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Proof of a stable fixed point for strongly correlated electron matter
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We establish the Hatsugai-Kohmoto model as a stable quartic fixed point (distinct from Wilson-Fisher) by
computing the β function in the presence of perturbing local interactions. In vicinity of the half-filled doped
Mott state, the β function vanishes for all local interactions regardless of their sign. The only flow away from
the HK model is through the superconducting channel which lifts the spin degeneracy as does any ordering
tendency. The superconducting instability is identical to that established previously [Phillips et al., Nat. Phys.
16, 1175 (2020)]. A corollary of this work is that any system in which the spectral weight bifurcates into lower
and upper bands such as the Hubbard model with repulsive interactions flows into the HK stable fixed point in
the vicinity of half-filling. Consequently, although the HK model has all-to-all interactions, the bifurcation of the
spectral weight is stable as nothing local destroys it. The consilience with Hubbard arises because both models
break the Z2 symmetry on a Fermi surface, the HK model being the simplest to do so. Indeed, the simplicity of
the HK model belies its robustness and generality.
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I. INTRODUCTION

Proving Mott’s claim, in any dimension we care about
(d � 2), that strong electron correlation opens a gap in a half-
filled band without changing the size of the Brillouin zone
still stands as a key unsolved problem in theoretical physics.
Demonstrating that the spectral function contains no states
in momentum space that cross the chemical potential would
suffice as proof of Mott’s claim. However, the inherent prob-
lem is that the model employed in this context, namely the
Hubbard model, contains strong onsite repulsion in real space,
thereby preventing any exact statement about the correspond-
ing spectral function in momentum space. There is of course
an easy way around this problem: add to the noninteracting
band model an energy penalty, U ,

H =
∑
pσ

ξpσ npσ + U
∑

p

np↑np↓, (1)

whenever two electrons doubly occupy the same momentum
state. The above ξpσ is the noninteracting band dispersion
and npσ is the occupancy. Since such an interaction does not
mix the momenta, a gap must open in the spectrum should U
exceed the bandwidth as illustrated in Fig. 1. This is precisely
the Hatsugai-Kohmoto model [1] which was introduced in
1992 but attracted essentially no attention until [2–12] our
demonstration [13,14] that this model offers an exact way of
treating the Cooper instability in a doped Mott insulator. De-
spite this utility, the HK model faces an uphill battle to replace
the ingrained Hubbard model as the knee-jerk response to the
strong correlation problem with local-in-space interactions. In
bridging the gap from the HK to the Hubbard model, three
questions arise. (1) Does the HK model remain stable to
local-in-space interactions? If it does, then a correspondence
with the Hubbard model can be established. (2) Does the
resilience to local-in-space interactions give rise to a stable

fixed point? (3) What about the obvious spin degeneracy that
arises from the singly occupied states in the spectrum? It is
these three questions that we answer in this paper. Briefly, we
construct the β function explicitly and demonstrate that the
answer to all three leading questions is yes. The degeneracy
is lifted spontaneously by superconductivity as in a Fermi
liquid which we demonstrate also obtains from an analogy
of the Kohn-Luttinger effect [15]. Independently, recent work
by Manning-Coe and Bradlyn [16] shows that the zeros of
the HK model survive even if the degeneracy is lifted in the
Mott insulating state through a two-orbital generalization of
the HK or effectively a transition to the orbital HK model.
Further, the zeros that persist are sufficient to describe a Mott
insulator even when the spin-rotation symmetry is broken
[16] (see Fig. 4 of Manning-Coe/Bradlyn). This once again
connects with our previous K-theory argument [14] that as
long as the Luttinger surface of zeros exists, the mechanism
used to create it is irrelevant. It is simply connected and stable
to all local perturbations such as the operators used to describe
antiferromagnetism/pseudogap order. This is supported ex-
perimentally. Namely, the spectral weight transfer observed in
the cuprates [17] persists even above any temperature having
to do with antiferromagnetic order. That is, Mottness is inde-
pendent of the spin state that ensues at low temperatures.

As Fermi liquids admit a purely local description in
momentum space, their eigenstates are indexed simply by mo-
mentum and spin. Consequently, in real space, Fermi liquids
exhibit long-range entanglement. It is precisely this long-
range entanglement that makes them impervious to any local
interaction, that is, range Coulomb interactions. The renor-
malization group analysis of a Fermi liquid shows distinctly
[18,19] that should the sign of the interaction be reversed
and the electrons reside on opposites of the Fermi surface,
a superconducting instability arises. The added stipulation of
the electrons residing on opposite sides of the Fermi surface
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FIG. 1. The spectral functions of the HK model at different fill-
ings and interaction strength. (a) Mott insulating state, with U > W
and 〈n〉 = 1. (b) Strongly repulsive Mott metal, with U > W and
〈n〉 < 1. (c) Weakly repulsive Mott metal, with U < W and 〈n〉 = 1.

changes the scaling dimension of the generic four-fermion
interaction from being irrelevant to marginal. Also of note is
that in terms of the pair annihilation operator, bk = ck↑ck↓, the
Cooper pairing interaction,

Vpair = −g
∑
k,k′

b†
kbk′ , (2)

is completely nonlocal in real space as it involves an in-
teraction between all pairs of electrons regardless of their
separation. Such nonlocality does not make the BCS model
unphysical because this interaction is the only relevant per-
turbation that destroys a Fermi liquid as indicated by the
one-loop flow equation,

dg

dt
= g2

4π
, (3)

which exhibits a breakdown at a finite energy scale (the
transition temperature) signaling the onset of pairing and the
eventual nonperturbative physics of the BCS superconduct-
ing state. All of this is summarized in the flow diagram in
Fig. 2: short-range interactions (Vlocal) regardless of their sign
flow to the Fermi liquid state while the Cooper term, (Vpair),
inherently nonlocal in real space, flows to strong coupling.
Once again, it is the real-space long-range entanglement of a
Fermi liquid that accounts for its resilience to any short-range
interaction.

