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Angle-resolved pair photoemission theory for correlated electrons
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In this paper, we consider the possibility and conditions for pair photoemission, whereby two incident photons
emit pairs of electrons from a candidate material, as a method to measure and visualize electronic correlations.
As opposed to double photoemission—where a single photon precipitates the ejection of a pair of electrons via
a subsequent electron energy loss scattering process—we show that pair photoemission need not be limited to
interference between initial photoelectrons and valence electrons and moreover can occur without the energy
penalty of two work functions. This enables detection of pairs of electrons at high-energy resolution that may be
correlated in the same quantum many-body states.
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I. INTRODUCTION

Over the past decades, angle-resolved photoemission
spectroscopy (ARPES) has emerged as a paradigmatic exper-
imental probe of electronic structure and correlations, band
topology or surface states, unconventional superconductiv-
ity or the enigmatic pseudogap phase, granting insight into
characterizing electronic behavior in quantum materials. By
measuring the kinetic energy and angular dependence of
photoemitted electrons, ARPES supplies information on the
energy and momentum dependence of valence electrons in a
material and is widely understood to reflect a good approxi-
mation of the behavior of the single-particle spectral function
[1].

Higher-order photoemission processes have been utilized
to further obtain information beyond the single-particle den-
sity of states. In double photoemission, for example, a highly
energetic photon causes the emission of an electron which
may cause a second electron to be photoemitted via the
Coulomb interaction if it can impart enough energy for the
second electron to escape to a detector [2]. For example, a
photoemitted core electron may be accompanied by Auger
electron emission, whereby the energy emitted by Auger
decay of the core hole is utilized to cause another elec-
tron to be emitted [3]. Such shake-off or secondaries spectra
contain both photoemitted core and Auger electrons. The
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fact that the energies of the two electrons can be them-
selves continuous yet sum to conserve energy can show
that the electrons are correlated, and a comparison with
single-particle photoemission can be utilized to determine the
so-called exchange-correlation hole energy and momentum-
space structure [4,5].

In analogy to photon- or electron-based coincidence
spectroscopies, recently, an interesting proposal suggested ex-
tending ARPES to use energy and angle-resolved coincidence
detection to account for two-photon, two-electron photoe-
mission events and extract two-particle Bethe-Salpeter wave
functions [6] of valence electrons of the material. Here, in
contrast with double photoemission due to Coulomb drag,
the coincidence signal derives from two-photon absorption at
lower photon energies. Measurement of the angle dependence
of two-photon coincidence events at the detector hence im-
portantly permits resolving the momenta and energies of the
ejected electron pairs, without the need to disentangle highly
complex Coulomb drag processes that complicate the study of
important low-energy effects.

While the possibility to extract electronic correlations from
coincidence counts in ARPES immediately suggests a variety
of applications such as elucidating unconventional pairing
mechanisms in high-temperature superconductors or heavy-
fermion compounds, a key question concerns understanding
exactly the nature of what this probe actually measures in
a correlated electron system and how to interpret its result
in terms of more intuitive quantities such as pair corre-
lation functions or the superconducting gap. Indeed, it is
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FIG. 1. Setup: Two electrons at (r̄, τ ), (r̄′, τ ′) are photoemitted
upon absorbing two photons with frequency ωph. Coincidence detec-
tion takes place at time t and positions x, x′.

straightforward to see that the coincidence signal does not
map onto more readily interpretable superconducting pair
correlation functions since pairs of detected electrons that
comprise a coincidence signal are not necessarily ejected from
the sample at the same time. On the other hand, a more
microscopic description of the pair ARPES cross-section is
necessary to permit a formal accounting for final-state effects
and the detector geometry and differentiate from double pho-
toemission.

In this paper, we address these questions by developing a
generic theoretical description of angle-resolved pair photoe-
mission and studying its behavior in light of superconducting
instabilities in the attractive and repulsive Hubbard model on
small clusters. We show that pair photoemission need not
be limited to interference between initial photoelectrons and
valence electrons and moreover can occur without the energy
penalty of two work functions. This enables detection of pairs
of electrons at high-energy resolution that may be correlated
in the same quantum many-body states.

