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Enhancing robustness of topological orders against perturbations is one of the main goals in topological
quantum computing. Since the kinetic of excitations is in conflict with the robustness of topological orders,
any mechanism that reduces the mobility of excitations will be in favor of robustness. A strategy in this direction
is adding frustration to topological systems. In this paper we consider a frustrated toric code on a kagome
lattice, and show that although increasing the strength of perturbation reduces the topological order of the
system, it cannot destroy it completely. Our frustrated toric code is indeed a quantum loop gas model with
string tension and pressure which their competition leads to a partially topological phase (PTP) in which the
excitations are restricted to move in particular sublattices. In this phase the ground state is a product of many
copies of fluctuating loop states corresponding to quasi-one-dimensional ladders. By defining a nonlocal matrix
order parameter and studying the behavior of ground-state global entanglement, we distinguish the PTP from the
standard topological phase. The partial mobility of excitations in our system is reminiscent of fracton codes with
restricted mobility, and therefore our results propose an alternative way for making such a restriction in three
dimensions.
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I. INTRODUCTION

One of the mainstreams of research in condensed matter
physics and quantum computing is searching for topologi-
cal phases of matter which are beyond the Landau-Ginzburg
symmetry-breaking paradigm [1–6]. In topological states, the
ground-state degeneracy is protected by topological properties
[7–9], and the excitations are anyonic quasiparticles display-
ing a fractional statistics intermediate between bosons and
fermions [10]. Regarding these interesting features, topolog-
ical quantum systems are considered for quantum computing
[11], due to their robustness against perturbations.

Toric code is an exactly solvable topological quantum
system [12–15] which is used as a robust quantum memory
[16–20]. The ground state of the toric code is a superposition
of closed strings and is called a fluctuating loop state or
a quantum loop gas [5]. There are four degenerate ground
states for the toric code on torus which are distinguished by
different topological classes of loops and are robust against
local perturbations [21–24]. However, such a robustness is
not unlimited in the sense that increasing perturbations finally
lead to a phase transition out of the topological phase, and
moving excitations in the system destroy the topological order
[25,26].

Regarding the great importance of robustness of the
topological quantum codes in their application as quantum
memories, providing a mechanism to protect them against
perturbations is an important task. An example is a toric code
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with random couplings in the presence of a magnetic field
where excitations are localized due to the disorder inherent in
the code [27–30]. Fracton codes in three dimensions (3D) are
another example [31] where mobility of excitations are limited
due to quantum glassiness [32]. Introducing frustration to the
toric code model in an external magnetic field can also lead
to robustness by reducing the mobility of excitations [33].
It has been shown that the interplay between frustration and
topological order leads to a rich phase diagram in topological
systems [34].

In this paper we consider a frustrated quantum loop gas
model with tension and pressure, and show that, in a wide
region in the ground-state phase diagram, local perturbations
reduce the topological order of the toric code, but cannot
destroy it, completely. Our study is based on the mappings
between topological quantum codes and classical spin models
[35,36] in which topological phase transitions in the quantum
models correspond to thermal phase transitions in classical
models [37,38]. Recently, it has been demonstrated that the
combined effects of string tension and pressure lead to a
topological line with infinite robustness against perturbations
[39]. Our quantum loop gas model is a frustrated toric code
on a kagome lattice. We investigate the ground-state phase
diagram of our toric code model by mapping it onto a frus-
trated Ising model. We show that there is a quantum phase
in the ground-state phase diagram with a topological order
different from the standard topological phases. In particular,
we show that in this phase, dubbed “partially topological
phase (PTP),” the ground state is a superposition of a partial
set of possible loops. We next describe this phase in terms
of the kinetic of excitations, and show that there is a partial
restriction on the mobility of excitations in the PTP so that
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FIG. 1. (a) Toric code on a kagome lattice. Qubits live on edges in the lattice. There are two types of plaquette operator Bp corresponding to
the triangular and square plaquettes, and two types of vertex operator which are represented by hexagonal and square loops in the dual lattice.
(b) Classical spins in Ising model live on vertices in the kagome lattice. A particular configuration of spins in Ising model can be represented
by a loop in the dual lattice where spins inside (outside) the loop are −1 (+1). Such a loop configuration is equivalent to a loop state in the
toric code where qubits living on the loop are in the state |1〉 and others are in the state |0〉. (c) An illustration of two noncontractible loops
T 1 (T 2) around the torus which generate other degenerate ground states of the toric code. By applying Z (X ) operator on a string in the lattice
(dual lattice), excitations are generated at the two end points of the string.

