = 0.1, B = 0.3t , μ0 = U1/2 = 6t . As in the graphene model, we can see
that an arbitrarily small magnetic field converts the band HK model into a ferromagnetic insulator, whereas the orbital HK model remains a
non-Fermi liquid with a finite magnetization.

III. THE DOUBLE-DIRAC SPIN LIQUID
IN SPACE GROUP P42/mbc1′ (No. 135)

A. Model and symmetries

We start with a noninteracting Hamiltonian H0
135 con-

structed so as to be invariant under space group P42/mbc1′
(No. 135). The same Hamiltonian was considered in
Ref. [48,59]. The Hamiltonian is defined on a tetragonal Bra-
vais lattice with four occupied sublattice sites per unit cell (see
Fig. 8). The horizontal sublattice sites are indexed by τ = ±1,
and are located at (0,0,0) and ( 1

2 , 1
2 , 0), respectively (in re-

duced coordinates). The vertical sublattice sites are indexed
by μ = ±1 and are located at (0,0,0) and (0, 0, 1

2 ) (in reduced
coordinates). Together, these four sites form the 4a Wyckoff
position.

The single-particle Hamiltonian consists of a spin-
independent hopping between these sublattice sites H1

135 and
a spin-dependent hopping H2

135. In momentum space, we can
write the corresponding Hamiltonians Hn

135 in the orbital basis
of second quantized operators as

Hn
135 =

∑
k,i,j,σ,σ ′

c†
k,i,σ

(
Hn

135(k)
)

iσ, jσ ′ck, j,σ ′ , (46)

with

H0
135(k) =H1

135(k) + H2
135(k)

H1
135(k) = txyτ

x cos
kx

2
cos

ky

2
+ tzμ

x cos
kz

2

+ t ′
1μ

z(cos(kx ) − cos(ky))

+ t ′
2μ

yτ y sin
kx

2
sin

ky

2
cos

kz

2

H2
135(k) = λ′

1μ
xτ y

(
σ x sin

kx

2
cos

ky

2

+ σ y cos
kx

2
sin

ky

2

)
sin

kz

2

+ λ′
2μ

yτ x

(
σ x cos

kx

2
sin

ky

2

+ σ y sin
kx

2
cos

ky

2

)
sin

kz

2

+ λ′
3μ

zτ yσ z cos
kx

2
cos

ky

2
(cos kx − cos ky).

(47)

To this Hamiltonian, we add the orbital HK interaction H1
HK:

H1
HK = U1

∑
kμτ

nkμτ↑nkμτ↓. (48)

In this basis of single-particle operators, the representations
of the generators of space group P42/mbc1′ (No. 135) (as
well as those for space group P4/ncc1′ (No. 130) for later
convenience) are given in Table II. We can see from the single-
particle spectrum (Fig. 8) that it hosts an eightfold degenerate
double-Dirac fermion at the A point as the only feature near
the Fermi level at half filling.

B. Excitation spectrum and ground state degeneracy

We can solve this model at half filling (here four elec-
trons per unit cell) using the same procedure that we used
to solve the interacting graphene model Eq. (7). However,
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FIG. 8. The parent lattice, Brillouin zone, and noninteracting one-particle energy spectra. (a) The sublattice degrees of freedom. The color
indicates the value of μ: red is μ = +1 (A sublattice), green is μ = −1 (B sublattice), and whether they are filled (+1 for the A sublattice)
or empty (−1 for the B sublattice) indicates the value of τ . (b) Single-particle spectrum for the noninteracting Hamiltonian H0

135 in Eq. (47).
The bands are colored according to their degeneracy, given on the right. We use the same noninteracting parameter values for all space
group P42/mbc1′ (No. 135) models: txy = 1, tz = 0.5, t ′

1 = t ′
2 = 0.3, λ1 = 0.5, λ2 = 0.1, λ3 = 0.15 throughout the text. (c) The corresponding

tetragonal Brillouin zone of space groups P4/ncc1′ (No. 130) and P42/mbc1′ (No. 135). (d) Single-particle spectrum for the noninteracting
Hamiltonian for space group P4/ncc1′ (No. 130) H0

130. We use the same noninteracting parameter values for all P4/ncc1′ (No. 130) models
throughout: txy = 1, tz = 0.5, λ1 = 0.3, λ2 = 0.3, λ3 = 0.3.

we note that, unlike the graphene models, the Hamiltonian
H1

135 = H0
135 + H1

HK is not, in general, particle-hole symmet-
ric. Specializing to μ0 = U1/2, we find that the Hamiltonian
is particle-hole symmetric only when t ′

2 = 0. Nevertheless, as
we show in Appendix D, particle-hole symmetry breaking is
weak provided t2 � U1, and the ground state at half filling still
consists of four-particle states at every k. To find the ground
state in this regime, we first construct the seventy possible

TABLE II. Representation of the symmetry generators for space
group P4/ncc1′ (No. 130) and space group P42/mbc1′ (No. 135) in
the spin and sublattice basis. K denotes complex conjugation.

P4/ncc1′ (No. 130) P42/mbc1′ (No. 135)

{g|t} ρ({g|t}) {g|t} ρ({g|t})

{C4z|000} eiπσ z/4 {C4z|00 1
2 } μxeiπσ z/4

{C2x| 1
2

1
2 0} iτ xσ x {C2x| 1

2
1
2 0} iτ xσ x

{I| 1
2

1
2

1
2 } μxτ x {I|000} 1

TR iσ yK TR iσ yK

four-particle states at every k point and use them to form
the matrix H135(k) of the Hamiltonian in the four-particle
sector. We then diagonalize the resulting matrix to obtain the
spectrum in the four-particle sector and the corresponding
eigenstates at each k point. The excitation spectrum is shown
in the top row of Fig. 9. Figure 9(a) shows the spectrum of the
Hamiltonian H135(k) in the four-particle sector at low ener-
gies, while Fig. 9(b) shows the same spectrum with the ground
state energy subtracted off. Since the low-energy excitations
of H135(k) are in the four particle sector, Fig. 9(b) can be
interpreted as the spectrum of low-energy excitations of the
model at half filling. We can see from the spectrum that the
ground state is degenerate only at the A point. This occurs for
the same reason that it occurred in our interacting graphene
model: the noninteracting Hamiltonian vanishes at this point,
and so the equivalent four-site Hubbard model at the A point
has zero hopping and is hence degenerate.

We then calculate the zero-temperature retarded real-time
Green’s function matrix G+

i, j using Eq. (25) and show the
results in Fig. 10. The surface of zeros in between the poles
of | det(G+)| in Fig. 10(a) confirms that the ground state
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FIG. 9. Spectra along the high-symmetry paths (HSPs) for space group P42/mbc1′ (No. 135) (top row) and space group P4/ncc1′ (No. 130)
(bottom row) with HK interactions H1

HK in the half-filled (four electrons per unit cell) sector. The low-energy states have been colored according
to their degeneracy, given in the rightmost panel. The degeneracy of the higher energy states has been grayed out for clarity. (a) Spectrum E4(k)
of the orbital HK model in space group P42/mbc1′ (No. 135) with HK interaction H1

HK in the four-particle sector. (b) Low-energy part of the
excitation spectrum E4(k) − E4,GS(k). Here we show only the 16 states below the gap. (c) Spectrum E4(k) of the orbital HK model in space
group P4/ncc1′ (No. 130) with HK interactions H1

HK in the four-particle sector. (d) Low-energy part of the excitation spectrum E4(k) − E4,GS(k)
for the model in space group P4/ncc1′ (No. 130). Note that the ground state is nondegenerate at the A point and along the line R − Z . The
parameter values for space group P42/mbc1′ (No. 135) are txy = 1, tz = 0.5, t ′

1 = 0.3, t ′
2 = 0.3, λ′

1 = 0.5, λ′
2 = 0.1, λ′

3 = 0.15,U1 = 4, μ0 =
2. The parameter values for space group P4/ncc1′ (No. 130) are txy = 1, tz = 0.5, λ1 = 0.3, λ2 = 0.3, λ3 = 0.3,U1 = 4, μ0 = 2.

FIG. 10. The absolute value of the determinant of the real-time retarded Green’s function matrix G+ at zero temperature (left) and the
spectral function (right) for the orbital HK model invariant under space group P42/mbc1′ (No. 135), H1

135 = H 0
135 + H 1

HK. (a) | det(G+)|
for the orbital HK model H1

135 = H 0
135 + H 1

HK. From the band of zeros in between the poles, we can infer that H1
135 = H 0

135 + H 1
HK has a

Mott insulating ground state. We also find that, at the A point, the eigenvalues of the Green’s function matrix G+ are eightfold degenerate.
(b) Spectral function − 1

π
Im TrG for H0

135 + H 1
HK. We have used the same noninteracting parameter values as previously: txy = 1, tz = 0.5, t ′

1 =
t ′
2 = 0.3, λ1 = 0.5, λ2 = 0.1, λ3 = 0.15, μ0 = 2, and the interaction strength is U1 = 4.
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is a Mott insulator, and the gap in the poles confirms that
there is a charge gap. The determinant and spectral function
are approximately symmetric around ω = 0 because of the
approximate particle-hole symmetry of the model. As pointed
out in Ref. [36], the eigenstates of the Green’s function G+

i, j
transform in irreducible representations of the space group,
just like eigenstates of the single-particle Hamiltonian. In
particular, the degeneracies of the poles and zeros in G+

i, j
match the allowed degeneracies of bands in the single-particle
spectrum. We have verified that the poles and zeros at the
A point in Fig. 10 for instance are eightfold degenerate, and
the poles and zeros along the M − A line are each fourfold
degenerate. Additionally, unlike in band HK models, we see
that there are regions in k and ω in which poles and zeros of
the Green’s function coexist. At negative frequency (i.e., in
the lower Hubbard bands) along the M − A line, for instance,
we see from Fig. 10(a) that four bands of fourfold degenerate
poles merge with two bands of fourfold degenerate zeros at
the A point to yield an eightfold degenerate pole at A. This
annihilation of zeros and poles in the lower Hubbard bands
is not observed in band-HK models in the Mott insulating
regime; it suggests that although the lower Hubbard band
eigenstates share the same degeneracies as the single parti-
cle spectrum, they cannot be adiabatically connected to free
fermion excitations. This establishes that the ground state has
a charge gap across the BZ, and the Luttinger surface implies
that it is a Mott insulating ground state.