As it is ultimately the conservation of the charge currents
in momentum space, npσ , that is at play here, it is natural to
rewrite the HK model as

∑
p hp with hp implicitly defined

from Eq. (1). From this, it is clear that the HK model has
a momentum-diagonal structure of a Fermi liquid. However,
unlike a Fermi liquid, this model describes a Mott insulator

FIG. 2. Perturbative low diagram for interactions in a Fermi
liquid. Short-range interactions regardless of their sign do nothing.
Pairing leads to a flow to strong coupling and the ultimate destruction
of the Fermi liquid and the onset of a superconducting state. The
nature of the superconducting state cannot be established based on
perturbative arguments but requires BCS theory.

[1,13,14] as shown in Fig. 1. While it is natural to criticize
this model as being unphysical because of the nonlocal in
real space interactions, nonlocality by itself does not dismiss
a model from being physically relevant as Vpair in a Fermi
liquid is nonlocal but nonetheless is the only relevant pairing
term that leads to the BCS instability. The real question is:
Do local interactions lead to flow away from the Hatsugai-
Kohmoto model? That is, does the doped Mott insulator that
HK describes represent a fixed point in direct analogy with
the stability of a Fermi liquid to local interactions? We show
here that the answer to this question is a resounding yes; HK
is a stable fixed point. Even adding local terms of the Hubbard
kind does nothing.

Analogies with Fermi liquid aside, a more fundamental
reason is operative for the resilience of the HK model to
local perturbations. Haldane and Anderson [20] argued that
Fermi liquids contain an added Z2 symmetry on the Fermi
surface that amounts to a particle-hole interchange for one
of the spin species. Operationally, if only doubly occupied or
empty sectors are present, adding or removing an electron of
either spin is kinematically equivalent. However, removing an
electron from a singly occupied k-state can only be done in
one way, thereby breaking the Z2 symmetry. Note even in the
Hubbard model, the onsite repulsion creates single occupancy
in real space which will give rise to single occupancy also
in momentum space. HK suffices as it is the simplest term
that does so [14]. As long as this symmetry is already broken,
adding new interactions that also break this symmetry yields
no relevant physics as far as Wilsonian renormalization is
concerned.

We carry out the full renormalization group analysis for
the HK model and show that as in a Fermi liquid, no local
perturbation destroys the HK model, thereby defining a stable
fixed point. The only perturbation that destroys HK physics
is Vpair as in a Fermi liquid. We conclude then that the HK
model is more than a toy model. Rather it represents a stable
fixed point for a model non-Fermi liquid that describes a
Mott insulator. It is a new fixed point in quantum matter that
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describes a doped Mott insulator. The superconducting state
that ensues [13] is the BCS analog for a doped Mott insulator.

II. RUMINATION ON LANDAU’S FERMI LIQUID THEORY

Before we begin the RG for the HK model, we take a closer
look at Landau’s formulation of the Fermi liquid theory. At the
heart of his articulation of this theory is the energy functional
for the momentum near the Fermi surface,

E [δnkσ ] =
∑

k

(ε(k) − εF )nkσ + 1

2

∑
k,k′

fkσ,k′σ ′δnkσ δnk′σ ′ ,

(4)
where fkσ,k′σ ′ are the Landau parameters. These Landau pa-
rameters are then the zero-momentum limit of the local in real
space interactions,

Hf =
∑

p,p′,σσ ′,|q|<�

fpσ,p′σ ′ (q)npσ (q)np′σ ′ (q), (5)

and fpσ,p′σ ′ = fpσ,p′σ ′ (q → 0). Although Landau did not have
RG at his disposal, his intuition that the interactions do not
destroy the quasiparticle picture stands. What RG [18,19] has
taught us is that the Landau Fermi liquid is described by
the forward scattering Landau parameters in Hf (zero-angle
or small-angle scattering), which are the only marginal in-
teractions in the absence of the BCS instability. There is an
important caveat that is relevant to the HK model. Namely,
forward scatterings in FL theory must correspond entirely to
local-in-space interactions. Consequently, completely absent
from any applicability of Landau’s FL theory is the term in
which k = k′, that is, fkσ,k′σ = Uδk,k′δσ̄ ,σ ′ . That this term lies
outside Landau’s FL theory is seen simply by power counting.
Because of the single momentum integration, this term has
scaling dimension −2 and hence is a relevant perturbation to
FL theory.

Why should anyone consider a nonlocal HK interaction?
The answer is simple. If RG tells us it is a relevant interaction,
then it behooves us to take it seriously. After all, relevant in-
teractions define fixed points and hence tell us about universal
physics. As in Landau’s formulation, HK’s work did not rely
on the RG principle. It was presented simply as a model that
leads to a bifurcation of the spectral weight per momentum
state and hence a Mott insulating state should U > W . In our
previous work [14], we pointed out that the HK interaction is
important because it is the simplest that breaks the Z2 sym-
metry of a Fermi liquid. The half-filling Mott insulating state
driven by HK holds the Luttinger surface as a fixed point. Here
we take this observation further and show that the metallic
state that ensues cannot be described by FL theory because the
relevant scaling of Unk↑nk↓ leads to the flow away from the FL
fixed point. Given how problematic progress has been on the
Mott problem, numerical simulation is the primary tool, if the
key features of this problem can be obtained by analyzing a
quartic fixed point, this is reason enough to take the HK model
seriously. Indeed while locality has its place, the solvability
of models which break the Z2 symmetry of a Fermi surface
makes the exploration of a possible fixed point that governs
this physics paramount. With this fixed point, all interactions
that might be thought to be relevant to Mott physics can be
analyzed within the lens of relevance in the RG sense. What

we show here is that none leads to flow away from the HK
fixed point except for superconductivity. Our conclusion then
is that long-range interactions are instrumental in producing
the Hubbard bands. This is not surprising given that hopping
among all the lattice produces the noninteracting band struc-
ture. For strong correlations, short-range correlations should
drive local-moment formation while it is the effective long-
range part of the interaction that produces anything like a band
in momentum.

What about antiferromagnetism (AF) which is clearly ab-
sent from the HK model? As AF emanates from the Mott
state, it is subservient to it. That is, it is a detail of Mott
physics not a defining feature of it. That is, it cannot change
the existence of the HK Mott fixed point. What we consider
here is the metallic (or doped) state arising from this model.
What is relevant to show here is that the bifurcation of the
spectral weight into lower and upper Hubbard bands, thereby
breaking the 1-1 correspondence of Landau leads to a new
metallic quartic fixed point.