they are forced to move in particular sublattices. In order to
characterize such a topological phase, we define a nonlocal
matrix order parameter which shows the differences between
this PTP and other standard topological phases. We consider
a multipartite measure of entanglement which reflects highly
entangled nature of topological phases. In particular, we show
that global entanglement is able to identify different phases
of our frustrated system as well as phase transition points.
Importantly, the value of global entanglement in the PTP
confirms the semitopological nature of this phase.

The structure of this paper is as follows: In Sec. II, we give
a brief review on the toric code as a simple model of a quan-
tum loop gas. In Sec. III, we introduce a simple example of
a frustrated toric code model and give a qualitative argument
as to why we expect there is a PTP. Next, we give an exactly
solvable version of the above frustrated quantum loop gas and
present the phase diagram of model. We show that in the PTP,
the ground state is a product of many copies of fluctuating
loop states corresponding to ladders on the lattice. In Sec. IV,
we define a matrix order parameter for characterizing the PTP.
We also show that in the PTP, there is a partial restriction on
mobility of excitations. Finally, in Sec. V, we investigate the
behavior of global entanglement (GE), and show that it can
distinguish the PTP from topological and trivial phases.

II. TORIC CODE MODEL AS QUANTUM LOOP GAS

In this section, we provide a review on the important topo-
logical properties of the toric code model as a quantum loop
gas. The toric code model is defined on an arbitrary oriented
two-dimensional lattice. Here, we consider a kagome lattice
with qubits living on edges in the lattice. The Hamiltonian is

defined as

H0 = −
∑

p

Bp −
∑

v

Av, (1)

where the plaquette operator Bp = ∏
i∈p Zi is a tensor product

of the Pauli operators Zi corresponding to the ith qubit around
the plaquette p, and the vertex operator Av = ∏

i∈v Xi is a
tensor product of the Pauli operators Xi corresponding to the
ith qubit incoming to the vertex v [see Fig. 1(a)]. The ground
state of H0 is simply obtained as the operators Bp and Av

are commuted. Consider a product state where all qubits in
the lattice are in the state |0〉, an eigenstate of the operator
Z with eigenvalue +1. Then, flip the qubits corresponding to
a loop configuration in the dual lattice to the state |1〉 [see
Fig. 1(b)]. A loop state is defined as |loop〉 = ∏

i∈loop |1〉i.
Clearly Bp|loop〉 = |loop〉, meaning that loop states are stabi-
lized states of Bp. On the other hand, each vertex operator also
corresponds to a small loop in the dual lattice. Therefore, ap-
plying a vertex operator on the state |loop〉 generates another
loop state corresponding to a different loop configuration. In
this regard, the ground state |G〉 must be a superposition of
all loop states, i.e., a loop condensed state. In particular, if
one considers each loop configuration as a nonlocal object,
the operator Av plays the role of a kinetic term which leads
to loop fluctuations and the ground state is simply a quantum
loop gas.

The above quantum loop gas has a fourfold degener-
ate topological ground state when one considers a periodic
boundary condition on a torus [12]. In order to find the above
ground states, as shown in Fig. 1(c), consider two noncon-
tractible loops around the torus in two different directions
of the lattice, namely, T 1(2). Corresponding to these loops,
we define two loop operators T 1(2)

x = ∏
i∈T 1(2) Xi which are

a product of X operators on all qubits living in T 1(2). Other
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ground states of the toric code on the torus is generated
by applying T 1(2)

x to the |G〉. Regarding the noncontractible
nature of the loop operators T 1(2)

x , it is clear that different
ground states belong to the different topological classes of
loops. This leads to the important property that the ground
state of the toric code is topologically protected against local
perturbations.