We define a spin liquid ground state as one which has a
charge gap and no magnetic order. The poles of theGreen’s
function in Fig. 10(a) establish that there exists a charge gap
throughout the BZ. As shown in Sec. II A, since neither time-
reversal nor the crystal symmetries are spontaneously broken,
the ground state also has no magnetic order. Hence, the ground
state satisfies our definition of a spin liquid.

C. Effective Hamiltonian

The HK interaction H1
HK increases the energy of states

which contain a doubly occupied orbital. Hence, the low-
energy spectrum at half filling is dominated by the 16 states
which have no interacting pairs, although, in general, other
states have a small but nonzero overlap with the ground
state. In particular, the ground state at the A point contains
only singly occupied orbitals. Since the low-energy excitation
spectrum shown in Fig. 9(b) consists of excitations in the four-
particle subspace near the A point, this means that we expect
charge degrees of freedom to be frozen, and the low-energy
excitations to consist of spin-flip excitations with momentum
near the A point, k ≈ (π, π, π ). To make this precise and
to derive a quantitative expression for the low-energy excita-
tions, we can use a Schrieffer-Wolff transformation to derive
a low-energy effective spin model for our system [60].

We take the HK Hamiltonian H1
HK in Eq. (48) as the initial

Hamiltonian H0 and the noninteracting Hamiltonian H0
135 as

the perturbation V . We note first that H1
HK is block diagonal,

with each block corresponding to a sector of the Hilbert space
with a fixed number of interacting pairs. This means that, to
second order in the ratio of the bandwidth W to the interac-
tion energy U , the matrix elements of the Schrieffer-Wolff

Hamiltonian are

〈m|HSW|n〉 = 〈m|H0|n〉 + 〈m|V |n〉 + 1

2

∑
l

〈m|V |l〉〈l|V |n〉

×
[

1

Em − El
+ 1

En − El

]
, (49)

where m, n index the eigenstates of the low-energy subspace
of H0 = H1

HK (at half filling the 16 states with no HK interact-
ing pairs) and l runs over all eigenstates not in the low-energy
subspace.

Second, at half filling every creation operator acting on a
state with no HK interacting pairs creates one. This means
that the first-order contribution to the matrix elements 〈m|V |n〉
is zero, and Ei − Ek = U1 for all i, k in the second-order
contribution. This allows us to simplify the matrix elements
to

〈i|HSW| j〉 = 〈i|H0| j〉 + 1

U1
〈i|V 2| j〉. (50)

A comparison of the spectrum obtained from this Hamilto-
nian and the low-energy subspace of the full Hamiltonian
is shown in Fig. 11. Figure 11(a) shows both the exact and
Schrieffer-Wolff excitation spectrum, while Fig. 11(b) shows
the probability of finding zero, one, or two doubly occupied
orbitals in the ground state. As we would expect, the effective
and full Hamiltonians agree closely where there is only a
small amplitude for having a doubly occupied state. In partic-
ular, the Schrieffer-Wolff spectrum is a good approximation
to the low-energy excitation spectrum near the A point.

We can take the physical interpretation further. Since the
HK interaction has frozen out the charge degrees of freedom,
the Schrieffer-Wolff Hamiltonian is a pure spin Hamiltonian.
This means that we can use the orthogonality of spin operators
under the trace to find its form in terms of spin operators.
We give the full spin-spin Hamiltonian and the details of
its derivation in Appendix A. Since the HK interaction is
infinitely long-ranged in position space, we find that our spin
Hamiltonian contains interactions between spins at all dis-
tance scales.

IV. MORE GENERAL INTERACTIONS

We now show that it is possible to lift the degeneracy at
the A point by considering more general HK interactions that
respect the space group symmetries. First, we note that the
ground state space at the A point is spanned by the 16 states
with no HK interacting pairs. A basis for this subspace can be
written as

{|AAσ1; ABσ2; BAσ3; BBσ4〉}, (51)

where the first letter in each triplet gives the μz orbital eigen-
value, the second letter gives the τz orbital eigenvalue (i.e., A
corresponds to +1 and B corresponds to −1 as in our analysis
of graphene), σ1–σ4 are spin indices, and we have left the
k = (π, π, π ) dependence implicit. These 16 states transform
in a (reducible) representation of the space group, which we
can write as a direct sum of irreducible representations. To do
so, we first examine how each state transforms under Bravais
lattice translations. Since each of the four particles has the
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FIG. 11. A comparison of the spectrum of the effective Schrieffer-Wolff Hamiltonian with the spectrum of the full Hamiltonian (left) and
the probability of doubly occupied an orbital in the ground state (right) at each k point. (a) The spectrum of the Schrieffer-Wolff Hamiltonian
Eq. (50), in blue, plotted with the full Hamiltonian in red. (b) The probability of having zero (black), one (blue) and two (red) HK interacting
pairs in the ground state. We see that when the probability of having a doubly occupied orbital is low, the effective Hamiltonian is a good
approximation to the full Hamiltonian.

same momentum k = (π, π, π ), we find that under a Bravais
lattice translation by lattice vector t—represented by a unitary
operator Ut—the states transform as

Ut|AAσ1; ABσ2; BAσ3; BBσ4〉
= e−4ik·t|AAσ1; ABσ2; BAσ3; BBσ4〉
= |AAσ1; ABσ2; BAσ3; BBσ4〉. (52)

In other words, the 16 low-energy states at A in the four-
particle sector have zero crystal momentum (modulo a
reciprocal lattice vector). This means that the states will trans-
form in representations of the space group induced from the
� point in the BZ. Furthermore, since these states contain
an even number of fermions, they have integer angular mo-
mentum. We can thus decompose our 16 state basis into a
direct sum of single-valued space group representations in-
duced from the � point. We refer the reader to the Bilbao
Crystallographic Server (BCS) for the character tables and
representation matrices for the space group representations
[61–64]. Using the Schur orthogonality relations coupled with
the character tables on the BCS, we find that the representa-
tions of the symmetries of space group P42/mbc1′ (No. 135)
and time reversal on these 16 four-particle states at the A
point decompose into eight one-dimensional and four two-
dimensional irreducible representations. These are tabulated
in Table III.

TABLE III. Decomposition into space group irreducible repre-
sentations of the 16 degenerate states four particle states at the A
point for the orbital HK model H0

135 + H 1
HK in space group P42/mbc1′

(No. 135). We follow the labeling convention used on the Bilbao
Crystallographic Server [61–64].

Representation Multiplicity Dimension

�+
1 4 1

�+
2 2 1

�+
4 2 1

�+
5 4 2

In Table IV, we show the four states that transform in
copies of the trivial representation. We see that each is a
cat-state superposition of spin- and orbital-ordered states at
fixed crystal momentum k = (π, π, π ). This suggests that the
long-range interactions in the HK model can stabilize long-
range entanglement in the ground state. In particular, we note
that states 1 and 2 in Table IV can become disentangled by
spontaneously breaking time-reversal symmetry, while states
3 and 4 can become disentangled by spontaneously breaking
fourfold rotation symmetry.

A. Splitting the degeneracy

Our symmetry analysis in Table III shows that the 16-
fold-degenerate ground state subspace decomposes into eight
one-dimensional and four two-dimensional irreducible repre-
sentations of the space group. This allows for the possibility
of perturbing our model to lift the degeneracy of the ground
state; if the resulting perturbed model has a ground state
that transforms in a one-dimensional representation at the A
point, then we can realize an HK model with a nondegenerate
ground state and no symmetry breaking. This would give us
a candidate state realizing a filling ν = 4 gapped, symmet-
ric nondegenerate ground state as allowed for by the LSM

TABLE IV. The states which transform under the four copies of
the trivial representation in the ground state subspace of H0

135 + H 1
HK

in space group P42/mbc1′ (No. 135) at the A point. The first two
states can become disentangled upon breaking time-reversal sym-
metry, whereas to disentangle the third and fourth states requires
breaking one of the spatial symmetries.