III. RG APPROACH FOR d � 2 HK MODEL:
TREE-LEVEL ANALYSIS

Our goal is to establish the stability of the HK model to
weak local interactions. Central to the HK model are the two
filling surfaces, the lower filling surface (L-surface) separates
singly occupied and empty states, and the upper filling surface
(U -surface) separates the doubly and singly occupied. The
key argument of the RG process is that at weak coupling,
only modes around these filling surfaces participate. At dif-
ferent filling and interaction strengths, the number of filling
surfaces varies from zero [Mott insulating state, Fig. 1(a)], to
one [strongly repulsive Mott metal, Fig. 1(b)] or two [weakly
repulsive Mott metal, Fig. 1(c)]. For simplicity, we work
with d = 2 and rotationally invariant filling surfaces. The
higher-dimensional result can always be achieved by adding
rotational degrees of freedom and the relevance of interactions
that define the fixed point is not changed. The phase space
argument for the quasiparticle decay in a Fermi liquid can be
recast here for the HK model. The propagating mode of the
HK model separates into two components cKσ = ψ1

Kσ + ψ2
Kσ ,

where the holon ψL
Kσ = cKσ (1 − nK σ̄ ) with energy EL

K = ξK

and the doublon ψU
Kσ = cKσ nK σ̄ with energy EU

K = ξK + U .
Every fermion operator that participates in the interacting
process can be split into these two components. The decay-
ing process that involves a quasiparticle 1 decaying into a
quasiparticle 2 and a particle-hole pair 3,4 includes energy
conservation: 
(ε = Eα1

1 ) ∝ δ(ε − Eα2
2 − Eα3

3 + Eα4
4 ), where

α1, α2, α3, α4 = L/U represents the holon/doublon index for
each momentum participating in the scattering process. For
a large enough U , the number of holon/doublon has to be
conserved to achieve the energy conservation implied by the
δ function. According to Fig. 3, we further recognize that in
the ground state, the outgoing quasiparticles E2 and E3 are
always positive regardless of whether they represent the holon
or doublon excitations. The outgoing quasihole Ẽ4 = −E4,
however, is also positive regardless of whether it represents
holon or doublon removal. Thus, the phase space for the
decaying scattering for a general interaction is suppressed
by the same factor ε2 as in Fermi liquid, guaranteeing the

165135-3



ZHAO, LA NAVE, AND PHILLIPS PHYSICAL REVIEW B 108, 165135 (2023)

FIG. 3. The filling surfaces of the HK model as defined by the
boundary between region 
0 (empty), 
1 (singly occupied), and

2 (doubly occupied). Adding a particle to the ground state in 
0

costs a positive energy EL = ξ > 0, adding a particle in 
1 costs
a positive energy EU = ξ + U > 0, and adding a particle in 
2 is
prohibited by Pauli principle. Removing a particle from the ground
state, equivalent to adding a hole in 
0, is prohibited, adding a hole
in 
1 costs a positive energy −EL = −ξ > 0, and adding a hole in

2 costs a positive energy −EU = −ξ − U > 0.

validity of the low energy cutoff description that sets up
the RG.

A. L-surface

We start with the analysis of the setup with only one spher-
ical filling surface of which the particle occupancy is single
or empty on either side (L-surface). This analysis follows the
method by Weinberg [21] and Shankar [19] though we use
the notation of Polchinski [18]. The L-surface is defined by
ξKL = 0, and we linearize the dispersion around the L-surface
with radius KL to

ξK=n(KL+k) = vLk, (6)

where n = K
|K| is the unit vector in the direction of K and vL

is the isotropic L-surface velocity. Note linearization restricts
our analysis to the vicinity of the metallic state where Mott
physics is relevant. Near the bottom of the band, our analysis
fails as the band dispersion is inherently quadratic, and weak
coupling physics is obtained. We write the zero temperature
partition function

Z =
∫

D[c, c̄]e−S0 , (7)

S0 =
∫

�

dd K
(2π )d

∫ ∞

−∞
dω

×
[∑

σ

c̄Kσ (iω − vLk)cKσ + Uc̄K↑c̄K↓cK↓cK↑

]
.

(8)

The integral over momentum is confined in a thin shell around
the filling surface, with distance � as the cutoff. The partition
function factorizes at each momentum K , in exactly the same
ways as a Fermi liquid, however, mixing the up and down

spins at the same momentum. After integrating out the fast
modes living within s� < |k| < �, we perform the rescaling
of the variables and fields:

k′ = s−1k, (9)

ω′ = s−1ω, (10)

c′
K′σ = s3/2cKσ , (11)

U ′ = s−2U, (12)

to make the partition function invariant up to a constant. It is
worth noting that the HK repulsion has a scaling dimension
of −2 and hence is strongly relevant. This relevant term sup-
presses the contribution of spectral weight from the other band
that is U away from the filling surface.

Now we consider the effect of perturbations on this fixed
point. First, consider perturbations that are quadratic in the
fields,

δS(2) =
∫

�

dd K
(2π )d

∫ ∞

−∞
dω

∑
σ

μ(K)c̄Kσ cKσ . (13)

This action separates into slow and fast pieces, and the effect
of integrating out the fast modes produces a constant. After
rescaling the momenta and the fields, we have

μ′(k′) = s−1μ(k). (14)

This relevant term is the chemical potential, which should be
included in the action kinetic term. As a result, the location of
the fixed point definitely depends on the filling of the system.
We shall adjust the position of the filling surface according to
the chemical potential to make the system truly fixed.