The above topological protection can be understood by
considering excitations of the toric code. Excitations are gen-
erated by applying the Pauli operators X or Z on qubits.
As shown in Fig. 1(c), consider a string of X (Z) operators
with the two end points at two plaquettes (vertices). Since
these string operators anticommute with the corresponding
plaquette (vertices) operators they generate two excitations on
the plaquettes (vertices). Such excitations can be generated by
local perturbations added to the initial Hamiltonian. However,
they are not able to remove the degeneracy of the ground state
because it needs to apply a string of Pauli operators around
the torus that is exponentially suppressed as the system size
scales.

On the other hand, it is important to note that the above-
mentioned topological protection occurs in the presence of
weak perturbations. Actually, when the power of perturbations
increases, the system undergoes a topological phase transi-
tion [21]. For example, suppose that we put the loop gas
under a string tension, by adding a Zeeman term to the initial
Hamiltonian H0 in the form of −h

∑
i Zi with h > 0 being an

external magnetic field. Due to such a string tension, smaller
loops appear that reduce the topological order of the gas.
Increasing the string tension removes loop superpositions and
destroys the topological order completely at a critical field
h∗ = 0.33.

Topological phase transitions out of topological order in
the toric code can be considered in the presence of different
forms of perturbations. In particular, one can consider toric
code in presence of a nonlinear interaction in the following
form:

H0 +
∑

v

e−βh
∑

i∈v Zi , (2)

where β is an additional coupling parameter. For very small
values of β, the exponential in (4) reduces to 1 − βh, which
is the standard Zeeman term. Such a perturbed toric code is a
type of stochastic matrix form Hamiltonian which is exactly
solvable [35].

In this regard, it is important to provide a strategy for
increasing the robustness of the gas against h, i.e., increase
the potency of the system so that the phase transition oc-
curs in larger values of h. Recently, it has been shown that
geometrical frustration is an influential factor for topological
robustness of the system [33,39]. Following we use such an
idea for the toric code on kagome lattice and show that other
interesting phenomena emerge due to the interplay of topol-
ogy and geometrical frustration.

III. QUANTUM LOOP GASES WITH TENSION AND
PRESSURE

In order to have a frustrated loop gas, in addition to the
string tension, we introduce a string pressure to the system

by adding a magnetic field of opposite direction (h < 0) to
the toric code Hamiltonian. Although, in contrast with the
tension, the pressure leads to the creation of larger loops, but
similar to the tension, the pressure also tries to destroy the
topological order of the loop gas. Regarding such opposite
roles of the string tension and pressure, it is expected their
combination results in interesting phenomena. Following we
study the ground-state properties of a quantum loop gas model
with tension and pressure.

Let us consider a loop gas model with the Hamiltonian of
the form

H = H0 − hA

∑
i∈A

Zi − hB

∑
i∈B

Zi, (3)

where A and B contain qubits living on diagonal and vertical-
horizontal edges in the kagome lattice, respectively. Here,
hA and hB are external magnetic fields applied to qubits of
type A and B, respectively. As shown in Fig. 1(b), each loop
configuration in the lattice crosses both types of qubit. In
this regard, in the first-order perturbation approximation, the
Zeeman terms induce an energy shift of �ε = �εA + �εB