Figure 1 depicts a schematic of the pair photoemission
process for a two-dimensional sample or surface state. Two
photons with energy h̄ωph eject two electrons from the sample,
which are subsequently observed at the detector at the same
time t with both angle and energy resolution. For simplicity
but without loss of generality, we ignore bulk effects and
henceforth denote three-dimensional positions and momenta
using bold notation r, whereas their two-dimensional com-
ponents in the sample plane are denoted by r̄. Suppose that
sample and emitted electrons are described by fields �̂(r̄)
and �̂(r), respectively (we suppress implicit spin indices, for
conciseness), and are governed by a generic Hamiltonian Ĥ :

Ĥ0 = Ĥvalence(�̂) + Ĥemitted(�̂ ) + Ĥv-e(�̂, �̂ ), (1)

such that emitted electrons �̂ behave as freely propagating
waves at long distances from the sample while appropriately
encapsulating final-state effects [time-reversed low-energy
electron diffraction (LEED)] as well as possible back actions
Ĥv-e(�̂, �̂ ) which would be important for Coulomb-drag-
mediated double photoemission.

The photoemission process Ĥel-ph in the rotating-wave
approximation now takes a sample electron �̂(r̄) to a prop-

agating final state �̂(r):

Ĥel-ph(t ) = s(t )
∫

d3r g(r) �̂†(r)�̂(r̄)

× exp(−iωpht ) + H.c., (2)

where g(r) = er · E0 describes photoemission in dipole
gauge with φ = r · E(t ), A = 0 for an electric field E(t ) =
E0 cos(ωpht ), and s(t ) describes a Gaussian probe pulse en-
velope with

s(t ) = exp

[
− (t − t0)2

2σ 2
pr

]
. (3)

Subsequently, the photoelectron detector measures the mean
momentum k of propagating electron wave packets, described
by a photocurrent:

〈Ĵk〉 = k

e

∫∫
dxdx′ φ�

k(x)φk(x′)〈�̂†(x)�̂(x′)〉, (4)

where φk(r) denotes a wave packet centered at the detector
location [7].

II. FORMALISM

A. Single-electron ARPES

The conventional single-electron ARPES signal now fol-
lows straightforwardly [7] from a perturbative expansion in
Ĥel-ph of the measured photocurrent:

Ik =
∫ t

−∞
dτdτ ′s(τ )s(τ ′) exp[iωph(τ − τ ′)]

×
∫

dxdx′φ�
k(x)φk(x′)

∫
d r̄d r̄′g�(r)g(r′)

×〈�̂†(r̄, τ )�̂(r, τ )�̂†(x, t )�̂(x′, t )�̂†(r′, τ ′)�̂(r̄′, τ ′)〉,
(5)

where 〈·〉 = tr{· exp(−βĤ0)}/Z denotes thermal ex-
pectation values with respect to Ĥ0. If back-action
Ĥv-e between emitted and valence electrons can be
neglected, this expression simplifies drastically, as
〈�̂†(r̄, τ )�̂(r, τ )�̂†(x, t )�̂(x′, t )�̂†(r′, τ ′)�̂(r̄′, τ ′)〉 = 〈�̂†

(r̄, τ ) �̂ (r̄′, τ ′)〉 〈�̂ (r, τ ) �̂† (x, t )〉 〈�̂ (x′, t ) �̂† (r′, τ ′)〉.
Furthermore, assuming a single electronic valence band
�̂(r̄) = ∑

k̄ uk̄(r̄)eik̄r̄ĉ
k̄

with Bloch function uk̄(r̄), and
neglecting the detector wave packet shape functions
φk(x) → eikx [thereby discarding time-of-flight (TOF)
information], one arrives at (k → k):

Ik = −i
∫ t

−∞
dτdτ ′ exp[iωph(τ − τ ′)]s(τ )s(τ ′)|Mk|2

× G<
k̄ (τ, τ ′)G�

k(τ, t )Gk(t, τ ′), (6)

where Mk = ∫
drχ∗

k (r)g(r)uk(r)eikr is a matrix element eval-
uated from g(r), the Bloch function of the single valence
band, and the time-reversed LEED wave function χk(r). Here,
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G<
k̄ (τ, τ ′) is the lesser sample Green’s function:

G<
k̄ (τ, τ ′) = i〈ĉ†

k̄
(τ )ĉ

k̄
(τ ′)〉, (7)

and

Gk(t, t ′) = −i〈T̂ ĉk(t )ĉ†
k(t ′)〉 (8)

is the propagating electron Green’s function for a time-
reversed LEED state. Finally, a drastically simplified expres-
sion can be provided if Gk is approximated by a free-electron
Green’s function with dispersion εk = k2/2m0. Then defining
the kinetic energy ω observed at the detector as

ω ≡ ωph − k2

2m0
− W, (9)

where W is the work function of the sample, and taking
t → ∞, one finally arrives at

Ik = i
∫ ∞

−∞
dτdτ ′ exp[iω(τ − τ ′)]s(τ )s(τ ′)|Mk|2G<

k̄ (τ, τ ′).