Next, we consider the quartic interaction in the most gen-
eral form,

δS4 =
∫

K

∫
ω

c̄4(ω4)c̄3(ω3)c2(ω2)c1(ω1)u(4, 3, 2, 1),

c̄i ≡ c̄Kiσi , ci ≡ cKiσi ,

u(4, 3, 2, 1) = u(K4σ4, K3σ3, K2σ2, K1σ1),∫
K

≡
4∏

i=1

∫
�

dKi

∫
d
iδ(K1 + K2 − K3 − K4),

∫
ω

≡
4∏

i=1

∫ ∞

−∞
dωiδ(ω1 + ω2 − ω3 − ω4). (15)

The δ functions put constraints on the integral region of mo-
mentum and frequency. The δ function on frequency could
be easily rescaled as δ(ω′

1 + ω′
2 − ω′

3 − ω′
4) = sδ(ω1 + ω2 −

ω3 − ω4) since the integral over frequency extends to infinity.
The δ function on momentum, however, has a different scaling
behavior as pointed out by Polchinski [18]. The distance from
the filling surface only gives a contribution proportional to the
cutoff � which is a negligible contribution compared with the
filling momentum KL : δ(K1 + K2 − K3 − K4) ≈ δ[KL(n1 +
n2 − n3 − n4) + O(�)]. When the momenta all point in dif-
ferent directions, the first term in the δ function dominates
and the δ function does not scale upon RG. Following the
same argument by Polchinski [18], this quartic operator is thus
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irrelevant at the tree level,

u′(4′, 3′, 2′, 1′) = su(4, 3, 2, 1). (16)

It is then easy to see that any further interactions are even
more irrelevant. This power-counting tree-level analysis al-
ready rules out the general short-range interactions from being
relevant. Upon decreasing the energy scale, we find that the
coupling becomes weaker and weaker while the HK repulsion
gets stronger and stronger. Consequently, Mott physics cap-
tured by the filling surface is stable under local interactions.

There is an important subtlety in the kinematics and as a
result, our treatment of the δ function is not always valid. The
first-term contribution to the δ function could be set exactly
to zero by putting an additional constraint on the momentum
directions. The second term which is proportional to � will
be renormalized and generates a factor of s. The rescaling of
these direction-constrained interactions are

u′(4′, 3′, 2′, 1′) = s0u(4, 3, 2, 1). (17)

Performing a Taylor expansion in k and ω and comparing
coefficients of separate powers, we conclude that the leading
term, with no dependence on either variable, is marginal,
while all the rest are irrelevant. Because there are only two
degrees of freedom in momentum, both of them are nonlocal
by definition. Consequently, to reach a definitive conclusion,
we must proceed to the one-loop level to determine whether
they are marginally irrelevant or marginally relevant, or truly
marginal. This calculation will be performed in the next sec-
tion.

B. U-surface

In the case that the filling surface is the occupancy bound-
ary of the doubly and singly occupied regions, the U -surface
is defined by ξKU + U = 0. We have to perform an extra
particle-hole transform before we write down the partition
function in the path integral language to obtain the correct
linearized dispersion around the U -surface with radius KU ,

ξK=n(KU +k) + U = vU k. (18)

This particle-hole asymmetry reflects the broken Z2 symmetry
of Mott physics. The zero temperature partition function then
becomes

Z =
∫

D[c, c̄]e−S0 , (19)

S0 =
∫

�

dd K
(2π )d

∫ ∞

−∞
dω

×
[∑

σ

c̄Kσ (iω − vU k)cKσ + Uc̄K↑c̄K↓cK↓cK↑

]
.

(20)

Choosing the same setup with cut-off � results in the same
scaling rule for the variables and fields as in Eq. (12). The
identical analysis on quadratic and quartic perturbations thus
reoccurs and we have the same irrelevant tree-level behavior
around this U -surface fixed point.

C. Two filling surfaces

In the weakly repulsive case, the two occupancy bound-
aries (L-surface and U -surface) coexist. To discuss low-
energy physics, we have to include modes around both filling
surfaces. Due to the factorizability of the partition function
in momentum space, we can safely achieve the bare partition
function by the product of Eqs. (7) and (19). By setting the
energy scale � around both filling surfaces to be the same,
we arrive at the same scaling of the variables and fields as in
Eq. (12). In conclusion, regardless of the number of filling
surfaces, local interactions are always irrelevant at the tree
level and hence do not modify the fixed point defined by the
filling surfaces. We will move on to see the effect of marginal
quartic interactions on these fixed points.

IV. THE PERTURBATIVE EXPANSION FOR
ONE-LOOP-LEVEL CORRECTIONS

With the tree-level analysis in hand, we have already ruled
out the local part of any perturbations. It is interesting to see
how we can obtain a collective effect such as superconductiv-
ity in a low-energy theory.

The RG process is carried out by integrating the fast modes
and rescaling the slow modes and the associated variables to
keep the partition function unchanged. Besides the terms that
only contain slow modes (tree-level result), we also need to
include the terms that have both slow modes and fast modes
and add their contribution to the scaling equations. This pro-
cess is mathematically equivalent to calculating multipoint
correlation functions with interactions. In the HK model, the
correlation functions could be calculated using perturbative
expansion for weak coupling as demonstrated in the Ap-
pendix.

The increment in u(4, 3, 2, 1),

du(4, 3, 2, 1) =
∫

u(6, 3, 5, 1)u(4, 5, 2, 6)G(5)G(6)

× δ(3 + 6 − 1 − 5)d5d6

× −
∫

u(6, 4, 5, 1)u(3, 5, 2, 6)G(5)G(6)

× δ(6 + 4 − 1 − 5)d5d6

× −1

2

∫
u(6, 5, 2, 1)u(4, 3, 6, 5)G(5)G(6)

× δ(5 + 6 − 1 − 2)d5d6, (21)

is given by three diagrams as mentioned by Shankar [19], and
we will follow the nomenclature to call them ZS, ZS′, and
BCS diagrams, respectively.

We examine first the tree-level marginal interactions. We
define the momentum components on the filling surface of Ki

as KF
i . Then a common property of these marginal interactions

is that the sum of the incoming and outgoing KF
i s is zero

KF
1 + KF

2 − KF
3 − KF

4 = 0. The δ function on momentum
thus scales as s−1 and gives the marginal power counting. This
property reduces the marginal interactions into two families:
(1) forward scatterings and (2) superconducting pairings or
the Cooper channel.
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FIG. 4. The one-loop graphs for β(u) for quartic interactions.
The loop momenta lie in the shell of width d� being eliminated. The
external frequencies being all zero, the loop frequencies are (a) equal
for ZS, (b) equal for ZS′, and (c) opposite for the BCS graph.

V. FORWARD SCATTERINGS AT ONE LOOP

The forward scatterings are defined by a nonvanishing
P = KF

1 + KF
2 . This nomenclature comes from the d = 2

one-filling-surface case, where there are only two solutions:
K1 = K3, K2 = K4 or K1 = K4, K2 = K3. These two setups
are equivalent to one another up to changing the Fermion
order.