with �εA = (2LA − NA)hA and �εB = (2LB − NB)hB, where
NA (NB) is total number of A (B) qubits and LA (LB) is number
of A (B) qubits crossed by the corresponding loop configura-
tion. Therefore, the value as well as the sign of hA and hB are
crucial in determining the lowest-energy state of the Hamil-
tonian (3). In particular, there are three different possibilities:
(1) In the presence of very weak magnetic fields, i.e., when
hA, hB � 1, the energy shift is �ε ∼ 0 and there is no consid-
erable difference between different loop states, and hence the
topological order of H0 persists. (2) If one of the fields is very
strong, i.e., either hA � 1 or hB � 1, the energy shift becomes
either �εA or �εB. (3) There is an intermediate regime in
which both hA and hB are ∼1, but have different signs. In this
case, the energy shift is �ε ∼ 2(LA − LB) + NB − NA, which
can not be simply analyzed for different loop states. In this
case our quantum loop gas is actually under both the pressure
and tension, simultaneously, and a frustration arises in the
ground state of the system. One of the possible scenarios we
can consider is the emergence of an interesting phase with a
partially topological order. In particular, consider a partial set
of loop states � including both small and large loop configura-
tions so that the energy shift �ε is the same for all members of
�. Therefore, the ground state would be a superposition of all
loop states belonging to �. Such a partially loop-condensed
state is a topological phase, distinct from the topological and
trivial phases of toric codes.

A. PTP in an exactly solvable model

The above qualitative argument shows that a frustrated
combination of string tension and pressure in quantum loop
gas model leads to a PTP. However, in order to realize such
a possibility, explicitly, we should find the whole phase dia-
gram of the model. The Hamiltonian in Eq. (3) is not exactly
solvable and finding its ground state for arbitrary strengths of
hA and hB is not straightforward. On the other hand, adding
the Zeeman term to the toric code Hamiltonian is not the only
way for considering frustration effects of the string tension
and pressure. In [39], we have shown that the same effects can
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be realized by adding some particular nonlinear interactions
to the toric code Hamiltonian. Here, as [39], we consider the
toric code on the kagome lattice in presence of a nonlinear
interaction of the following form:∑

v

e−β[hA
∑

i∈A Zi+hB
∑

i∈B Zi], (4)

where β is an additional coupling parameter. For very
small values of β, the exponential in (4) reduces to 1 −
β[hA

∑
i∈A Zi + hB

∑
i∈B Zi], which is the standard Zeeman

term. Such a perturbed toric code is a type of stochastic
matrix form Hamiltonian which is exactly solvable [35]. In
this regard, the ground state of the toric code in the presence
of the above-mentioned term (4) can be exactly calculated as
[37,38]

|G(β )〉 = 1√
Z

e
β

2 [hA
∑

i∈A Zi+hB
∑

i∈B Zi]|G0〉, (5)

where |G0〉 is the ground state of the bare toric code and
Z is a normalization factor. Now, it is important to show how
the nonlinear interactions in (4) lead to the string tension or
pressure similar to what we discussed for the Hamiltonian
(3). In the ground state |G(β )〉 the amplitude of each loop
configuration depends on hALA and hBLB as e

β

2 �ε. This clearly
implies that increasing β decreases the amplitudes in favor of
smaller or larger loops depending on the value and the sign
of hA and hB. These are all things we need for the frustration
effect we discussed in the previous section.

B. Mapping onto a frustrated Ising model

Regarding the special form of the ground state in Eq. (5),
the normalization factor Z is equal to the partition function of
a two-dimensional Ising model defined on the kagome lattice
with classical spins residing at the vertices. The Hamiltonian
of such a dual Ising model is given by

H = −hA

∑
〈μ,ν〉∈A

SμSν − hB

∑
〈μ,ν〉∈B

SμSν, (6)

where Sμ is the classical spin resided on the site μ, and
the sums run over nearest neighbors in the sublattices A and
B. The coupling parameter β in the quantum model corre-
sponds to 1/kBT in the classical Ising model where kB is
the Boltzmann constant and T is temperature. In order to
prove the above mapping, we should notice that, similar to
the |G0〉, |G(β )〉 is also a superposition of all loop states
with the difference that each loop state has a particular am-
plitude. To see this, consider a loop state corresponding to a
particular loop configuration which crosses LA (LB) numbers
of qubits belonging to the edges of A (B). When we apply
e− β