(10)

This is the usual expression for single-particle ARPES in
terms of convolutions of shape functions, matrix elements,
and the lesser Green’s function [7].

B. Angle-resolved pair photoemission

Similarly, a coincidence measurement signal can be de-
fined by generalizing Eq. (4) and Ref. [7] to the detection of a

pair of electrons:

〈
Ĵk1k2

〉 = k1k2

e2

∫
dx1dx′

1dx2dx′
2φ

�
k1

(x1)φ�
k2

(x′
1)φk2 (x′

2)

×
∑
νν ′

φk1 (x2)〈�̂†
ν (x1, t )�̂†

ν ′ (x′
1, t )�̂ν ′ (x′

2, t )�̂ν

× (x2, t )〉. (11)

Here, we restore spin indices ν, ν ′ and model a spin-agnostic
detector. In complete analogy to single-electron ARPES, the
photodetection rate can now be evaluated from a perturbative
expansion in Ĥel-ph. To first order, the response involves a
single photoemission vertex and vanishes. We note that this
contribution is essential for Coulomb-mediated double pho-
toemission (a single absorbed photon effectively ejects a pair
of electrons) for high photon energies. Here, a perturbative ex-
pansion in Ĥv-e(�̂, �̂ ) additionally accounts for the Coulomb
interaction mediated back action of the photoemitted elec-
tron, imparting enough energy on a second sample electron
to eject it, rendering the coincidence signal nonzero. As
discussed above, we are primarily interested in two-photon,
two-electron pair ARPES processes at lower photon energy;
in this regime, the double emission contribution is negligible
for energetic reasons, provided that the photon energy is less
than twice the ionization energy.

To second order in Ĥel-ph, the two-photon, two-electron
coincidence photodetection signal formally reads

Dk1k2 =
∑
σ1σ

′
1ν

σ2σ
′
2ν

′

∫ t

−∞
dτ1dτ2

∫ τ1

−∞
dτ ′

1

∫ τ2

−∞
dτ ′

2 exp[iωph(τ1 + τ ′
1 − τ2 − τ ′

2)]s(τ1)s(τ ′
1)s(τ2)s(τ ′

2)

×
∫

dr1dr′
1dr2dr′

2g�(r1)g�(r′
1)g(r′

2)g(r2)
∫

dx1dx′
1dx2dx′

2 φ�
k1

(x1)φ�
k2

(x′
1)φk2 (x′

2)φk1 (x2)

× 〈�̂†
σ1

(r1, τ1)�̂σ1 (r1, τ1)�̂†
σ ′

1
(r′

1, τ
′
1)�̂σ ′

1
(r′

1, τ
′
1)�̂†

ν (x1, t )�̂†
ν ′ (x′

2, t )�̂ν (x2, t )

× �̂
†
σ ′

2
(r′

2, τ
′
2)�̂σ ′

2
(r′

2, τ
′
2)�̂†

σ2
(r2, τ2)�̂σ2 (r2, τ2)〉. (12)

Assuming negligible back action or Coulomb interactions between photoemitted electrons and low-energy sample electrons,
this daunting multipoint correlation function can be decomposed in analogy to conventional ARPES. The coincidence detection
rate can be written as

Dk1k2 =
∫ t

−∞
dτ1dτ2

∫ τ1

−∞
dτ ′

1

∫ τ2

−∞
dτ ′

2 s(τ1)s(τ ′
1)s(τ2)s(τ ′

2)
∫

dkdk′dq
∑
σ1σ

′
1ν

σ2σ
′
2ν

′

G
σ1σ2
σ ′

1σ
′
2

k̄k̄′q̄(τ1, τ
′
1, τ

′
2, τ2)

× exp[iωph(τ1 + τ ′
1 − τ2 − τ ′

2)]
[
F

σ1σ
′
1νν ′

kq (τ1, τ
′
1)

]∗
F

σ2σ
′
2νν ′

k′q (τ2, τ
′
2), (13)

where

G
σν
σ ′ν ′
k̄k̄′q̄(τ1, τ

′
1, τ

′
2, τ2) = 〈ĉ†

k̄σ
(τ1)ĉ†

q̄−k̄σ ′ (τ
′
1)ĉ

q̄−k̄′ν ′ (τ
′
2)ĉ

k̄′ν (τ2)〉 (14)

is the two-particle Green’s function for the sample, and

F σσ ′νν ′
kq (τ, τ ′) =

∫
dpdp′ φk1 (p)φk2 (q − p) Mq−kMk〈0|�̂pν ′ (t )�̂q−pν (t )�̂†

q−kσ ′ (τ ′)�̂†
kσ (τ )|0〉 (15)
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is a four-point function for the photoemitted electrons which
includes the Fourier-transformed detector shape functions
φk(·) and is evaluated with respect to the vacuum state. Fur-
thermore, Mk denote photoexcitation matrix elements defined
in terms of the dipole matrix element and valence electron
Bloch functions introduced above. Here, Fkq(τ, τ ′) encodes
both propagation and TOF information as well as interactions
between the two photoemitted electrons. A drastic simplifica-
tion follows from treating emitted electrons as free fermions.
In this case, Fkq(τ, τ ′) factorizes to