A. One filling surface

When there is only a single filling surface, the forward scat-
tering is determined only by the solution to K1 = K3, K2 =
K4. Including spins, there are explicitly three choices:

F 1(n1, n2) = u(K2σ, K1σ, K2σ, K1σ ), (22)

F 2(n1, n2) = u(K2σ̄ , K1σ, K2σ̄ , K1σ ), (23)

F 3(n1, n2) = u(K2σ, K1σ̄ , K2σ̄ , K1σ ). (24)

Due to the fact that any higher order terms in the Taylor
expansion on ω and k are irrelevant, we can freely choose the
frequency and momentum deviations. For simplicity, we set
all external legs to zero frequency and almost on the filling
surface (ω = 0, k = ε � d�). The tiny value of ε will be set
equal to zero at the last step. We need to keep it during the
calculation to make the running momentum K and K + Q
distinct according to the requirement of the weak coupling
expansion (see Appendix).

First, we consider the ZS diagram in Fig. 4 given by the
first integral in Eq. (21). Since Q = ε � d�, both K and K +
Q lie on the same side of the filling surface for all eligible
choices of K . As a result, the directional integral of K is over
the full range,

dF (n1, n2) =
∫

dn
(2π )d−1

F (n1, n)F (n, n2)

×
∫

d�

dk

2π

∫ ∞

−∞

dω

2π
G(ω, k)G(ω, k + ε). (25)

Here F (n1, n3) represents the appropriate choice of F that
satisfies the momentum and spin conservation at each ver-
tex. The integral over dk lies inside the thin shells to be
integrated out. However, there are two such shells. One of
the shells lies inside the filling surface while the other is
outside the filling surface. For the outer shell corresponding
to k ∈ [� − d�,�] > 0, the states belong to the 0-occupancy

region, which means we can replace the Green function by

G(ω, k) = 1

iω − vLk
. (26)

For the inner shell, corresponding to k ∈ [−�,−� + d�] <

0, the states belong to the single-occupancy region, which
means we can replace the Green function by

G(ω, k) = 1/2

iω − vLk
+ 1/2

iω − vLk − U
. (27)

The poles in the ω plane do not contribute if they lie on the
same side of the real axis. The only surviving contribution
from ZS is thus

dF (n1, n2) = 2
∫

dn
(2π )d−1

F (n1, n)F (n, n2)

×
∫ −�+d�

−�

dk

2π

∫ ∞

−∞

dω

2π

1/2

iω − vLk

· 1/2

iω − vLk − U
. (28)

The integral over ω and k gives∫
d�

dk

2π

∫ ∞

−∞

dω

2π

1/2

iω − vLk
· 1/2

iω − vLk − U
= d�

8πU
. (29)

As U is strongly relevant, that is, U ′ = s−2U , this contribution
goes to zero much faster than d�/�. Thus, the ZS diagram
does not contribute to the RG analysis.

Now consider the ZS′ diagram. Due to the momentum
transfer Q of order KL at the left vertex, not only is the
magnitude of the loop momentum restricted to lie within the
shell being eliminated but also its angle is restricted to a range
of order d�/KL. This suppression in ZS′ diagrams contributes
to d�2/�KL. The β function thus vanishes as we take the
limit d�/� → 0. As we show in the Appendix, the contribu-
tion from the Wick-violating terms is not thermodynamically
extensive. Hence, there is no correction in any order.

Finally, the same kinematic reasons used to establish that
ZS′ vanishes can be adopted to show that the BCS diagram
also does not renormalize F at one loop. Hence, the coupling
constants for the forward scattering do not flow in this order
because β(F ) = 0.

This vanishing of the β-function includes the ferromag-
netic interaction of the form −J

∑
k,k′ (nk,↑ − nk,↓)(nk′,↑ −

nk′,↓). Such terms have scaling dimensions identical to F
or more generally the Landau parameters f (p, p′). They are
subdominant to the HK term which has a scaling dimension
−2. The HK fixed point should include the family of all
such Landau parameters as they are marginal contributions
to all levels. The real space orderings such as spin orderings,
however, are subservient to this fixed point since we only care
about a thin shell of momentum around the filling surfaces.

B. Two filling surfaces

When there are two filling surfaces, there are at most four
independent solutions to P = K1 + K2, as shown in Fig. 5.
The combined equation P = K1 + K2 and P = K3 + K4 thus
have 4 × 4 = 16 independent solutions. There are still explic-
itly three spin configurations for each momentum solution.

165135-6



PROOF OF A STABLE FIXED POINT FOR STRONGLY … PHYSICAL REVIEW B 108, 165135 (2023)

FIG. 5. The solutions to P = K1 + K2. The L-surface and U -
surface are plotted in dotted circles. The four solutions are marked
by the surfaces where the two momentum that sum up to P are.

Thus, the total number of marginal forward scattering is 16 ×
3 = 48. We will not enumerate them here since they remain
noncontributing in the same way as we discussed in the case
of a single filling surface. The one-loop correction contributes
a term proportional to either d�/U from the ZS diagrams or
d�/KL for the ZS′ and BCS diagrams. Once again, forward
scatterings remain fixed under RG; that is, they do not flow
under RG.

VI. SUPERCONDUCTING PAIRINGS AT ONE LOOP

The incoming and outgoing momenta each summing to
zero K1 = −K2, K3 = −K4 constitute superconducting pair-
ings. The one-loop evolution of V s has a nonvanishing
contribution even for a Fermi liquid and hence we expect an
analogous contribution at the HK fixed point should one exist.
We will analyze the single and two filling surfaces separately.

A. One filling surface

K1 and K3 can lie freely on the filling surface. For sim-
plicity, we set all external legs to zero frequency and on the
filling surface (ω = k = 0). Including the spin-singlet and
spin-triplet pairings, we have two choices,

V 1(n1, n3) = u(−K3σ, K3σ,−K1σ, K1σ ), (30)

V 2(n1, n3) = u(−K3σ̄ , K3σ,−K1σ̄ , K1σ ). (31)

These two spin configurations satisfy the antisymmetry for
Fermions regardless of the angular structure of the pairing
interaction. The incoming momenta are equal and opposite on
the filling surface. The ZS and ZS′ diagrams are suppressed
by d�2/�KL and hence do not contribute for the same reason
that ZS′ and BCS diagrams did not contribute to the flow of
forward scatterings. The BCS diagram now has a contribution
since the running momentum in the loop can now freely point
in any direction, regardless of the value of K . We rewrite

Eq. (21) as

dV 1,2(n1, n3) = −1

2

∫
dn

(2π )d−1
V 1,2(n1, n)V 1,2(n, n3)

×
∫

d�

dk

2π

∫ ∞

−∞
dωG(ω, k)G(−ω, k).