2 [hA
∑

i∈A Zi+hB
∑

i∈B Zi] on such a loop state, a term with am-
plitude e

β

2 �ε will be generated. This amplitude is equal to the
square root of the Boltzmann weight of corresponding spin
configuration in the Ising model. To show this, corresponding
to a loop configuration we set the classical spins at vertices
inside (outside) loops to −1 (+1) [see Fig. 1(b)]. The energy
of such a spin configuration in the Ising model is equal to
�ε. Therefore, e

β

2 �ε will be the square root of the Boltzmann
weight of this configuration. In this regard, the normalization

A
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(Topological phase)
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(Trivial quantum phase)

Partially disordered phase

(Partially topological phase)

T (1/   )

-1-0.6
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1

Disorder line

(Topological line)

-0.96

FIG. 2. Phase diagram of the frustrated Ising model (6) on the
kagome lattice. There are three different classical phases including
disordered, ordered, and partially disordered phases. Corresponding
to different classical phases, there are three quantum phases in our
frustrated quantum loop gas model. The disordered (ordered) phase
in the classical model is equivalent to the topological (trivial) phase,
and corresponding to the partially disordered phase there is a PTP.
Vertical axis in the classical model is temperature which is mapped
onto 1/β in our quantum loop gas model. Solid lines are phase border
and the dashed line is a topological line at which the topological order
survives even in the presence of strong perturbations.

factor in Eq. (5) is equal to summation of all Boltzmann
weights which is the same as the partition function of the Ising
model. We can summarize the above mapping as a mapping
from the interaction term SμSν in the Ising model onto the
Pauli operator Zi in the ground state |G(β )〉 where the ith qubit
lives on the edge with two end points at μ and ν.

The above mapping can be used for characterizing the
phase diagram of our frustrated toric code model. Fortunately,
the frustrated Ising model on kagome lattice is well studied
[40,41], and as shown in Fig. 2 there are three different phases
in the phase diagram of the system. Interestingly, aside from
ferromagnetic and paramagnetic phases there is also a par-
tially disordered phase in which the spins on one sublattice
are ordered magnetically, whereas on the other one they are
free to be +1 or −1. This interesting phase diagram can be
characterized by sublattice order parameters. To this end, con-
sider three different sublattices for the kagome lattice: V (1),
V (2), and V (3) (see Fig. 3). The ensemble averages of spins
in these sublattices are given by the magnetizations m1, m2,
and m3, respectively. In the disordered phase (ordered phase)
the above three order parameters are zero (nonzero). However,
in a partially disordered phase the order parameter m2 is zero
while m1 and m3 are nonzero. This indicates that in this phase
the spins in the sublattice V (2) possess no magnetic order.

C. Ground-state phase diagram

Now, we use the results of the Ising model and present the
ground-state phase diagram of our frustrated quantum loop
gas model. All phase transitions in the frustrated Ising model
correspond to singularities in the thermodynamic functions
like heat capacity. Therefore, it is crucial to find the equiva-
lence of such thermodynamic functions in our quantum loop
gas model. As we discussed, since Boltzmann weights in the
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FIG. 3. A loop configuration in the PTP at β = ∞. The sublat-
tices V (1), V (2), and V (3) contain the classical spins which interact
with each other with the Ising Hamiltonian (6). At T = 0, in the
partially disordered phase, the spins in the sublattice V (1) (V (3)) are
+1 (−1), and those in the sublattice V (2) are completely free to be
+1 or −1. Such a spin configuration in the Ising model corresponds
to particular loop configurations in our quantum loop gas model.
According to the sign of the spins in the sublattice V (2), loop con-
figurations are formed in diagonal direction, and the ground state
|G(β = ∞)〉 is a product of loop states fluctuating along ladderlike
subspaces.