Fkq(τ, τ ′) = Mq−kMk exp{−i[εk(t − τ ) + εq−k(t − τ ′)]}
× [φk1 (k)φk2 (q − k)δσ,ν ′δσ ′,ν

− φk2 (k)φk1 (q − k)δσ,νδσ,ν], (16)

where εk = k2/2m0 is the dispersion of the photoemitted elec-
trons. This expression generalizes the formalism of Ref. [6]
to, in principle, include TOF information and interactions
between the photoemitted electrons. In analogy to the the-
ory for conventional ARPES [7], we can now make the
assumption that the detector wave packet momentum width
can be neglected φk(k) → δ(k − k), discarding again TOF
information and dependence on the detector position. Denote
the energies observed at the two detectors minus the photon
energy as

ω1,2 ≡ ωph − k2
1,2

2m0
− W, (17)

with W the work function of the sample, and taking t → ∞,
the coincidence detection rate can be written as

D(0)
k1k2

=
∫ ∞

−∞
dτ1dτ ′

1dτ2dτ ′
2

× s(τ1)s(τ ′
1)s(τ2)s(τ ′

2)
∑
σσ ′

G(2)
k1,k2,σ,σ ′

× exp{i[ω1(τ1 − τ2) + ω2(τ ′
1 − τ ′

2)]}, (18)

where

G(2)
k1,k2,σ,σ ′ = 〈

T̂ ĉ†
k̄1σ

(τ1)ĉ†
k̄2σ ′ (τ

′
1)T̂ ĉ

k̄2σ ′ (τ
′
2)ĉ

k̄1σ
(τ2)

〉
, (19)

and T̂ denotes time ordering, and we additionally omitted
the photoexcitation matrix elements Mk for conciseness. This
simplified expression recovers the results of Ref. [6].

C. Fermi’s golden rule

This expression can be recast into the more familiar
Fermi’s golden rule by inserting complete sets of the states for
the N, N − 1, and N − 2 particle sectors. Also, if we neglect
the time dependence of the shape functions so that we only
concentrate on frequency resolution, the time integrals can be
performed, and the following expression is obtained:

D(0)
k1,k2

(ω1, ω2) =
∑

n

|M0,n(k1, k2, ω1, ω2)|2

× δ(En − E0 + ω1 + ω2), (20)

with E0 denoting the N particle ground-state energy and En the
eigenenergies of the N − 2 particle sector, viz., the expression

is simply a matrix element squared times a term that enforces
energy conservation. The matrix element reads

M0,n(k1, k2, ω1, ω2) =
∑

m,σ1,σ2

{
〈n|ĉk2σ2

|m〉〈m|ĉk1σ1
|0〉

Em − E0 + ω1 − iη

− 〈n|ĉk1σ1
|m〉〈m|ĉk2σ2

|0〉
Em − E0 + ω2 − iη

}
, (21)

with Em the N − 1 particle sector eigenvalues.
Note that this expression bears a strong resemblance to

the Kramers-Heisenberg expression for resonant inelastic x-
ray scattering (RIXS) in which the manifold of N − 1 states
{|m〉〈m|} plays the role of intermediate N + 1 core hole states
whereby a core electron is photoexcited into the valence band
[8]. While for RIXS the final states have the same number
of electrons N as the initial state as the core hole is refilled
via photodeexcitation, the pair photoemission final states have
two less electrons N − 2. Despite their apparent differences,
the functional form of Eq. (21) indicates that we would expect
resonant pair photoemission whenever one or both of the
frequencies ω1,2 correspond to the N − 1 removal state en-
ergies observed in photoemission rather than the core-valence
transition energies as in RIXS.

To illustrate the differences between pair photoemission
and uncorrelated single-particle photoemission and how in-
formation can be obtained from both, we start by reminding
readers that the pairing energy �(k1, k2) for two momentum
states k1,2 is �(k1, k2) = E2(k1, k2) − E1(k1) − E1(k2) +
E0, where E0,1,2 denotes the energies of the N = 0, 1, 2 par-
ticle removal states, respectively, viz., where single-particle
photoemission yielding E1 − E0 and pair photoemission E2 −
E0. By inspection of Eqs. (20) and (21), we can see that
E2 − E0 is determined by the overall energy conservation by
ω1 + ω2. In other words, this is given by the slope of the line
connecting ω1 and ω2 for pair photoemission when plotted as
a function of both frequencies. The resonance denominator
of Eq. (21) shows that the intensity on this line is modulated
when ω1,2 coincide with the single-particle energies E1 − E0

observed in single-particle photoemission.