Index Basis state

1 1√
2
(|AA ↑; AB ↓; BA ↑; BB ↓〉 + |AA ↓; AB ↑; BA ↓; BB ↑〉)

2 i√
2
(|AA ↑; AB ↓; BA ↑; BB ↓〉 − |AA ↓; AB ↑; BA ↓; BB ↑〉)

3 1√
2
(|AA ↑; AB ↑; BA ↓; BB ↓〉 + |AA ↓; AB ↓; BA ↑; BB ↑〉)

4 1√
2
(|AA ↑; AB ↓; BA ↓; BB ↑〉 + |AA ↓; AB ↑; BA ↑; BB ↓〉)
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FIG. 12. Energy spectra in the four-particle sector, E4(k), for models symmetric under space group P42/mbc1′ (No. 135) (top row) and
space group P4/ncc1′ (No. 130) (bottom row) with generalized HK interactions. The low-energy states have been colored according to their
degeneracy, given in the rightmost panel. The degeneracy of the higher energy states has been grayed out for clarity. (a) Spectrum in the
four-particle sector E4(k) for H0

135 + H 1
HK + H 2

HK. The ground state is twofold degenerate at the A point. (b) Spectrum in the four-particle sector
for H 0

135 + H 1
HK + H 2

HK + H 3
HK. Adding H3

HK removes the degeneracy at the A point, leading to a ground state which is everywhere gapped and
nondegenerate. (c) Spectrum in the four-particle sector E4(k) for H0

130 + H 1
HK + H 2

HK. The ground state is again twofold degenerate at the A
point. (d) Spectrum in the four-particle sector for H0

135 + H 1
HK + H 2

HK + H 3
HK. Adding H3

HK removes the degeneracy at the A point in space group
P4/ncc1′ (No. 130) as well, again leading to a ground state which is everywhere gapped and nondegenerate. This violates the filling bound
in Ref. [41]. The parameter values for space group P42/mbc1′ (No. 135) are txy = 1, tz = 0.5, t ′

1 = 0.3, t ′
2 = 0.3, λ′

1 = 0.5, λ′
2 = 0.1, λ′

3 =
0.15,U1 = 4,U2 = 2,U3 = 2, μ0 = (U1 + 2U2 )/2 = 4. The parameter values for space group P4/ncc1′ (No. 130) are txy = 1, tz = 0.5, λ1 =
0.3, λ2 = 0.3, λ3 = 0.3,U1 = 4,U2 = 2,U3 = 2, μ0 = (U1 + 2U2)/2 = 4.

theorem of Ref. [41] that cannot be adiabatically connected
to a band insulator.

We now show that we can form this insulating phase by
generalizing our initial HK interaction H1

HK to a wider class of
symmetry preserving interactions. First, we consider adding
terms of the form

H2
HK =

∑
i, j

nk,iNi, jnk, j, (53)

where, for convenience, we have abused notation to absorb
the spin into the orbital index so i, j are a shorthand for a set
of (μ, τ, σ ) indices and N is a symmetric matrix in the basis
of (μ, τ, σ ) indices. This corresponds to our H1

HK for N = σ x,
and a special case of this term was considered for a band-HK
model in Ref. [39].

Of the 64 possible independent N matrices, only the eight
listed in Table VI preserve the symmetries of space group

P42/mbc1′ (No. 135). Adding to our initial Hamiltonian

H2
HK = Uμx

∑
μτσ

nμτσ n−μτσ + Uτ x

∑
μτσ

nμτσ nμ−τσ (54)

allows us to lift the 16 fold degeneracy at the A point into
a twofold degeneracy. Note that H2

HK is particle-hole sym-
metric up to an overall shift of the chemical potential. Thus,
as discussed in Sec. III, the spectrum of H0

135 + H1
HK + H2

HK
is approximately particle-hole symmetric at half filling for
t ′
2 � U1 + Uμx + Uτ x . This means that the ground state still

consists of four-particle states at every k. We verify this
numerically in Appendix D. We show the spectrum in the
four-particle subspace in Fig. 12(a). The ground state is
given by the lowest energy eigenstate at each k. The ground
state is twofold degenerate at A and nondegenerate for all
other k.
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FIG. 13. Green’s function determinant and spectral function for Hamiltonians invariant under space groups P42/mbc1′ (No. 135) (top
row) and P4/ncc1′ (No. 130) (bottom row) with HK interactions H1

HK + H 2
HK + H 3

HK at half filling (four electrons per unit cell). In the left
two panels [(a), (c)], we show the absolute value of the determinant | det(G+(k, ω))|, and in the right two panels [(b), (d)], the spectral
function − 1

π
Im Tr(G+(k, ω)). The band of zeros in the determinant of the orbital model demonstrates that models in both space groups

remain Mott insulators when the ground state becomes nondegenerate. (a) | det(G+(k, ω))| for the space group P42/mbc1′ (No. 135)
Hamiltonian H0

135 + H 1
HK + H 2

HK + H 3
HK. (b) Spectral function, − 1

π
Im Tr(G+(k, ω)), for H0

135 + H 1
HK + H 2

HK + H 3
HK. (c) | det(G+(k, ω))| for

space group P4/ncc1′ (No. 130) Hamiltonian H0
130 + H 1

HK + H 2
HK + H 3

HK. (d) Spectral function, − 1
π

Im Tr(G+(k, ω)), for space group P4/ncc1′

(No. 130) Hamiltonian H0
130 + H 1

HK + H 2
HK + H 3

HK. The parameter values for space group P42/mbc1′ (No. 135) are txy = 1, tz = 0.5, t ′
1 =

0.3, t ′
2 = 0.3, λ′

1 = 0.5, λ′
2 = 0.1, λ′

3 = 0.15,U1 = 4,U2 = 2,U3 = 4μ0 = 4. The parameter values for space group P4/ncc1′ (No. 130) are
txy = 1, tz = 0.5, λ1 = 0.3, λ2 = 0.3, λ3 = 0.3,U1 = 4,U2 = 2,U3 = 2, μ0 = 4.

We can then consider a further generalization to HK-type
interactions H3

HK of the form∑
i, j,k,l

[
c†

kiF
1

i j ck j
][

c†
klF

2
lmckm

]
, (55)

where i, j, k, l run over all eight possible (μ, τ, σ ) indices.
We again exhaustively search over all terms to find those that
preserve the symmetries. In this case, there is an additional
constraint due to the fact that space group P42/mbc1′ (No.
135) is nonsymmorphic [65]. There are only three such terms,
provided with the details of the derivation in Appendix B. We
add one of them, H3

HK, to our Hamiltonian

H3
HK = Uτ xτ x

⎡
⎣∑

μτσ

c†
μτσ cμ−τσ

⎤
⎦

⎡
⎣ ∑

μ′τ ′σ ′
c†
μ′τ ′σ ′cμ′−τ ′σ ′

⎤
⎦, (56)

and note that H3
HK is explicitly particle-hole symmet-

ric, as we discuss in Appendix D. The Hamiltonian

H3
135 = H0

135 + H1
HK + H2

HK + H3
HK results in the spectrum

shown in Fig. 12(b). This ground state is everywhere gapped
and nondegenerate, with four particles at every k.

We plot the determinant of the Green’s function and the
spectral function for the Hamiltonian H3

135 = H0
135 + H1

HK +
H2

HK + H3
HK in Figs. 13(a) and 13(b). We see a clear gap

between the poles corresponding to the lower and upper Hub-
bard band excitations. We have also confirmed numerically
that this ground state transforms under the trivial representa-
tion at the A point. This implies that there is no spontaneous
symmetry breaking in this ground state. Nevertheless the
determinant of the Green’s function has a band of zeros in
the single particle gap. We also confirm numerically that the
eigenvalues of the determinant of the Green’s function matrix
are consistent with the symmetry allowed degeneracy in space
group P42/mbc1′ (No. 135); in particular, the zero eigenval-
ues at the A point are eightfold degenerate. Thus, we arrive at
a gapped, symmetric, nondegenerate Mott insulating ground
state.
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V. MINIMAL INSULATING FILLING IN HK MODELS

We have seen from Figs. 12(a), 12(b), 13(a), and 13(b) that
the Hamiltonian H0

135 + H1
HK + H2

HK + H3
HK realizes a gapped,

nondegenerate ground state at filling ν = 4 electrons per unit
cell that does not spontaneously break any symmetries and is
not adiabatically connected to a free fermion band insulator.
Our ground state is thus a candidate for the featureless inter-
acting insulator in space group P42/mbc1′ (No. 135) allowed
for by the LSM theorems of Ref. [41]. However, unlike the
family of Hamiltonians considered in Ref. [41], our HK model
contains arbitrarily long-range interactions. This opens up the
possibility that the ground state of H0

135 + H1
HK + H2

HK + H3
HK

evades the LSM theorem by being a long-range entangled cat
state. To see whether this is the case, we consider a similar
HK model in space group P4/ncc1′ (No. 130), which also
realizes a double-Dirac semimetal in the noninteracting limit.
The LSM theorem in space group P4/ncc1′ (No. 130), how-
ever, forbids a featureless insulator at ν = 4. Nevertheless, we
will see that we can construct an HK model in space group
P4/ncc1′ (No. 130) with a gapped, nondegenerate, symmetric
ground state at filling ν = 4.

A. Comparison: Space group P4/ncc1′ (No. 130)

We now ask whether we can also turn a Hamiltonian invari-
ant under space group P4/ncc1′ (No. 130) into a featureless
insulator. We use the same noninteracting Hamiltonian that
was considered in Ref. [48,66],

H0
130(k) = H1

130(k) + H2
130(k), (57)

H1
130(k) = txyτ

x cos
kx

2
cos

ky

2
+ tzμ

x cos
kz

2
, (58)

H2
130(k) = λ1μ

yτ zσ z cos
kz

2
+ λ2τ

z(σ x sin ky − σ y sin kx )

+ λ3μ
zτ x

(
σ x sin

kx

2
cos

ky

2
+ σ y cos

kx

2
sin

ky

2

)
,

(59)

with the corresponding Hamiltonian given by

H0
130 =

∑
k,iσ, jσ ′

c†
kiσ

(
H0

130(k)
)

iσ, jσ ′ck jσ ′ . (60)

The single particle spectrum is given in the bottom right
panel of Fig. 8. We then consider adding to Eq. (60) the
original orbital HK interaction H1

HK from Eq. (48):

H1
130 = H0

135 + H1
HK. (61)

As we show in Appendix D, the ground state of Eq. (61) at
half filling ν = 4 consists of four electrons at every k, and
the low-energy excitation spectrum is given by excitations in
the four-particle sector. We show the spectrum in the four
particle subspace in Figs. 12(c) and 12(d). As for space group
P42/mbc1′ (No. 135), we find a ground state that is only
degenerate at the A point.