Ising model are encoded in the ground state of the quantum
loop gas, one can simply find a mapping between the ground-
state fidelity in our quantum model and the heat capacity in
the Ising model [38,42]. The ground-state fidelity is defined
as 〈G(β )|G(β + dβ )〉 which can be approximated as

F = 1 − gββdβ2, (7)

where gββ = ∂2F
∂β2 is the fidelity susceptibility. It has been

shown that gββ is related to the heat capacity of the Ising
model as gββ = Cv/8β2. Accordingly, it is clear that any
singularity in the heat capacity of the frustrated Ising model, at
a critical temperature T ∗, corresponds exactly to a singularity
in the fidelity susceptibility in the frustrated quantum loop gas,
at a critical β∗ = 1/kBT ∗.

Moreover, there is a one-to-one correspondence between
classical phases in the frustrated Ising model and quantum
phases in our frustrated quantum loop gas (see Fig. 2). Since β

in the frustrated quantum loop gas is equivalent to temperature
inverse in the Ising model, it is concluded that the param-
agnetic (ferromagnetic) phase at high (low) temperatures is
equivalent to the topological (trivial) phase at small (large)
values of β [38]. There is also a partially disordered phase in
the frustrated Ising model which is equivalent to a topological
phase different from the standard topological order of the toric
code. As seen in Fig. 2, for large values of 1/β, and any value
of α = hA

hB
the system is in the topological phase. By decreas-

ing 1/β (increasing the perturbation strength) perturbation
tries to destroy the topological order. For α < 0.96 the topo-
logical order is completely destroyed at a critical point where
a topological-trivial phase transition occurs in the system, but
for α > 1 although the perturbation imposes some changes,
the topological order survives at least partially. In this region,
by decreasing 1/β a phase transition to the PTP happens at
a critical point. The interval 0.96 < α < 1 is interesting. In
this region interestingly a reentrant phase transition occurs in
the system, i.e., by increasing perturbation the system goes
to the PTP, and by more increasing perturbation although we
expect the topological order to be disappeared completely, but
the system prefers to go back to the topological phase. This
reentrance phenomenon in our quantum loop gas is due to
the frustration and can be seen also in different spin models
[43]. The dashed line in the topological phase is a topological
line, introduced in Ref. [39], at which the topological order
is robust against the nonlinear perturbation of type (4) with
arbitrary strength, and no phase transition happens in the sys-
tem by increasing β. This phenomenon is a combined effect of
frustration and the nonlinearity existing in our quantum loop
gas model.

IV. CHARACTERIZING THE PTP

According to the mapping between the amplitudes in
the ground state of our quantum model and the Boltzmann
weights in the Ising model, the ground state of our quantum
model in the PTP should be a superposition of loop states cor-
responding to spin configurations in the partially disordered
phase in the Ising model. In order to obtain the allowed loop
configurations we look at the sign of the classical spins in
the Ising model and draw a loop around the spins −1. In the
partially disordered phase, at T = 0, all spins in the sublattice
V (1) are +1 and therefore they should not be surrounded by
any loop, while all spins in V (3) are −1 and they must be
surrounded by loops. But the spins in V (2) behave differently.
Due to the frustration, they are free to be +1 or −1, and
therefore their sign determines their status. In this regard,
in the PTP of our frustrated quantum model, in the limit of
infinite β, we have a particular set of loop configurations. In
this phase, loop configurations are constructed by small loops
encompassing the spins −1 in the sublattice V (2) and all spins
in V (3). Therefore, the partially topological state is a loop
condensed state written as a superposition of particular loop
configurations as

|Gβ=∞〉 = 1√
2|V (2)|

∏
v∈V (2)

(1 + Av )
∏

v∈V (3)

Av|0 . . . 0〉, (8)

where |V (2)| refers to the number of V (2)-type vertices. Since
each Av corresponds to a small loop around the vertex v,
applying

∏
v∈V (3) Av on |0 . . . 0〉 results in a particular loop

state including small loops around vertices belonging to V (3).
On the other hand,