D. Retarded pairing correlator

Suppose that the measured pair-emission signal is obtained
as a function of sum and difference frequencies:

ω = ω1 + ω2, �ω = ω1 − ω2. (22)

By inspection of Eq. (18), one can see that the difference fre-
quency �ω parameterizes the retardation of the pair-emission
process from the sample, i.e., the time delay between emission
of the first and second electron of an observed pair. Integration
over the difference frequency �ω then yields

D(0)
k1k2

(ω) =
∫ ∞

−∞
d�ω D(0)

k1k2

(
ω + �ω

2
,
ω − �ω

2

)

=
∫ ∞

−∞
dte−iωt

∫ ∞

−∞
dτ 〈ĉ†

k1
(t )ĉ†

k2
(t + τ )ĉk1

(τ )ĉk1
(0)〉,

(23)
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which can be straightforwardly expressed as a spectral decom-
position

D(0)
k1k2

(ω) =
∑
n,m

δ(ω + E0 − En)
∣∣〈n|ĉk1

|m〉〈m|ĉk2
|0〉∣∣2

. (24)

Thus, coincidence pair ARPES can yield the dynamic
superconducting pairing susceptibility. In a BCS supercon-
ductor, the resulting response has a peak at finite ω that
corresponds to the momentum-dependent superconducting
gap. Spin-resolved pairing as well as pairing that can occur
at finite momenta corresponding to a pair density wave was
recently examined in Ref. [9]. Importantly, coincidence pair
ARPES can also provide measurements for the dynamic pair
susceptibility in materials at temperatures above the ordered
phase or for systems that may be highly frustrated or condense
into a different nonsuperconducting pair state. While dynamic
pairing correlations have been measured via different numer-
ical methods, such as determinant quantum Monte Carlo,
for example [10,11], susceptibility measurements have been
lacking.

III. APPLICATIONS

A. Free electrons

If the valence electrons within the sample are free, the four-
point function factorizes to

G(2)
k1,k2

(τ1, τ
′
1, τ

′
2, τ2) → G<

k1
(τ1 − τ2) G<

k2
(τ ′

1 − τ ′
2), (25)

for k1 	= k2 and suppressed spin indices. The coincidence
detection rate becomes a product of single-particle ARPES
detection rates:

D(0)
k1k2

(ω1, ω2) → Pk1 (ω1)Pk2 (ω2), (26)

which only contributes if the quantum numbers of the pho-
todetected electrons are not identical due to Pauli exclusion.
This is a useful check to determine the overall magnitude of
the pair ARPES compared with single-particle ARPES and
can help to assess the spectral intensities of two-particle col-
lective modes separately from the single-particle continuum.

B. BCS theory

If the system of interest is well described by a BCS mean
field ansatz, the valence band is again composed of free
Bogoliubov fermions. In this case, the four-point function
factorizes, and the coincidence pair photoemission signal ad-
ditionally includes a pairing term:

D(0)
k1k2

(ω1, ω2) = Pk1 (ω1)Pk2 (ω2) + ∣∣Ppair
k1k2

(ω1, ω2)
∣∣2

, (27)

where

Ppair
k1k2

(ω1, ω2) =
∫

dτdτ ′s(τ )s(τ ′) exp[i(ω1τ + ω2τ
′)]

× 〈
T ĉ†

k1
(τ )ĉ†

k2
(τ ′)

〉
(28)

is a weighted time average of the time-ordered anomalous
Green’s function. For the case where the shape functions

s(t ) = 1, the BCS singlet pair wave function gives the value:

Ppair
k1k2

(ω1, ω2) = δ(k1 + k2)δ(σ1 + σ2)δ(ω1 + ω2)

× �k1

(ω1 − iη)2 − E2
k1

, (29)

with the Bogoliubov energy given by E2
k = ε2

k + �2
k for free

particle dispersion εk, and η is a small real quantity [6].
We note that Eq. (29) yields a sharp peak at the Fermi level

(ω1 = ω2 = 0) when the delta functions are satisfied, indicat-
ing that pair ARPES can be used to detect the underlying
Cooper pair structure in terms of center of mass spin (i.e.,
singlet vs triplet) and momentum (i.e., Fulde-Ferrell-Larkin-
Ovchinnikov or pair density-wave states), as has been noted
previously [6,9]. Moreover, the fermion momentum depen-
dence of the energy gap �(k) can be scanned and directly
measured.