(32)

The integral over dk also lies inside the two thin shells to
be integrated out. These two thin shells contribute differently.
For the outer shell, corresponding to k ∈ [� − d�,�] > 0,
the second line of Eq. (32) yields a finite value d�

4π�vL
. For

the inner shell, corresponding to k ∈ [−�,−� + d�] < 0,
the integral region thus gives a value that is reduced by a
factor of a quarter, d�

16π�vL
. In all, the renormalization group

equation for V 1,2 is

dV (n1, n3)

dt
= − 5

32πvL

∫
dn

(2π )d−1
V (n1, n)V (n, n3)

≡ − 5

32πvL
(V ∗ V )(n1, n3),

(33)

where dt = |d�|/� is the RG transform step size, and ∗
defines the generalized convolution in d-dimensions. This is
the Cooper instability in the HK model. For the case of d = 2,
we can simplify this by going to momentum eigenfunctions

Vl =
∫ 2π

0

dθ

2π
eilθV (θ ), (34)

where V (θ ) = V (n0, Rθ n0) and Rθ is the rotation by degree θ .
We can obtain the β function for each angular momentum l ,

dVl

dt
= − 5

32πvL
V 2

l . (35)

The flow tells us that the couplings Vl are marginally relevant
if negative, and marginally irrelevant if positive. By integrat-
ing the flow, we obtain

Vl (t ) = Vl (0)

1 + 5tVl (0)/32πvL
, (36)

which implies an instability at the energy scale �c =
�0e32πvL/5V0 . The energy scale in a thermal system is
proportional to the temperature; thus we propose that the ap-
proximate transition temperature of this metallic state scales
as �c.

B. Two filling surfaces

The two filling surfaces case remains to be analyzed. The
electrons around different filling surfaces now have different
contributions and are grouped into three different categories
(intra-L, intra-U , and inter-LU )

V 1(n1, n3) = u
( − KL

3 σ̄ , KL
3 σ,−KL

1 σ̄ , KL
1 σ

)
, (37)

V 2(n1, n3) = u
( − KU

3 σ̄ , KU
3 σ,−KU

1 σ̄ , KU
1 σ

)
, (38)

V 3(n1, n3) = u
( − KU

3 σ̄ , KU
3 σ,−KL

1 σ̄ , KL
1 σ

)
, (39)

for the spin-singlet configuration. Here the superscripts repre-
sent the surface around which the momenta are located. The
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FIG. 6. The Tc (divergence of pair susceptibility) vs the super-
conducting pairing strength g = −V . The curves from top to bottom
are: U < W (two filling surfaces), U = 0 (Fermi liquid), and U > W
(one filling surface). The insert plot shows the linear dependence of
log(Tc ) on 1/g and the slope of each curve is 0.8 : 1 : 1.6. These Tc

exponents are consistent with the �c estimate.

spin-triplet processes have exactly the same RG structure and
follow the same RG equations. We omit their definition and
work with only the spin-singlet processes.

The RG flow of the BCS couplings still follows Eq. (32).
The integral of the Green function around each filling surface
follows the same process as Eq. (33). The renormalization
group equations are

dV 1

dt
= − 5

32π

(
V 1 ∗ V 1

vL
+ V 3† ∗ V 3

vU

)
, (40)

dV 2

dt
= − 5

32π

(
V 3 ∗ V 3†

vL
+ V 2 ∗ V 2

vU

)
, (41)

dV 3

dt
= − 5

32π

(
V 1 ∗ V 3

vL
+ V 3 ∗ V 2

vU

)
. (42)

With the natural choice, V 1 = V 2 = V 3 = V ∈ R, we sim-
plify the β function to a single equation,

dV

dt
= − 5

32π

(
1

vL
+ 1

vU

)
V ∗ V. (43)

For the case of d = 2, the instability for attractive V obtains
at the energy scale

�c = �0 exp

(
32πvLvU

5(vL + vU )V0

)
. (44)

The energy scale in a thermal system is proportional to the
temperature. This increase in the critical energy scale is con-
sistent with the exactly calculated pair susceptibility [22],
which diverges at a higher temperature for a small value of
U compared with the Fermi liquid result. The comparison
between different Tc was shown in Fig. 6.

Due to the fact that RG analysis only deals with pertur-
bative interactions around the fixed point at each step, the
first-order transition into a superconductor at finite U [22] is
absent.

VII. FINAL REMARKS

We have shown that the analogies with Fermi liquid theory
noted in the introduction are borne out by a thorough RG
analysis of the interactions that can contribute to the HK

FIG. 7. Perturbative flow diagram for interactions in a doped
HK Mott system. Short-range interactions regardless of their sign
do nothing. Only pairing leads to flow to strong coupling and the
ultimate destruction of the non-Fermi liquid HK metallic state and
the onset of a superconducting state distinct from that of a BCS
superconductor. The nature of the superconducting state cannot be
established based on perturbative arguments but requires the PYH
theory [13,22].

model. For short-range repulsions, nothing flows away from
HK, thereby establishing it as a stable fixed point depicted in
Fig. 7. While it is surprising that a new quartic fixed point
exists, it is ultimately not surprising given that the momentum
structure of the HK model is identical to that of Fermi liquid
theory. As a consequence, all of the interactions that flow into
Fermi liquid theory also flow into this quartic fixed point.
Once again as in Fermi liquid theory, superconductivity leads
to flow away from the HK fixed point (see Fig. 7). Since
Hubbard interactions are also local in real space, they also
cannot perturb away from the HK fixed point in the metallic
state. This is crucial because there is much physics in the
Hubbard model that is not present in the HK model. Local mo-
ment physics, antiferromagnetism, pseudogap physics, etc.,
are all consequences of Mottness, that is the movement of
spectral weight from high to low energy upon the removal of
single charges from the Mott state. Experimentally this is well
documented in optical conductivity experiments [17].