We then add the generalized HK interactions, H2
HK, H3

HK to
Eq. (61), to obtain the Hamiltonian

H130 = H0
130 + H1

HK + H2
HK + H3

HK. (62)

As shown in Appendix D, the low-energy physics of H130

is dominated by excitations in the four-particle sector, and

the spectrum of H130 in the four particle sector is shown
Figs. 12(c) and 12(d). The spectrum is everywhere gapped and
non-degenerate, which means that our model in space group
P4/ncc1′ (No. 130) with ν = 4 electrons per unit cell can also
be made insulating without breaking any of the symmetries.

We additionally show the determinant of the Green’s func-
tion and the spectral function for our model in Figs. 13(c) and
13(d). As for our model in space group P42/mbc1′ (No. 135),
the gap between the poles in the spectral function and the band
of zeros in the determinant of the Green’s function confirms
that the ground state is a Mott insulator.

A gapped, nondegenerate, symmetric, short-range entan-
gled ground state in space group P4/ncc1′ (No. 130) at filling
ν = 4 would explicitly violate the LSM theorem of Ref. [41].
Since we have constructed a ground state that is gapped,
nondegenerate, and symmetric at filling ν = 4, we thus must
conclude that it is not short-range entangled. To understand
this, we can revisit the proof of the LSM theorem for nonsym-
morphic space groups. The derivation of the filling bounds
relies on the local properties of the system being invariant
under a change of the boundary conditions. Since HK inter-
actions are infinitely long range, however, every point in the
bulk is coupled to the boundary and so the theorem breaks
down.

This suggests that our models in space groups P42/mbc1′
(No. 135) and P4/ncc1′ (No. 130) realize insulators at filling
ν = 4 because the ground states are long-range entangled via
the HK interaction. This long-range entanglement need not be
topological, however. As pointed out in Ref. [41], cat states
such as the symmetric linear combination of two opposite
ferromagnetic states have just the sort of long-range entan-
glement needed to violate the LSM theorem.

This in turn raises three questions. First, we can ask what
filling constraints, if any, carry over to HK models from
the LSM theorem for systems invariant under time-reversal
and crystal symmetries. For the case of a 1D, translation-
ally invariant HK model it was shown in Ref. [67] that an
insulating state must have an integer number of electrons
per unit cell. Since it is simpler to calculate the filling than
to determine whether the system is insulating, we are pri-
marily concerned here with the converse statement: whether
a given filling implies an insulating state. For the case of
time-reversal and crystal symmetric systems, we conjecture
that the only remaining constraints beyond integer filling
are those that arise from the on-site symmetries—i.e., from
Kramers’ theorem. To support this conjecture, we show in
Appendix C that the LSM bound is violated by an HK model
in space group P21/c1′ (No. 14) at filling ν = 2, which rep-
resents the smallest enhancement of the LSM theorem by
nonsymmorphic symmetries. Second, since Hubbard models
can generate short-range entangled phases that are subject to
the bound, we have found an explicit example in which the
phase of the HK model (insulating for space group P4/ncc1′
(No. 130) at half filling) is different from the phase of a
Hubbard model required by the LSM theorem (i.e., metallic,
magnetic, or topologically ordered for space group P4/ncc1′
(No. 130) at half filling). This raises the question of which
topological properties of the Hubbard model can be inferred
from HK models from the renormalization group arguments
of Refs. [31,32]. Third, since the HK model is local in
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momentum space, it would be interesting to explore whether
any constraints analogous to LSM theorems arise from
considering the momentum space (orbital) entanglement spec-
trum [68,69].

VI. CONCLUSION

In this paper, we have initiated a systematic exploration of
the ground state degeneracy and filling constraints in long-
range HK-type models. First, in Sec. II we introduced a
general class of HK models with interactions written in the
orbital basis. We showed that previously considered band-
basis HK models arise as a special case. We showed how
orbital HK models can be solved via a mapping to a few-site
Hubbard model at each k. The main advantage of orbital-
basis HK models is that they have ground states which
are, in general, nondegenerate except possibly at isolated
high-symmetry k points in the BZ. This is in contrast to
band-basis HK models which have thermodynamically large
ground state degeneracies (there is a degeneracy at every k)
in the strongly interacting Mott insulator regime. Because of
this, orbital-basis HK models are stable against symmetry-
breaking order. We showed this explicitly through an analysis
of a tight-binding model of graphene with a simple orbital HK
interaction in Sec. II A. Additionally, the orbital basis allows
for a natural treatment of HK models with spin-orbit coupling,
such as the Kane-Mele model considered in Sec. II B.

To fully demonstrate the utility of orbital HK models, we
next turned our attention in Sec. III to orbital HK models
with the symmetries of space group P42/mbc1′ (No. 135),
where LSM theorems seem to allow for a gapped, symmetric,
short-range-entangled insulator at filling ν = 4 that is never-
theless not adiabatically connected to a band insulator. We
presented a model of an interacting double-Dirac semimetal in
space group P42/mbc1′ (No. 135) at filling ν = 4 with orbital
HK interactions and showed that the ground state is a Mott
insulator with a 16-sixteenfold degeneracy at the A point in the
BZ. We identified the low-energy excitations above the ground
state with spin waves, and showed that the system could be
mapped via a Schrieffer-Wolff transformation to a long-range
interacting spin model. Next, we showed through a careful
symmetry analysis of possible HK interactions in Sec. IV that
there exists an orbital HK model in space group P42/mbc1′
(No. 135) at filling ν = 4 that has a gapped, symmetric,
nondegenerate ground state. Furthermore, an analysis of the
single-particle Green’s function demonstrates that the ground
state is a Mott insulator that is not adiabatically connected
to a band insulator. However, we show that the orbital HK
interaction stabilizes long-range entanglement of seemingly
nontopological origin: the symmetric ground state is, at each
(star of) k a superposition of orbital- and spin-ordered states
that transforms trivially under the symmetries of the space
group. While for short-range Hamiltonians such cat states
always come in degenerate pairs (i.e., the two ground states of
the ferromagnetic Ising model with opposite spins), the HK
interaction stabilizes a cat state as a nondegenerate ground
state. We provide evidence for this picture by considering in
Sec. V an orbital HK model with symmetries of space group
P4/ncc1′ (No. 130) at filling ν = 4, where LSM theorems
forbid the existence of any gapped, symmetric, short-range en-
tangled, nondegenerate ground state. Nevertheless, our orbital

HK model has a gapped, symmetric, nondegenerate ground
state, which therefore must have long-range entanglement.

Our paper shows that the features of Mott physics that
are captured by HK models are not due to any ground state
degeneracy. Our orbital HK models with nondegenerate or
order-one degenerate ground states are nevertheless Mott
insulators—they feature a charge gap, do not spontaneously
break any symmetry in the ground state, and have midgap
zeros of their single-particle Green’s functions that point to
violations of Luttinger’s theorem. The lack of an extensive
ground state degeneracy also shows that the Mott insulating
ground state of our orbital HK models is stable to symmetry-
breaking perturbations. This is in contrast to band-HK models,
which become adiabatically connected to trivial insulators
under the application of an infinitesimal symmetry breaking
field.

Additionally, our paper highlights several delicate issues
that must be addressed in studies that use HK models as a
probe of topological order. We have seen through our study of
filling constraints that the ground states of HK-type Hamilto-
nians can violate LSM theorems. This arises in part because
proofs of the LSM theorems for crystalline symmetries rest
on the assumption of a short-range Hamiltonian. In both
entanglement-based and flux-insertion-based proofs, it is cru-
cial that the Hamiltonian in position space at a point deep
in the bulk of the system is insensitive to perturbations at a
distant point. This assumption is maximally violated for HK-
like Hamiltonians, which contain position-space couplings of
arbitrarily long range. In our examples of graphene and Mott
insulators in space groups P42/mbc1′ (No. 135), P4/ncc1′
(No. 130), and P21/c1′ (No. 14), this resulted in a ground
state that was nondegenerate but long-range entangled. Care
must be taken to distinguish this trivial cat-state-like long-
range entanglement from more exotic topological order in any
HK model. Furthermore, our results suggest that even in HK
models of topologically ordered phases, the long-range HK
interaction may split the otherwise topologically protected
ground state degeneracy. Thus, one cannot say by looking at
the ground state degeneracy alone whether or not the ground
state of an HK Hamiltonian has topological order.

Our paper opens several intriguing directions for future
research. First, although we focused on half-filled systems
in this paper, orbital HK models for quarter-filled systems
can be studied using the same techniques. Examinations
of partially filled quantum anomalous Hall and quantum
spin Hall bands with the band-HK interaction have shown
several signatures of nontrivial topology, but have been
complicated by the presence of an extensive ground state
degeneracy and ferromagnetic instability [34,35]. Orbital-HK
models for these topological Mott insulators can allow for
an analysis of robust observables that do not depend on the
ground state degeneracy, such as the Hall conductivity [38].
Second, recent work has renewed interest in the study of
topological invariants of zeros and poles of the single-particle
Green’s function in interacting Mott insulators [36,37].
Our analysis of orbital HK models in graphene and in
three-dimensional nonsymmorphic space groups has shown
that generically there are both Green’s function zeros and
Green’s function poles in the lower and upper Hubbard bands.
While the degeneracy of zeros and poles are both restricted by
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space-group symmetries, their coexistence raises interesting
possibilities for computing topological properties of the
Hubbard band and Luttinger surface eigenstates. Third, since
the Schrieffer-Wolff approximation allows us to approximate
the orbital HK Hamiltonian as a long-range spin model,
it would be interesting to explore the connection between
the HK ground state and spin liquids, or other spin-charge
separated descriptions of Mott insulators. Finally, although we
have presented evidence that our exotic ground states in space
groups P42/mbc1′ (No. 135), P21/c1′ (No. 14), and P4/ncc1′
(No. 130) at filling ν = 4 have a trivial form of long-range
entanglement, we have not ruled out the presence of hidden
topological order. A systematic study of the ground state
properties of nondegenerate orbital HK ground states beyond
single-particle observables could be explored in future work.
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APPENDIX A: SCHRIEFFER-WOLFF HAMILTONIAN