C. Hubbard models for correlated electrons

The single-band Hubbard model may provide a simple
way to characterize the behavior of pair photoemission for
correlated electrons in systems without superconducting long-
range order. Specifically, we will utilize eigenstates of the
particle-hole symmetric Hubbard model:

H = −t
∑

〈i, j〉,σ
c†

i,σ c j,σ + U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
,

(30)

on an 8A (diamond) Betts cluster [12] to construct pair
ARPES [Fig. 2(a)]. Here, ci,σ , c†

i,σ removes, adds a particle
at site i with spin σ , ni,σ is the particle density per spin at site
i, t denotes hybridization between nearest-neighbor sites i and
j, and U is a measure of the local interaction between opposite
spins. Throughout, we assume units where h̄ = 1.

While much work has been performed via density matrix
renormalization group techniques, for example, to ascertain
whether the Hubbard model in the thermodynamic limit
harbors superconductivity, our goal is more modest. By exam-
ining the eigenstates and constructing pair ARPES on finite
clusters, which cannot have a bona fide phase transition, we
may be able to highlight how coincidence spectroscopy can
be used to quantitatively measure pair field susceptibilities
in systems where U(1) gauge symmetry is not broken but
fluctuating order may be inferred.

Pairing has been long investigated in exact diagonalization
studies of the Hubbard model on small clusters [13–15]. The
pair-binding energy � is defined as the energy difference
between the ground-state energies of N and N − 2 particle
systems minus twice the energy of the N − 1 system:

� = EN + EN−2 − 2EN−1. (31)

A negative � indicates an effective electron pair attraction.
The pair-binding energy � obtained for the repulsive and

attractive Hubbard model at half-filling Nelectrons = 8 = N is
shown in Fig. 2(d). For repulsive U , � is negative for U/t � 8
and becomes positive for larger values. The ground state of
the attractive Hubbard model (U < 0) can be well modeled
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FIG. 2. Pair ARPES for the attractive and repulsive Hubbard model. (a) Schematics of the 8-site Betts cluster. (b) Pair-binding energy as
a function of repulsive and attractive Hubbard interactions at half-filling. (c) Single-particle spectrum A(ω) as a function of interactions and
momentum [blue, green, and red correspond to k = 0, (π/2, π/2), and (π, π ), respectively]. (d) Top and bottom row panels show opposite-
spin Dk,−k(ω1, ω2) for repulsive and attractive interactions, respectively, from |U | = 0.5 (left) to |U | = 3 (right). Dashed lines (center and
difference frequencies) are guides to the eye. All energies are quoted in units of t = 1. While the main photoemission peak with ω1 = ω2

identically tracks attractive and repulsive Coulomb interactions, for U < 0, pair ARPES reveals the pair-breaking intermediate state via the
frequency difference spectrum ω1 = ω2 for ω1 + ω2 = 0 (bottom row).

as a BCS superconducting paired state [15] and possesses a
pair-binding energy that increases with |U |.

The ARPES spectra are identical for repulsive or attrac-
tive U via particle-hole symmetry. Figure 2(b) depicts the
spectral functions as a function of U/t , with peaks corre-
sponding to the three unique momenta on the 8A Betts cluster
(0, 0), (π/2, π/2) (sixfold degenerate), and (π, π ), shown
in blue, green, and red, respectively. As noted previously
[16], spectral peaks move to deeper binding energies as |U |
is increased, and the development of the lower Hubbard
band can be more clearly observed. While a pairing gap is
clearly observable for attractive U , a superconductor cannot
be distinguished from a Mott gap in single-electron ARPES.
Indeed, the spectra for positive and negative U are identical by
virtue of particle-hole symmetry. This further motivates inves-
tigating pair photoemission, which intrinsically discriminates
between pair and density excitations.

By inspection of the denominators in Eq. (21), one can
expect that, for pair ARPES, the largest intensity will be
obtained for a given k1, k2 when the energies ω1, ω2 are tuned
to the respective energy positions of ARPES removal spectra,
giving roughly a similar pattern to that obtained by simply
multiplying the two independent ARPES spectral functions
for photoemitted electrons with opposite spin.