Our focus on the simplest model for Zeroes of the Green
function is based on the fact that they are essential for the
movement of spectral weight at Mott scales. As such they
are often used as a diagnosis [23,24] of the pseudogap phase
in the cuprates. The argument for zeros being inextricably
essential to Fermi arcs (either a nodal metal or a connected
region of poles that does not extend to the zone boundary)
is simple [24]. Consider the extreme case of a nodal metal
in which a quasiparticle exists only at (π/2, π/2). Consider
traversing a path through (π/2, π/2) and then returning along
a path that does not cross this point. Then ReG(p, ω) must
change sign for the momentum passing through the singularity
at (π/2, π/2). To end up with the correct sign for Re G,
the return path must intersect a line across which ReG(ω =
0, p) changes sign. Since there are no infinities, except at
(π/2, π/2), the only option is for a zero line to exist. The
zero line must emanate from the (π, π/2) point and touch the
edges of the Brillouin zone close to (π, 0) and (0, π ). This
argument is independent of the length of the region of poles
(quasiparticles), that is if the nodal metal is extended to an ac-
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FIG. 8. The general phase diagram of the superconducting insta-
bility in the HK fixed point. As long as the 
1 region is nonzero, the
system breaks the Fermi Liquid Z2 symmetry and flows into HK.

tual arc that falls short of touching the BZ boundary. That we
have found a solvable model for zeros and established it as a
fixed point illustrates that the physics of doped Mott insulators
can be established independent of the Hubbard model. Indeed,
the simplicity of the HK model belies its true robustness and
generality.

While the similarity of the momentum structure of the
theory with that of Fermi liquid theory plays a key role in
the stability of the fixed point, the relation to Hubbard is ulti-
mately driven by the Z2 symmetry breaking of the interaction
in Eq. (1). As long as the interaction is repulsive, breaking the
Z2 symmetry noted by Anderson and Haldane [20] leads to
single occupancy. The phase diagram for the evolution of HK
physics from a simple Fermi liquid is plotted as a function of
the singly occupied region, 
1, as shown in Fig. 8. Fermi liq-
uids live only in the region where 
1 vanishes. The transition
line for superconductivity from a FL state is given by the green
line. The entire region in the 
1-g plane represents non-BCS
superconductivity and is governed by the quartic HK fixed
point delineated here. In addition to mediating non-Fermi
liquid behavior, single occupancy in real or momentum space
leads to degeneracy. The degeneracy at half-filling could be
lifted by considering a multiorbital version of the HK model
while preserving the key feature of Mott physics, namely
the zeros of the single-particle Green function [16]. Away
from half-filling, we show in Appendix C that an analogy
of the Kohn-Luttinger [15] instability is present for the HK
model appended with a general repulsive interaction. As such
superconductivity also lifts the degeneracy, there is no T = 0
entropy problem in either the half-filled Mott insulator or the
metallic state of the doped HK model, orbital or otherwise.

Essentially what the HK model does is separate the bifurca-
tion of the spectral function into low and high energy branches
per momentum state, the inherent physics of a Mott insulator,
from ordering tendencies. Such ordering, antiferromagnetism
or any other order associated with the pseudogap is governed
by operators that have more than one momentum index and
hence do not generate flow away from the stable metallic
HK fixed point. Hence, what the HK model ultimately does

is offer a way of treating Mott’s original conception of the
gapped half-filled band. Mottness sets the scale for the gap
and ordering is secondary as borne out experimentally in all
Mott systems ranging from the vanadates [25] to the cuprates
[17,26,27].
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APPENDIX

1. Detailed derivation of the Green function

Here we briefly review the exact partition and Green func-
tion of the HK model at any filling. We start with the HK
Hamiltonian,

HHK =
∑

k

[ξk (nk↑ + nk↓) + Unk↑nk↓], (A1)

where ξk = εk − μ. For each momentum sector, the HK
Hamiltonian is built out of commuting parts. Thus, the par-
tition function factorizes, and for each momentum sector we
have

Zk = 1 + 2e−βξk + e−β(2ξk+U ). (A2)

The Heisenberg equations in imaginary time for Fermion ckσ

annihilation and the number operator nkσ = c†
kσ

ckσ are

ċkσ = [H, ck,σ ] = −(ξk + Unkσ̄ )ckσ , (A3)

ṅkσ = [H, nk,σ ] = 0. (A4)

Thus, we have the time evolution of the Fermi operator,

ckσ (τ ) = e−(ξk+Unkσ̄ )τ ckσ (0). (A5)

The average particle number is

〈nkσ 〉 = e−βξk + e−β(2ξk+U )

1 + 2e−βξk + e−β(2ξk+U )
. (A6)

The imaginary time Green function is

Gkσ (τ ) = −〈ckσ (τ )c†
kσ

(0)〉
= −Tr[e−β(H−F )e−(ξk+Unkσ̄ )τ ckσ (0)c†

kσ
(0)]

= −Tr[eβF e−(ξk+Unkσ̄ )τ e−βH (1 − nkσ )]

= − 1

Zk
[e−ξkτ + e−βξk e−(ξk+U )τ ]. (A7)

Performing the Fourier transform with the antiperiodic bound-
ary condition G(τ + β ) = −G(τ ) leads to

Gkσ (iωn) =
∫ β

0
Gkσ (τ )eiωnτ

= − 1

Zk

[−e−βξk − 1

iωn − ξk
+ e−βξk

−e−β(ξk+U ) − 1

iωn − ξk − U

]

= 1 − 〈nkσ̄ 〉
iωn − ξk

+ 〈nkσ̄ 〉
iωn − ξk − U

. (A8)

This result is exact for any value of μ and U .
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2. Weak coupling expansion and Wick’s theorem