We found in Eq. (50) that the matrix elements of the
Schrieffer-Wolff approximation to the Hamiltonian H0

135 +
H1

HK [Eqs. (47) and (48)] are

〈i|HSW| j〉 = 〈i|H0| j〉 + 1

U1
〈i|V 2| j〉. (A1)

Since the charge degrees of freedom are frozen out, we expect
this Hamiltonian to consist solely of couplings between spin
operators at the four sublattice sites of the form

Si
μ1τ1

S j
μ2τ2

, (A2)

where i, j are Pauli matrix indices running over 0, x, y, z, and
the spin operator Si

μ1τ1
is defined as

Si
μ1τ1

≡
∑
k,l

c†
μτσk

[σ i]kl cμτσl . (A3)

To decompose this Hamiltonian into spin operators, we use
the fact that the spin operators are orthonormal under the trace,

Tr
([

Si
αS j

β

][
Sk

γ Sl
ε

]) = λ
i j
αβδαγ δβεδ

ikδ jl , (A4)

where α, β, γ , δ are shorthand for a set of μ and τ sublattice
indices, and λ

i j
αβ is a normalization constant that in general

depends on the indices.
We can compute the coefficient α

i j
μ1τ1μ2τ2 of each spin ma-

trix pair in the Hamiltonian as

α
i j
αβ = 1

λ
i j
αβ

Tr
(
HSWSi

μ1τ1
S j

μ2τ2

)
. (A5)

We can now exhaustively iterate over all 256 possible spin
matrices to find the decomposition of HSW.

We split the Hamiltonian into three parts: an identity term,
a non-spin-orbit-coupling term, and a spin-orbit-coupling
term. To make it easier to look at, we also use the shorthand
that the coefficient includes the k-dependent hopping, for
example, λ11 ≡ λ1 sin kx

2 cos ky

2 sin kz

2 (k). We have

HI = 1
[
4
(
t2
xy + t2

z + λ2
3

) + 10
(
t2
2 + λ2

11 + λ2
12 + λ2

21 + λ2
22

)]
, (A6)

H1 = (
t2
xy + t2

z + 2t2
2

)
⎛
⎜⎜⎝ ∑

μ1,τ1,μ2,τ2
(μ1,τ1 )�=(μ2,τ2 ))

S0
μ1τ1

S0
μ2τ2

⎞
⎟⎟⎠ − 1

2

∑
i,μ,τ

[
t2
xySi

μτ Si
μ(−τ ) + t2

z Si
μτ Si

(−μ)τ

]
, (A7)

HSO = 2

(
λ2

11 + λ2
12 + λ2

21 + λ2
22 + λ2

3

2

)⎛
⎜⎜⎝ ∑

μ1,τ1,μ2,τ2
(μ1,τ1 )�=(μ2,τ2 ))

S0
μ1τ1

S0
μ2τ2

⎞
⎟⎟⎠ (A8)

+ (
λ2

11 + λ2
12 + λ2

21 + λ2
22

)(∑
i

Si
AASi

BB + Si
ABSi

BA

)
− 2

(
λ2

11 + λ2
21

)(
Sx

AASx
BB + Sx

ABSx
BA

)

− 2
(
λ2

21 + λ2
22

)(
Sy

AASy
BB + Sy

ABSy
BA

) + λ2
3

2

∑
i,μ,τ

[
Si

μτ Si
μ(−τ ) − 2Sz

μτ Sz
μ(−τ )

]
+ 2t2

[
((λ11 + λ21)

(
Sz

AASy
BB − Sy

AASz
BB

) + (λ11 − λ21)
(
Sz

ABSy
BA − Sy

ABSz
BA

)]
+ t2

[
((λ11 + λ21)

(
Sx

AASz
BB − Sz

AASx
BB + Sz

BBSx
AA − Sx

BBSz
AA

)
+ (λ11 − λ21)

(
Sx

ABSz
BA − Sz

ABSx
BA + Sz

BASx
AB − Sx

BASz
AB

)]
− [(λ11λ21 + λ21λ22) + (λ11λ22 + λ12λ21)]

(
Sx

AASy
BB + Sy

AASx
BB + Sx

BBSy
AA + Sy

BBSx
AA

)
+ [(λ11λ22 + λ12λ21) − (λ11λ12 + λ21λ22)]

(
Sx

ABSy
BA + Sy

ABSx
BA + Sx

BASy
AB + Sy

BASx
AB

)
+ 2

[
(λ22λ12 − λ11λ21)

(
Sx

AASx
BB − Sy

AASy
BB − Sx

ABSx
BA + Sy

ABSy
BA

) − (λ22λ12 + λ11λ21)
(
Sz

AASz
BB + Sz

ABSz
BA

)]
+ txyλ3

[
Sx

AASy
AB − Sy

AASx
AB + Sy

ABSx
AA − Sy

AASx
AA + Sy

BASx
BB − Sy

BASx
BB + Sx

BBSy
AA − Sy

BBSx
BA

]
. (A9)
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TABLE V. V (G) matrices at the high-symmetry points (HSPs) for space group P42/mbc1′ (No. 135).

Generator � − (0, 0, 0) A − (π, π, π ) M − (π, π, 0) R − (0, π, π ) X − (0, π, 0) Z − (0, 0, π )

{C4z|000} μ0τ 0 μ0τ z μ0τ z μ0τ 0 μ0τ 0 μ0τ 0

{C2x| 1
2

1
2 0} μ0τ 0 μzτ z μ0τ z μzτ z μ0τ z μ0τ 0

{I|000} μ0τ 0 μzτ 0 μ0τ 0 μ0τ 0 μ0τ 0 μ0τ 0

TR μ0τ 0 μzτ 0 μ0τ 0 μzτ z μ0τ z μzτ 0

APPENDIX B: GENERALIZED HK INTERACTION
TERMS PRESERVING THE SYMMETRY

In this Appendix, we explain how we calculated the
symmetry-preserving terms for the generalized HK interac-
tions. Each term needs to satisfy two conditions:

(1) It needs to preserve the space-group symmetries, in-
cluding time reversal, whose single-particle representations
space groups P42/mbc1′ (No. 135) and P4/ncc1′ (No. 130)
were given in Table II.

(2) The Hamiltonian has to have the periodicity of the BZ.
To check the first condition, we first find the representation

of the symmetry-group elements g on the four particle states
ρ(g). Then we test whether

H(gk) = ρ†(g)H(k)ρ(g) (B1)

is satisfied for the space group generators and whether

H(−k) = T H(k)T −1 (B2)

is satisfied for the time-reversal operator T .
The second condition is not automatically satisfied because

both space groups P4/ncc1′ (No. 130) and P42/mbc1′ (No.
135) are nonsymmorphic space groups [65]. This requires the
presence of electronic orbitals at points away from the origin
of the unit cell. The matrix V (G) maps the space of states at k
to the space of states at another k point related by a reciprocal
lattice vector k′ = k + G,

ck+G,i =
∑

β

Vi, jck, j, (B3)

where i, j are shorthand for a set of (μ, τ, σ ) indices and
V (G) is given by

V (G)i, j = δi, je
iG·ri , (B4)

with ri being the position vector of the sublattice sites indexed
by i [for example, ( 1

2 , 1
2 , 0) for μ = 1, τ = −1 or (0, 0, 1

2 ) for
μ = −1, τ = 1]. This transformation has two consequences.

First, the transformation on the second quantized operators
implies a condition on the Hamiltonian at a given k Hk in
order that it be invariant under translation by a reciprocal
lattice vector:

Hk
!= Hk+G. (B5)

Second, the inequivalence of the space of states at different k
points means that the action of a symmetry-group element on
a state at k will map it into a different set of states at k′ = gk.
If the group element g is not in the little group of k′ (i.e., there
is no reciprocal lattice vector G such that k′ = k + G) then

we cannot find the action of symmetries on the original space
of states at k.

Carrying this out, we find Table V for the V (G) matrices
for space groups P42/mbc1′ (No. 135) and P4/ncc1′ (No.
130), which allow us to find the representations on the space
of states at the high-symmetry points.

We can now test whether the periodicity Eq. (B5) and
symmetry conditions Eqs. (B1) and (B2) are satisfied for an
arbitrary HK term. For the HK number terms Eq. (53), for
example, the periodicity condition Eq. (B5) is automatically
satisfied since the induced transformation on nk,i is trivial:

nk+G,i = c†
k+G,ick+G,i

=
∑

jk

V †
i jVikc†

k, jck,k

= δ jiδkic
†
k, jck,k

= nk,i. (B6)

This means we only need to check whether the N matrices in
the generalized HK number term∑

k,i, j

nk,iNi jnk, j (B7)

satisfy the symmetry- and time-reversal-preserving invariance
conditions for the generators in Table II. Of the 64 possible
terms, the eight that satisfy these conditions are given in
Table VI. For the generalized HK terms of the form∑

i, j,k,l

[
c†

k,iF
1

i j ck, j
][

c†
k,iF

2
i j ck, j

]
, (B8)

the transformations of the creation and annihilation operators
are not trivial. Each F transforms as

c†
k+G,iFi jck+G, j = V †

inFi jVjmc†
k,nck,m. (B9)

TABLE VI. Symmetry-preserving HK number terms in space
groups P42/mbc1′ (No. 135) and P4/ncc1′ (No. 130).