∏
v∈V (2) (1 + Av ) is also a superposition

of different loop configurations generated by loops around
vertices belonging to V (2). In this regard, the state |G∞〉 is
simply a superposition of loop configurations constructed by
V (2)- and V (3)-type loops. In particular, notice that since there
is no loop around vertices belonging to V (1), the state |G∞〉 is

165133-5



J. ABOUIE AND M. H. ZAREI PHYSICAL REVIEW B 108, 165133 (2023)

FIG. 4. A schematic illustration of a string γ which starts from
a vertex a, passes through different classical spins, and terminates at
a vertex b. Corresponding to the string γ there is a string operator
in our quantum loop gas model which is equal to the product of Z
operators living in the middle of the links that connect neighboring
classical spins.

in fact a product of quantum states corresponding to diagonal
ladders, as shown in Fig. 3, where each ladder corresponds
to a fluctuating loop state constructed by V (2)- and V (3)-type
loops. In other words, the ground state at 1/β = 0 is still a
loop state, fluctuating along one-dimensional ladders. In order
to show that the PTP has topological features, following we
define a nonlocal order parameter to distinguish it from the
standard topological phases.

A. Nonlocal order parameters

Here, we define a nonlocal order parameter to character-
ize the PTP, seen in our frustrated quantum loop gas. As
mentioned, the connection between the frustrated Ising model
on a kagome lattice and our frustrated quantum loop gas is
simply obtained by mapping the interaction term SμSν in the
classical model onto the Pauli operator Zi in the quantum
model, where the site i is located in the middle of the link
μν [see Fig. 1(a)]. In this mapping the thermal expectation
value 〈SμSν〉 is equivalent to the quantum expectation value
〈Zi〉 = 〈G(β )|Zi|G(β )〉. Moreover, we are also able to calcu-
late the spin-spin correlation functions. As shown in Fig. 4,
the two spins a and b can be connected to each other by an
open string γ . Since for each spin variable we have S2 = 1,
we can rewrite SaSb as (SaS1)(S1S2)(S2S3) . . . (SN Sb) where
S1, S2, . . . , SN are spins that the string γ crosses. Next,
according to our quantum-classical mapping, the ensemble
average of (SaS1)(S1S2)(S2S3) . . . (SN Sb) is equivalent to the
expectation value of Zi operators on the quantum ground
state, i.e.,

〈(SaS1)(S1S2)(S2S3) . . . (SN Sb)〉en =
〈∏

i∈γ

Zi

〉
g.s.

= 
ab, (9)

where i ∈ γ refers to all qubits living on the edges that make
up the string γ . This means that each spin-spin correlation
function in the classical model is equivalent to a string oper-
ator in our quantum model where classical spins are living at
the two end points of that string. If the distance between spins
goes to infinity, the spin-spin correlation in the Ising model

FIG. 5. A schematic illustration of the string order parameters
versus 1/β, for 0.96 < |α| < 1. In the topological phase both the
order parameters 
(11) (red) and 
(22) (green) are zero. By decreasing
1/β the order parameter 
(22) starts to increase at a critical point, and
a phase transition from the topological phase to the PTP occurs in the
system. In the PTP while 
(11) = 0, 
(22) becomes nonzero which in-
dicates the loss of part of topological order. By more decreasing 1/β,

(22) becomes zero again at a second critical point where a reentrance
to the topological phase occurs. Finally, at the third transition point,
the systems goes to the trivial phase and both 
(11) and 
(22) become
nonzero.

will be simply related to the order parameter as follows:


ab = 〈SaSb〉en = 〈Sa〉〈Sb〉 = mamb, (10)

where ma and mb are magnetizations in the Ising model. The
two end points of the string γ , i.e., the points a and b, are far
apart and their separation distance is the length of the system.
So the order parameter 
ab can be regarded as a nonlocal order
parameter for characterizing topological phase transitions in
our system. As we discussed, there are three types of vertices
in the lattice, V (1), V (2), and V (3), so depending on the location
of the two end points of the string γ we can define nine string
operators 
(i j) with i, j = 1, 2, and 3 where 
(i j) is the same
as 
ab so that a ∈ V (i) and b ∈ V ( j) and the distance between
a, b goes to infinity. Since for a ∈ V (1) and b ∈ V (3), the
magnetizations satisfy ma = −mb, and also 
(12) = 
(21) =√