According to the Gell-Mann-Low formula, the 2n-point function under interaction V is given by〈
T c†

k1
(τ1) · · · c†

kn
(τn)ck′

1
(τ ′

1) · · · ck′
n
(τ ′

n)
〉
I

=
〈
T c̄k1 (τ1) · · · c̄kn (τn)ck′

1
(τ ′

1) · · · ck′
n
(τ ′

n) exp
( − ∫ β

0 dτV [c̄, c]
)〉

HK〈
T exp

( − ∫ β

0 dτV [c̄, c]
)〉

HK

,
(A9)

where 〈〉I is the average using the full Hamiltonian HHK + HI and 〈〉HK is the average under the HK Hamiltonian HHK only.
Since the HK path integral is decomposed into a series of products in the momentum space, the creation and annihilation

operators from different momentum sectors can be safely factored out. For example, suppose k1, k2, · · · , kn are different from
each other, and each corresponding annihilation and creation operator appears l1, l2, · · · , ln times, then〈

T
l1∏

j=1

c†
k1σ

j
1

(
τ

j
1

) · · ·
ln∏

j=1

c†
knσ

j
n

(
τ j

n

) l1∏
j=1

ck1σ
j

1

(
τ ′

1
j
) · · ·

ln∏
j=1

cknσ
j

n

(
τ ′

n
j
)〉

HK

= (−1)P

〈
T

l1∏
j=1

c†
k1σ

j
1

(
τ

j
1

) l1∏
j=1

ck1σ
j

1

(
τ ′

1
j
)〉

HK

· · ·
〈

T
ln∏

j=1

c†
knσ

j
n

(
τ j

n

) ln∏
j=1

cknσ
j

n

(
τ ′

n
j
)〉

HK

, (A10)

where P is the times of permutation performed to separate the fermion operators.
The deviation from Wick’s theorem could be observed on certain multipoint correlation functions(e.g., four-point function)

for which all the momenta of the fermion operators are identical. This contribution, however, is thermodynamically suppressed
in our calculation. Thus, we employ Feynman diagram rules and use the exact Green function to calculate the correlation
functions.

3. Kohn-Luttinger instability

Back in 1965, Kohn and Luttinger (KL) [15] pointed out
that a Fermi liquid is never a zero-temperature state of matter
as a result of an intrinsic tendency to form a superconductor.
We illustrate that the same is true for the metallic state of HK.
In principle, any system that has a Fermi surface will face
BCS instability at low temperatures even if the initial coupling
is repulsive. The KL statement stems from the observation
that the screening around the Fermi surface contributes to a
long-range oscillatory potential of the form cos(2kF r)/r3, the
Friedel oscillation [28]. The negative contribution gives rise
to a superconducting instability in any system with a sharp
Fermi surface.

Here we take advantage of the RG formalism and follow
the derivation given by Shankar [19] to prove the same insta-
bility is entailed by the HK fixed point. For simplicity, we
illustrate this in the case of only one lower-filling surface
in 3D. Consider the ZS diagram as shown in Fig. 4 which
generates the BCS amplitude to one loop,

dV (n1, n3) =F (π )2
∫

dkdn
(2π )d

∫ ∞

−∞

dω

2π
G(ω, k)G(ω, k′),

(A11)

where F (π ) is the backward scattering amplitude that enters
both vertices and k′ = |K′| − KL refer to K′ = K + Q. The
poles in the ω plane do not contribute if they lie on the same
side of the real axis. When both K and K′ live outside the
filling surface, k, k′ > 0, their Green function takes the form
of Eq. (26) and gives no contribution upon integrating along
ω. For both K and K′ living inside the filling surface, k, k′ <

0. Their Green function takes the form of Eq. (27) and gives a

contribution proportional to

−1

4
F (π )2

∫
dkdn
(2π )d

θ (−k)θ (−k′)

×
(

1

E (K′) − E (K) + U
+ 1

E (K′) − E (K) − U

)
.

(A12)

This contribution becomes strongly suppressed by 1/U and
thus does not modify the RG. The only nonvanishing contri-
bution comes from K and K′ lie on different sides of the filling
surface, that is, k > 0, k′ < 0 or k < 0, k′ > 0. The amplitude
is thus

−1

2
F (π )2

∫
dkdn
(2π )d

(
θ (−k)θ (k′)

E (K′) − E (K)
+ θ (k)θ (−k′)

E (K) − E (K′)

)
.

(A13)
This is exactly half the contribution of the Kohn-Luttinger
amplitude in Fermi liquid [19] theory. Thus, integrating out
the momenta and frequency as is standard yields the RG
equation

dVl

dt
= − 5

32πvL
V 2

l − V (π )2λ7/4

2l15/2(λ7/4 + l−7/2)vL
, (A14)

where λ = �/KL. The second term vanishes as (�/KL )7/4 as
� → 0. However, Vl ∝ e−l as l → ∞. It is clear that as soon
as the flow begins, the exponentially small initial coupling
Vl (0) will very quickly be driven to negative values by the
second term, and the superconducting instability driven by the
first term emerges. Thus, just as in Fermi liquid, the HK fixed
point is not a zero temperature fixed point either. As the tem-
perature lowers, the ground state is always superconducting
without degeneracy [22].
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4. Magnetic instability

The singly occupied region of the HK model at finite U
in the HK model leads to a singly occupied region which
introduces spin degeneracy for each momentum sector. This
ground-state degeneracy is extensive with the system size
and thus considered to be unphysical although a singly oc-
cupied region generally exists in Mott systems with the
traditional Hubbard model. The solution to the degeneracy
in the HK fixed point is ordering such as superconductivity,
ferromagnetism, or a spin-density wave. The superconducting
instability has been discussed in the main body and we pro-
vide here an analysis of a possible magnetic ordering of the
HK model.

With an external magnetic field B, the partition function
now reads

Z (B) =
∑

k

(
1 + e−β(ξk−μB) + e−β(ξk+μB) + e−β(2ξk+U )).

(A15)

The magnetic susceptibility is achieved by a double derivative
of the partition function,

χ = − 1

βZ (B)

∂2Z

∂B2

∣∣∣∣
B=0

= μ2β

Z (B)

∑
k

(
e−β(ξk−μB) + e−β(ξk+μB)

)∣∣∣∣∣
B=0

= μ2
1β, (A16)

where 
1 is the extent of the singly occupied region. The
susceptibility diverges as temperature goes to zero, signaling
a ferromagnetic phase transition at T = 0. As pointed out in
the previous section, at low temperatures the interacting HK
system always has a superconducting instability which lifts
the degeneracy. This ferromagnetic instability is covered up
by the superconducting phase.
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