We focus only on momentum states lying closest to the
chemical potential and consider two-particle removal ARPES
spectra for opposite spins and momenta k1,2 drawn from
the six degenerate momentum points (±π/2,±π/2), (π, 0),
and (0, π ). Obtaining the eigenstates for the sectors contain-
ing Nelectrons = 8, 7, 6 allows for the construction of Fermi
golden rule pair ARPES spectral functions Dk1,k2 (ω1, ω2) via
Eqs. (20) and (21), or equivalently via Eq. (B2) upon inclusion
of the probe shape functions. We focus on spin-resolved pair
photoemission spectra; the spin-agnostic response follows via
summing equal- and opposite-spin contributions.

The resulting pair photoemission spectra are shown in
Fig. 2(d) for k1 = −k2 = (π/2, π/2) and opposite spins
σ1 =↑, σ2 =↓, for both repulsive and attractive interac-
tions. While both cases show a primary peak at equal
pair photoemission energies ω1 = ω2, corresponding to the
particle-hole-symmetric Hubbard gap, a key new feature is
the emergence of a pair of additional peaks for the attractive
Hubbard model, with ω1 + ω2 = 0. These directly probe the
pair-breaking intermediate state and can be understood as a
two-step process: First, a photon breaks a Cooper pair to
photoemit an electron, while leaving an unpaired electron
with pair-breaking energy 2� in the sample. (2) Subsequently,
the second photon photoemits this unpaired electron while
removing the extra intermediate state energy from the sam-
ple. As the final state with two electrons removed from a
fully paired superconductor has the same energy as the ini-
tial state, the total energy ω1 + ω2 left in the sample by
the photoemission process must equal zero; the intermediate
pair-breaking state remains encoded in the energy difference
ω1 − ω2. These observations can be confirmed by comparing
the pair photoemission response to uncorrelated pairs of single
photoemission processes, depicted in Fig. 3.

The momentum dependence on each of the fermion mo-
menta as well as the net total momentum q = k1 + k2 and
net spin σ = σ1 + σ2 can reveal further information of the
pair wave function. Figure 4 plots pair ARPES for differ-
ent combinations of photoemitted wave vectors and spins,
for U/t = 3, as a function of center ω1 + ω2 and rela-
tive ω1 − ω2 frequencies. As expected for singlet pairing in
the attractive Hubbard model, one immediately finds that
equal-spin photoemitted electrons [Fig. 4(b)] lack the pair-
breaking peaks at zero center frequency of the opposite-spin
response in Fig. 2(d). In contrast, observations of equal-spin
pair-breaking peaks in the correlated pair ARPES response
would be suggestive of triplet-pairing instabilities. A similar
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FIG. 3. Comparing single and pair photoemission. (a) and (b) Pair ARPES Dk,−k(ω1, ω2) and uncorrelated pairs of single photoemission
events Pk(ω1) × P−k(ω2), respectively, with line cuts for center and difference frequencies shown in (c). Depicted responses are computed for
attractive interactions U/t = −3 with shape function broadening σ = 4/t .

argument follows for photoemitted pairs of electrons with
equal momentum k1 = k2, as shown in Figs. 4(c) and 4(d);
here, an observation of zero-frequency side peaks would
be indicative of finite-momentum pairing [17]. Pair pho-
toemission for other momenta remains strongly suppressed
[Figs. 4(e)–4(h)] for attractive interactions.

It is expected that these results will be affected by the
finite size and geometry of the small cluster as well as adding
symmetry-breaking terms, such as t ′, that can break mo-
mentum degeneracies. For example, the pair-field correlator
obtained for the same Hamiltonian on a 4×2 cluster that
breaks C4 symmetry, increasing the number of nondegenerate
momentum points from 3 in the 8A cluster to 6, has quanti-
tatively the same results for attractive and repulsive |U | = 4t .
The largest low-frequency contribution is for pair momenta
q = (π, 0) and (π/2, π ). By including a negative next-nearest
hopping t ′ = −0.25t , the low-energy pair field correlations
are largest for q = (π, 0) and (0, π ) for U = 4t , while for

U = −4t , q = (0, 0) is still largest. These effects for larger
clusters and different geometries should be further addressed.

Lastly, here, we have restricted consideration to zero tem-
perature pair ARPES. One key application of pair ARPES
could be to approach ordered phases from high temperature
to measure how pair field correlations develop, either toward
a true superconducting transition or averted by the onset of
another competing order, such as charge and/or spin-density
waves [18]. As these phases all appear to have nearly the same
ground-state energies in simulations of the Hubbard model,
an experimental investigation may provide finer insight into
which terms may be missing from the Hubbard model that
could formulate closer contact to materials such as the high-
temperature superconductors.