Number N

1 I
2 μ0τ 0σ x

3 μ0τ xσ 0

4 μ0τ xσ x

5 μxτ 0σ 0

6 μxτ 0σ x

7 μxτ xσ 0

8 μxτ xσ x
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And so the overall term transforms as∑
i, j,l,r

[
c′†

k+G,iF
1

i j c
′
k+G, j

][
c′†

k+G,l F
2

lrc′
k+G,r

]

=
∑
i, j,l,r

n,m,p,q

[
c†

k,nV
†

i,nF 1
i jVj,mck, j

][
c†

k,lV
†

l,pF 2
lrVr,qck,r

]
. (B10)

Since the F 1, F 2 matrices are not functions of k, we require
that ∑

i, j,l,r
n,m,p,q

[
c†

k,nV
†

i,nF 1
i jVj,mck, j

][
c†

k,lV
†

l,pF 2
lrVr,qck,r

]
!

!=
∑

i, j,k,l

[
c†

k,iF
1

i j ck, j
][

c†
k,iF

2
i j ck, j

]
. (B11)

We can test which of the (64)2 possible F 1, F 2 terms satisfy
both the symmetry and periodicity requirements. There are
only three such terms:

H3
HK = Uτ xτ x

⎡
⎣∑

μτσ

c†
μτσ cμ−τσ

⎤
⎦

⎡
⎣ ∑

μ′τ ′σ ′
c†
μ′τ ′σ ′cμ′−τ ′σ ′

⎤
⎦,

(B12)

H3′
HK = Uμxμx

⎡
⎣∑

μτσ

c†
−μτσ cμτσ

⎤
⎦

⎡
⎣ ∑

μ′τ ′σ ′
c†
μ′τ ′σ ′c−μ′τ ′σ ′

⎤
⎦,

(B13)

H3′′
HK = U(μxτ x )(μxτ x )

⎡
⎣∑

μτσ

c†
−μ−τσ cμτσ

⎤
⎦

⎡
⎣∑

μ′τ ′σ ′
c†
μ′τ ′σ ′c−μ′−τ ′σ ′

⎤
⎦.

(B14)

While we have focused here on HK terms with interaction
strengths that are k independent, the procedure outlined here
generalizes straightforwardly to allow for the classification of
symmetric, momentum-dependent HK interactions as well.

To conclude, we also sketch the procedure necessary
to check the invariance of multiparticle states under the
space-group symmetries at high symmetry points. At the high-
symmetry points, there will be at least one group element for
which gk = k + G. In this case, we can use the transformation
to map back to the original space of states. For a representation
ρ(g) of the symmetries on the single-particle states:

ρ(g)ck,i =
∑

j

ρ(g)i jcgk, j

=
∑

j

ρi jck+G, j =
∑

j,k

ρi jVjk (G)ck,k . (B15)

The consequence of this is that to find the representation of
the space-group symmetries on the space of states at a high-
symmetry point Q whose little group is equal to the full space
group, we can follow this simple procedure:

(1) Find the reciprocal lattice vector between the high-
symmetry point and its image under the space group: G =
ρ(g)Q − Q.

(2) Find the matrix elements V (G)i j = δi jeiG·ri .

TABLE VII. Representation matrices of the symmetry genera-
tors for space group P21/c1′ (No. 14) in the spin and sublattice basis.

SG14

{g|t} ρ({g|t})
{C2x| 1

2
1
2 0} iτ xσ x

{I|000} I
TR iτ 0σ yK

(3) Multiply the single particle representation matrices by
the V (G) matrices to map the space of states in the image back
to the original k point.

APPENDIX C: VIOLATION OF MINIMAL FILLING
BOUND: SPACE GROUP P21/c1′ (No. 14)

We conjectured that for models with long-range HK inter-
actions, the only constraint left over from the LSM theorem
for time-reversal symmetric systems is Kramers degeneracy.
Kramers degeneracy requires that an insulator have a min-
imum filling of 2n, with n an integer. This means that the
lowest additional constraint would enforce an insulator at a
filling of 4n. The LSM theorem for space group P21/c1′ (No.
14) given in Ref. [41] requires a featureless insulator in this
space group to have filling ν = 4n. We now show that even
this minimal additional bound is violated in an orbital HK
model.

Space group P21/c1′ (No. 14) is generated by the twofold
screw {C2x|00 1

2 }, spatial inversion, and the Bravais lattice of
translations. It can be viewed as an index-four subgroup of
P42/mbc1′ (No. 135). To construct a Hamiltonian invariant
under space group P21/c1′ (No. 14), we can consider a mon-
oclinic parent lattice with two sublattice sites per unit cell
indexed by τ = ±1. The symmetry generators are given in
Table VII.

To obtain a Hamiltonian invariant under space group
P21/c1′ (No. 14), we can simply drop the μ index of our
space group P42/mbc1′ (No. 135) Hamiltonian Eq. (47) and
retain only the tight-binding terms that are invariant under the
space-group symmetries and time reversal:

H14
0 (k) = H14

1 (k) + H14
2 (k),

H14
1 (k) = txyτ

x cos
kx

2
cos

ky

2
, (C1)

H14
2 (k) = λ′

3τ
yσ z cos

kx

2
cos

ky

2
(cos kx − cos ky).

We can then add the same sequence of HK terms as before,
dropping the μ sublattice degree of freedom. We first add the
orbital HK term,

H1
HK = U1

∑
kτ

nkτ↑nkτ↓, (C2)

and find in Fig. 14(b) a ground state that has a twofold
degeneracy along the lines X − M, X − R, M − A, and
M − R. We can then add the generalized number HK
term H2

HK = Uτ x

∑
kτσ nk−τσ nkτσ and the final term H3

HK =
Uτ xτ x [

∑
kτσ c†

kτσ ck−τσ ][
∑

kτ ′σ ′ c†
kτ ′σ ′ck−τ ′σ ′] to produce a

ground state that is everywhere gapped and nondegenerate—
again violating the LSM filling bound—as shown by the
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FIG. 14. The spectrum in the half-filled (two-particle) sector for the model in space group P21/c1′ (No. 14) with generalized HK
interactions. (a) The single-particle spectrum. (b) Spectrum in the two-particle sector E2(k) for the Hamiltonian with orbital HK interactions
H 1

HK, H = H 14
0 + H 1

HK with U1 = 4. (c) Spectrum in the two-particle sector E2(k) for the Hamiltonian with generalized HK interaction
H = H 0

14 + H 1
HK + H 2

HK with U1 = 4,U2 = 2. (d) Spectrum in the two-particle sector E2(k) for the Hamiltonian with generalized HK
interaction H = H 14

0 + H 1
HK + H 2

HK + H 3
HK with U1 = 4,U2 = 2,U3 = 2. The noninteracting parameter values are txy = 1, λ′

3 = 0.15, μ0 =
(U1 + 2U2)/2.

spectrum in Fig. 14(d). We also provide the absolute value
of the determinant and the spectral function of the real-time
retarded Green’s function in Fig. 15. Just like for space group
P42/mbc1′ (No. 135), the band of zeros in the Green’s func-
tion confirms that the ground state of H0

14 + H1
HK and for

H0
14 + H1

HK + H2
HK + H3

HK is a Mott insulator.

APPENDIX D: PARTICLE-HOLE SYMMETRY
OF GENERALIZED HK MODELS

In this Appendix, we analyze the action of particle-hole
symmetry on our HK models in space groups P42/mbc1′ (No.
135), P4/ncc1′ (No. 130), and P21/c1′ (No. 14).

1. Space group P42/mbc1′ (No. 135)

The single-particle Hamiltonian H0
135(k) at each k for

our models in space group P42/mbc1′ (No. 135) is given in
Eq. (47). Although the spectrum of H0

135(k) is symmetric
about zero, there is, in general, no particle-hole symmetry in
the sense of an operator on Fock space. We note that particle-
hole symmetry can, in general, be represented on Fock space
as

PckiP
−1 =

∑
j

Ai jc†
k j, (D1)

where i, j index the spin and orbital degrees of freedom and
Ai j is a matrix. Due to the canonical anticommutation rela-
tions, for P to be a symmetry of a single-particle Hamiltonian
it must anticommute with all symmetric hopping terms, and
commute with all antisymmetric hopping terms. To see this,
we note that for single-particle Hamiltonians of the form

H0(k) =
∑

i j

c†
kihki jck j, (D2)

we have

PH0(k)P−1 =
∑
i ji′ j′

A∗ii′cki′hki jA
j j′c†

k (D3)

= −
∑
i ji′ j′

c†
k j′A

†i′ihki jA
j j′cki′ +

∑
i

hkii. (D4)

Provided the trace of hki j is zero—which is the case for all
Hamiltonians we consider in this paper—particle-hole sym-
metry then requires∑

i′ j′
A†i′ihki jA

j j′ = −hk ji, (D5)

obtained by equating Eqs. (D2) and (D4).
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FIG. 15. The absolute value of the determinant, | det(G+(k, ω))| and the spectral function − 1
π

Im Tr(G+(k, ω)) for orbital HK models in
space group P21/c1′ (No. 14). The top row shows the Green’s function for the Hamiltonian H0

14 + H̃ 1
HK and the bottom row shows the Green’s

function for the Hamiltonian H0
14 + H̃ 1

HK + H̃ 2
HK + H̃ 3

HK. From the determinant, we can see that SG14 with orbital HK interactions is a Mott
insulator, just like space group P42/mbc1′ (No. 135). (a) shows | det G| for the Hamiltonian H0

14 + H̃ 1
HK with U1 = 4. The band of zeros confirms

that it is a Mott insulator. (b) The corresponding spectral function − 1
π

Im Tr(G+(k, ω)). (c) | det(G+(k, ω))| for the model with all three HK
interacting terms, H0

14 + H̃ 1
HK + H̃ 2

HK + H̃ 3
HK with U1 = 4,U2 = 2,U3 = 2. As above, the band of zeros confirms that the system is a Mott

insulator. (d) The corresponding spectral function − 1
π

Im Tr(G+(k, ω)). The noninteracting parameter values are: txy = 1, λ′
3 = 0.15, μ0 =

(U1 + 2U2)/2.