In summary, we have presented a theory for pair ARPES
whereby two photons produce two photoelectrons detected in
coincidence, resolved in both energy and momentum. The cor-
responding two-particle removal spectra can thus be exploited

FIG. 4. Spin and momentum dependence of pair ARPES. (a)–(d) Top rows depict the pair ARPES response for the attractive Hubbard
model U/t = −3, for equal/opposite spin and momentum combinations of the momenta (±π/2,±π/2) used in Fig. 2. (e)–(h) Bottom rows
depict the subdominant pair ARPES response for other momenta (scaled by a factor of 1000 with respect to the top row), for equal and opposite
emitted spins.
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to determine the effects of electron correlations in a direct
way. The calculated pair response for the attractive and repul-
sive Hubbard model at half-filling for an 8-site Betts cluster
shows spectroscopically how prominent ordering tendencies
of superconductivity and the net pair momentum and spin can
be inferred directly from experiments.

Experimentally, to make data as close to superconducting
pair correlation function as possible, one should try to eject
the electron pair from the sample at the same time. In such
an instantaneous event, two photons eject two electrons in an
interacting volume, for example, a Cooper pair in a super-
conductor or a pair in a Mott insulator that are sufficiently
entangled. In a Cooper pair, this means two electrons within
the superconducting coherence volume. In a Mott insulator,
assuming that the Hubbard model is a reasonable starting
point, this means two electrons not far from each other so that
a cascade of local interactions can entangle the electrons. Our
theoretical calculation was carried out in a small cluster such
that the entanglement is naturally strong.

Such pair photoemission is an experiment with many
technical challenges. However, several recent technological
advances make it realistic. The first is the emergence of
much improved and suitable light sources, such as UV lasers,

high harmonic generation, free electron lasers, and photon
focusing schemes. Photons within a very short pulse, such
as tens of femtoseconds, can be considered as identical and
instantaneous within TOF spectrometers having picosecond
resolution. The second is a TOF-based three-dimensional
ARPES platform, such as the momentum microscope and
its spin-filtered variant. The third is the development of
two-dimensional ultrafast multichannel detectors. With time
and through an integration of these important technolo-
gies, enhanced by timing, energy, momentum discrimination
schemes, and machine learning algorithms to improve the
signal-to-noise ratio, this spectroscopy may be developed in
the near future.
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APPENDIX A: TWO-PHOTON PAIR PHOTOEMISSION

The main text presents a formal expression of the pair photoemission response [Eq. (13)] which assumes negligible back
action between photoemitted electrons and sample electrons. Starting from the second-order perturbative expression:

Dk1k2 =
∫ t

−∞
dτ1dτ2

∫ τ1

−∞
dτ ′

1

∫ τ2

−∞
dτ ′
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2, t )�̂ν (x2, t )�̂†

σ ′
2
(r′
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′
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2
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′
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〉
, (A1)

neglecting back action on the sample permits a decomposition:

Dk1k2 =
∑
σ1σ

′
1ν

∑
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′
2ν
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∫ t
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Suppose now that the sample electrons near the Fermi energy are confined to a single valence band �̂σ (r, τ ) ≈
1√
L

∑
k̄ uk̄(r)ĉ

k̄σ
(τ )eik̄r̄ with Bloch function uk̄(r). Expanding the photoemitted electron fields in a plane-wave basis and

Fourier-transforming the detector form factors φk(x) = ∫
dpe−ipxφk(p), one obtains

Dk1k2 =
∑
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ĉ†

k̄,σ1
(τ1)ĉ†
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k̄′,σ2

(τ2)
〉
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×
∫
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Rewriting the third line in terms of matrix elements recovers the expression presented in the main text.

APPENDIX B: SPECTRAL REPRESENTATION OF PAIR ARPES

A useful representation of pair ARPES that accounts for the probe shape function follows from a spectral decomposition of
Eq. (18):

D(0)
k1,k2

(ω1, ω2) =
∑

n

∣∣∣∣
∫ ∞
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|0〉 exp(iω2t ′)
]
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2

, (B1)

with s(t ) the Gaussian shape functions. The time integrals can now be evaluated, and one arrives at

D(0)
k1,k2

(ω1, ω2) =
∑

n
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∑

m

[〈n|ĉk1
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2
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where

Xnm(ω1, ω2) = σ 2 exp

[
−σ 2

4
(ω1 + ω2 + ε0 − εn)2

]{
1

2
exp

[
−σ 2

4
(ω2 − ω1 + ε0 + εn − 2εm)2

]

+ i√
π
D+

[
σ

2
(ω2 − ω1 + ε0 + εn − 2εm)

]}
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Here, σ is the Gaussian broadening of the shape function, and D+(x) denotes the Dawson function, which is related to the error
function D+(x) = √

π/4 exp(−x2)erfi(x).
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