No such matrix A exists for the Hamiltonian H0
135(k) in

Eq. (47) if all hopping amplitudes are nonzero. However, if
we choose A = μyτ yσ y, then P commutes with every term
in Eq. (47) except the hopping with amplitude t ′

2. Thus,
the single-particle Hamiltonian is particle-hole symmetric for
t ′
2 = 0.

Let us turn now to the seven nontrivial orbital HK terms of
the form

HN
HK (k) =

8∑
a=2

UaNankiN
a
i jnk j, (D6)

where Ua are positive interaction strength parameters and the
matrices Na are given in Table VI. Under the action of P
defined in Eq. (D1), with A = μyτ yσ y we have

PHN
HK(k)P−1 = HN

HK −
8∑

a=1

Ua

∑
i

nki. (D7)

Finally, we note that the symmetry-allowed terms of the
form

HF
HK(k) =

3∑
b=1

U ′
b

⎛
⎝∑

i j

c†
kiF

b
i jck j

⎞
⎠

2

(D8)

defined in Eqs. (B12)–(B14) are manifestly invariant under P
defined in Eq. (D1) with A = μyτ yσ y.

Putting this all together, we see then that if the chemical
potential

μ0 = 1

2

8∑
a=1

Ua

∑
i

nki, (D9)

then the Hamiltonian H0
135(k) + HN

HK(k) + HF
HK(k) −

μ0
∑

i nki will be particle-hole symmetric if t ′
2 = 0.

In particular, this means that when t ′
2 = 0 and with the

chemical potential given in Eq. (D9), we expect, based on our
arguments in Sec. II, that the ground state at every k consists
of states with four particles. Furthermore, we note that since
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FIG. 16. A comparison of the ground state energies Ei(k) for different particle numbers at each k point for space group P42/mbc1′ (No.
135) (top row) and space group P4/ncc1′ (No. 130) (bottom row). Where spectra overlap, only the larger filling is shown [i.e., if E2(k)
overlaps E6(k), we show only a blue line]. From the fact that the spectra do not overlap for all k points away from half filling, we can see that
the spectrum is weakly particle-hole asymmetric. Nonetheless, for the parameter values in this paper, the lowest energy state of the N-particle
Hamiltonian at half filling is still the tensor product of the ground state of the four particle (i.e., half-filled) Hamiltonian at every k point since
the half-filled four particle energies (in green) are the lowest for every k point. (a) Ground state energies Ei(k) for different particle numbers
for H = H 0

135 + H 1
HK. (b) Ground state energies Ei(k) for different particle numbers for H = H0

135 + H 1
HK + H 2

HK. (c) Ground state energies
Ei(k) for different particle numbers for H = H0

135 + H 1
HK + H 2

HK + H 3
HK. (d) Ground state energies Ei(k) for different particle numbers for

H = H 0
130 + H 1

HK. (e) Ground state energies Ei(k) for different particle numbers for H = H0
130 + H 1

HK + H 2
HK. (f) Ground state energies Ei(k)

for different particle numbers for H = H0
130 + H 1

HK + H 2
HK + H 3

HK.

t ′
2 � ∑8

a=2 Ua for the models we consider, we expect that
particle-hole symmetry breaking is weak at every k. To verify
this, we show in Figs. 16(a)–16(c) the lowest energy En(k) in
the n-particle subspace at each k for the models in space group
P42/mbc1′ (No. 135) considered in the main text. We see
that in all cases, the four-particle energy E4(k) is the lowest
energy, confirming that for the parameter values considered in
the text and for all k, the lowest energy state half fills (in this
case four electrons per unit cell) every k point. Furthermore,
in Fig. 17 we show the distribution of energy differences
E4−n(k) − En(k) sampled over the whole BZ, allowing us to
verify that particle-hole symmetry is only weakly broken for
the parameter values analyzed in the text.

2. Space group P4/ncc1′ (No. 130)

We can perform a similar analysis for our HK models in
space group P4/ncc1′ (No. 130). The single-particle Hamil-
tonian H0

130 was defined in Eq. (57). As in Appendix D 1, this
single-particle Hamiltonian is not, in general, particle-hole
symmetric. However, when λ1 = 0, H0

130 is particle-hole sym-
metric at every k, with P defined in Eq. (D1) and A = μyτ zσ y.
Furthermore, just as in the previous section, all HK interac-
tions are invariant under this particle-hole transformation as
well, provided the chemical potential μ is given by Eq. (D9).
Thus, when λ1 = 0 and with the chemical potential given in
Eq. (D9), we expect based on our arguments in Sec. II that the
ground state at every k consists of states with four particles.
Furthermore, we note that since λ1 � ∑8

a=2 Ua for the models

we consider, we expect that particle-hole symmetry breaking
is weak at every k. To verify this, we show in Figs. 16(d)–16(f)
the lowest energy En(k) in the n-particle subspace at each k
for the models in space group P4/ncc1′ (No. 130) considered
in the main text. We see that in all cases, the four-particle
energy E4(k) is the lowest energy, confirming that for the
parameter values considered in the text and for all k, the
lowest energy state half fills (in this case four electrons per
unit cell) every k point. Furthermore, in Fig. 18 we show the
distribution of energy differences E4−n(k) − En(k) sampled
over the whole BZ, allowing us to verify that particle-hole
symmetry is only weakly broken for the parameter values
analyzed in the text.

3. Space group P21/c1′ (No. 14)

Lastly, we consider the HK models in space group P21/c1′
(No. 14) analyzed in Appendix C. Here we are more fortu-
nate: the single-particle Hamiltonian Eq. (C2) is particle-hole
symmetric for all values of the hopping parameters. The
particle-hole symmetry operation is given by Eq. (D1) with
A = τ yσ x. Since the HK interaction terms are all particle-hole
symmetric as well (provided the chemical potential is appro-
priately chosen), no special care is needed to deduce that the
ground state for the HK models in Appendix C at half filling
consists of two particles at every k. Nevertheless, we show in
Fig. 16 that, for the parameter values considered here, for all
k, the lowest energy state half fills (in this case four electrons
per unit cell) every k point.
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FIG. 17. The difference between particle- and hole-doped ground state energies E4+n(k) − E4−n(k) for space group P42/mbc1′ (No. 135)
Hamiltonian H0

135 with HK interactions H1
HK (top row), H1

HK + H 2
HK (middle row), and H1

HK + H 2
HK + H 3

HK (bottom row). The difference in
energies is calculated for a cube of 10 000 k points in the positive octant of the Brillouin zone. The particle-hole symmetry breaking is of
order (t ′

2)2/U . (a) Distribution of the difference between the seven- and one-particle ground state energies, E7(k) − E1(k), for H0
135 + H 1

HK.
As expected, there is no difference between the energies to within numerical error. (b) Distribution of the difference between the six- and
two-particle ground state energies, E6(k) − E2(k), for H0

135 + H 1
HK. The maximum particle-hole symmetry breaking is of order (t ′

2)2/U ∼ 0.02.
(c) Distribution of the difference between the five- and three-particle ground state energies, E5(k) − E3(k), for H 0

135 + H 1
HK. (d) Distribution

of the difference between the seven- and one-particle ground state energies, E7(k) − E1(k), across the positive octant of the Brillouin zone
for H 0

135 + H 1
HK + H 2

HK. As expected, to within numerical error, there is no particle-hole symmetry breaking. (e) Distribution of the difference
between the six- and two-particle ground state energies, E6(k) − E2(k), for H0

135 + H 1
HK + H 2

HK. Here, (t ′
2)2/(U1 + 2U2 ) ∼ 0.01. (f) Distribution

of the difference between the five and three-particle ground state energies, E5(k) − E3(k), for H0
135 + H 1

HK + H 2
HK. (f) Distribution of the

difference between the seven- and one-particle ground state energies, E7(k) − E1(k), for H0
135 + H 1

HK + H 2
HK + H 3

HK. As expected, to within
numerical error, there is no particle-hole symmetry breaking. (g) Distribution of the difference between the six- and two-particle ground state
energies, E6(k) − E2(k), for H 0

135 + H 1
HK + H 3

HK + H 2
HK. Here, (t ′

2)2/(U1 + 2U2 + U3) ∼ 0.01. (h) Distribution of the difference between the
five- and three-particle ground state energies, E5(k) − E3(k), for H0

135 + H 1
HK + H 2

HK + H 3
HK.

APPENDIX E: GROUND STATES AT � AND A FOR P42/mbc1′ (No. 135) AND P4/ncc1′ (No. 130)

We provide here for reference the exact numerical ground states of the system at the � and A points for our interacting models
of space groups P42/mbc1′ (No. 135) and P4/ncc1′ (No. 130).

1. Space group P42/mbc1′ (No. 135)

For the space group P42/mbc1′ (No. 135) Hamiltonian with all HK interactions considered in Sec. IV A,

H = H0
135 + H1

HK + H2
HK + H3

HK, (E1)
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FIG. 18. The difference between particle- and hole-doped ground state energies E4+n(k) − E4−n(k) for the space group P4/ncc1′ (No.
130) Hamiltonian H 0

130 with HK interactions H1
HK (top row), H1

HK + H 2
HK (middle row), and H1

HK + H 2
HK + H 3

HK (bottom row). The difference in
energies is calculated for a cube of 10 000 k points in the positive octant of the Brillouin zone. The particle-hole symmetry breaking is of order
λ2

1/U . (a) Distribution of the difference between the seven- and one-particle ground state energies, E7(k) − E1(k), for H0
135 + H 1

HK. As expected,
there is no difference between the energies to within numerical error. (b) shows the distribution of the difference between the six and two particle
ground state energies, E6(k) − E2(k), for H 0

135 + H 1
HK. The maximum particle hole symmetry breaking is of order λ2/U1 ∼ 0.2. (c) shows the

distribution of the difference between the five and three particle ground state energies, E5(k) − E3(k), for H0
135 + H 1

HK. (d) Distribution of the
difference between the seven- and one-particle ground state energies, E7(k) − E1(k), for H0

135 + H 1
HK + H 2

HK. As expected, to within numerical
error, there is no particle-hole symmetry breaking. (e) Distribution of the difference between the six- and two-particle ground state energies,
E6(k) − E2(k), for H0

135 + H 1
HK + H 2

HK. Here, λ2
1/(U1 + 2U1) ∼ 0.01. (f) Distribution of the difference between the five- and three-particle

ground state energies, E5(k) − E3(k), for H 0
130 + H 1

HK + H 2
HK. Here, λ2

1/(U1 + 2U2 ) ∼ 0.01. (g) Distribution of the difference between the
seven- and one-particle ground state energies, E7(k) − E1(k), for H0

130 + H 1
HK + H 2

HK + H 3
HK. As expected, to within numerical error, there is

no particle-hole symmetry breaking. (h) Distribution of the difference between the six- and two-particle ground state energies, E6(k) − E2(k),
for H 0

130 + H 1
HK + H 3

HK + H 2
HK. Here, λ2

1/(U1 + 2U2 + U3) ∼ 0.01. (i) Distribution of the difference between the five and three particle ground
state energies, E5(k) − E3(k), for H0

135 + H 1
HK + H 2

HK + H 3
HK.

the ground state at the A point is given by

|GS〉A = α1(|AA ↑; AA ↓; BA ↑; BA ↓〉 + |AB ↑; AB ↓; BB ↑; BB ↓〉)

+ α2(|AA ↑; AA ↓; BB ↑; BB ↓〉 + |AB ↑; AB ↓; BA ↑; BA ↓〉)

+ α3(|AA ↑; AB ↓; BA ↑; BB ↓〉 + |AA ↓; AB ↑; BA ↓; BB ↑〉)

+ α4(|AA ↑; AB ↓; BA ↓; BB ↑〉 + |AA ↓; AB ↑; BA ↑; BB ↓〉), (E2)

with

α1 = 0.07774353109915988, α2 = 0.12444952353294593,

α3 = 0.3117239903386059, α4 = 0.6174920350191032.
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The ground state at the � point is given by

α1(|AA ↑; AA ↓; AB ↑; AB ↓〉 + |BA ↑; BA ↓; BB ↑; BB ↓〉)

α2[|AA ↑; AA ↓; AB ↑; BB ↓〉 + |AA ↑; BA ↓; BB ↑; BB ↓〉
+ |AB ↑; BA ↑; BA ↓; BB ↓〉 + |AA ↑; AB ↑; AB ↓; BA ↓〉
− [|AA ↑; AA ↓; AB ↓; BB ↑〉 + |AB ↓; BA ↑; BA ↓; BB ↑〉
+ |AA ↓; BA ↑; BB ↑; BB ↓〉 + |AA ↓; AB ↑; AB ↓; BA ↑〉)]]

α3(|AB ↑; AB ↓; BB ↑; BB ↓〉 + |AA ↑; AA ↓; BA ↑; BA ↓〉)

α4[[(|AA ↑; AB ↓; BA ↑; BA ↓〉 + |AA ↑; AA ↓; BA ↑; BB ↓〉
+ |AA ↑; AB ↓; BB ↑; BB ↓〉 + |AB ↑; AB ↓; BA ↑; BB ↓〉)]

− [(|AA ↓; AB ↑; BB ↑; BB ↓〉 + |AB ↑; AB ↓; BA ↓; BB ↑〉
+ |AA ↑; AA ↓; BA ↓; BB ↑〉 + |AA ↓; AB ↑; BA ↑; BA ↓〉)]]

α5(|AB ↑; AB ↓; BA ↑; BA ↓〉 + |AA ↑; AA ↓; BB ↑; BB ↓〉)

α6(|AA ↑; AB ↑; BA ↓; BB ↓〉 + |AA ↓; AB ↓; BA ↑; BB ↑〉)

α7(|AA ↓; AB ↑; BA ↓; BB ↑〉 + |AA ↑; AB ↓; BA ↑; BB ↓〉)

α8(|AA ↓; AB ↑; BA ↑; BB ↓〉 + |AA ↑; AB ↓; BA ↓; BB ↑〉), (E3)

with

α1 = −0.015244493568331597, α2 = 0.08320294092507857,

α3 = −0.07514072175059767, α4 = 0.002815471666648206,

α5 = −0.14266271433303265, α6 = 0.057070353250615435,

α7 = −0.2813020658633854, α8 = −0.603040898093542.

2. Space group P4/ncc1′ (No. 130)

For the interacting Hamiltonian invariant under space group P4/ncc1′ (No. 130) given in Eq. (62),

H = H130
0 + H1

HK + H2
HK + H3

HK, (E4)

the ground state at the A point is the same as in space group P42/mbc1′ (No. 135) and is given by

|GS〉A =α1(|AA ↑; AA ↓; BA ↑; BA ↓〉 + |AB ↑; AB ↓; BB ↑; BB ↓〉)

α2(|AA ↑; AA ↓; BB ↑; BB ↓〉 + |AB ↑; AB ↓; BA ↑; BA ↓〉)

α3(|AA ↑; AB ↓; BA ↑; BB ↓〉 + |AA ↓; AB ↑; BA ↓; BB ↑〉)

α4(|AA ↑; AB ↓; BA ↓; BB ↑〉 + |AA ↓; AB ↑; BA ↑; BB ↓〉), (E5)

with the amplitudes

α1 = −0.07774353109915998, α2 = −0.1244495235329457,

α3 = −0.31172399033860637, α4 = −0.6174920350191034.

At the � point, the ground state is given by

|GS〉� = α1(|AA ↑; AA ↓; AB ↑; AB ↓〉 + |BA ↑; BA ↓; BB ↑; BB ↓〉)

α2(|AA ↑; BA ↑; BA ↓; BB ↓〉 + |AA ↑; AA ↓; AB ↑; BA ↓〉
+ |AA ↑; AA ↓; AB ↓; BA ↑〉 + |AA ↓; BA ↑; BA ↓; BB ↑〉)

α3(|AA ↑; AA ↓; AB ↑; BB ↓〉 + |AB ↑; BA ↑; BA ↓; BB ↓〉)

α4(|AB ↓; BA ↑; BA ↓; BB ↑〉 + |AA ↑; AA ↓; AB ↓; BB ↑〉)

α5(|AA ↑; AA ↓; BA ↑; BA ↓〉 + |AB ↑; AB ↓; BB ↑; BB ↓〉)

α6(|AB ↑; AB ↓; BA ↑; BB ↓〉 + |AA ↑; AA ↓; BA ↑; BB ↓〉)

α7(|AB ↑; AB ↓; BA ↓; BB ↑〉 + |AA ↑; AA ↓; BA ↓; BB ↑〉)

α8(|AA ↑; AA ↓; BB ↑; BB ↓〉 + |AB ↑; AB ↓; BA ↑; BA ↓〉)
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α9(|AA ↑; AB ↑; AB ↓; BA ↓〉 + |AA ↑; BA ↓; BB ↑; BB ↓〉)

α10(|AB ↑; BA ↓; BB ↑; BB ↓〉 + |AA ↑; AB ↑; AB ↓; BB ↓〉
+ |AA ↓; AB ↑; AB ↓; BB ↑〉 + |AB ↓; BA ↑; BB ↑; BB ↓〉)

α11(|AA ↓; AB ↓; BA ↑; BB ↑〉 + |AA ↑; AB ↑; BA ↓; BB ↓〉)

α12(|AA ↑; AB ↓; BA ↑; BA ↓〉 + |AA ↑; AB ↓; BB ↑; BB ↓〉)

α13(|AA ↑; AB ↓; BA ↑; BB ↓〉 + |AA ↓; AB ↑; BA ↓; BB ↑〉)

α14(|AA ↑; AB ↓; BA ↓; BB ↑〉)

α15(|AA ↓; AB ↑; AB ↓; BA ↑〉 + |AA ↓; BA ↑; BB ↑; BB ↓〉)

α16(|AA ↓; AB ↑; BA ↑; BA ↓〉 + |AA ↓; AB ↑; BB ↑; BB ↓〉)

α17(|AA ↓; AB ↑; BA ↑; BB ↓〉), (E6)

with the amplitudes

α1 = 0.014249658673534686, α2 = −0.0012444934053119539i,

α3 = −0.0831672982330461 + 0.008862561108818907i,

α4 = 0.0831672982330454 + 0.008862561108818754i, α5 = 0.07544667047624203,

α6 = 0.0028493813995047884 + 0.000858765428111011i,

α7 = −0.002849381399504752 + 0.0008587654281110387i, α8 = 0.14149493379607864,

α9 = −0.08316729823304608 − 0.0088625611088189i, α10 = 0.0012444934053119391i,

α11 = −0.05320252170928138, α12 = 0.0028493813995046618 − 0.0008587654281109971i,

α13 = 0.2816876681657167, α14 = 0.6031003841472453 − 0.012345362536891847i,

α15 = 0.08316729823304603 − 0.008862561108818893i,

α16 = −0.002849381399504741 − 0.0008587654281110387i,

α17 = 0.6031003841472453 + 0.012345362536891696i.
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