(11)
(22), we can capture the entire phase diagram of the
system by utilizing only the two order parameters: 
(11) and

(22). In Fig. 5, we have illustrated a schematic plot of 
(11)

and 
(22) versus 1/β for a given α in the narrow interval of
0.966 < |α| < 1. As seen, for large values of 1/β, when the
system is in the topological phase, both these order parameters
are zero. By decreasing 1/β, 
(22) starts to increase at a
critical point where the system enters to the PTP. In this phase,

(22) increases by decreasing 1/β but 
(11) remains zero. By
more decreasing 1/β at a second critical point a reentrance to
the topological phase occurs where 
(22) returns to zero again.
Finally, at a third critical point, both the order parameters

(11) and 
(22) become nonzero where a phase transition to
the trivial phase occurs.
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B. Excitations

For better understanding the nature of our PTP, it is useful
to present the ground state of our frustrated quantum loop gas
in a basis constructed by the eigenstates of the Pauli operator
X . Actually, the perturbation (4) is in terms of Z operators, and
therefore examining the behavior of excitations generated by
Z operators is worthwhile for understanding the topological
features of this phase. To this end, we consider the ground
state |Gβ=∞〉 which is stabilized by the operators Av and Bp

where v ∈ V (2) and p runs over all plaquettes. If M is the
number of all plaquettes and vertices, the number of vertices
in V (2) in addition to the number of all plaquettes is equal to
M − (N1 + N3), with N1 and N3 being the number of vertices
belonging to the sublattices V (1) and V (3), respectively. There-
fore, for characterizing |Gβ=∞〉 as a stabilizer state, we need
N1 + N3 independent stabilizer operators with the eigenstate
|Gβ=∞〉 and the eigenvalue +1. Consider the N1 (N3) inde-
pendent string operators 
ab whose two end points a, b live in
V (1)-type [V (3)-type] vertices. These operators commute with
Av∈V (2) , due to having an even number of shared qubits and,
therefore, they stabilize the state |Gβ=∞〉. Consequently, the
ground state |Gβ=∞〉 can be expressed in terms of the above
complete set of stabilizers as

|Gβ=∞〉

=
∏

p

(1 + Bp)
∏

a,b∈V (1)

[1 + 
ab]
∏

a,b∈V (3)

[1 + 
ab]| + · · · +〉,

(11)

where the products
∏

a,b∈V (1) and
∏

a,b∈V (3) run over N1 and
N3 independent string operators, respectively, and |+〉 =

1√
2
(|0〉 + |1〉) is the eigenstate of the Pauli operator X with

eigenvalue +1. Now, we compare the state |Gβ=∞〉 with the
ground state of the pure toric code |G0〉 = ∏

p(1 + Bp)| +
· · · +〉. Since Bp is a loop operator in the kagome lattice, and
Z|+〉 = |−〉, |G0〉 is a superposition of all loop configurations
constructed by |−〉’s in a sea of |+〉’s. However, the state
|Gβ=∞〉 in (11) has an important difference from |G0〉; that is,
in addition to the loop operator Bp there are also open strings

ab with a, b ∈ V (1,3). Therefore, the ground state in the PTP
is a superposition of all configurations formed by loops and
open strings with end points living in the vertices belonging
to V (1) and V (3).

It is interesting to interpret this result from the viewpoint of
moving excitations. Since the perturbation term in our quan-
tum loop gas is constructed of Z operators, it leads to open
strings that try to remove the topological order of the ground
state. However, our result shows that due to the frustration
there are three types of excitations in the PTP: excitations
of types 1, 2, and 3 living in the V (1), V (2), and V (3) sublat-
tices, respectively. In the PTP, the system is robust against
excitations of type 2, but the excitations of types 1 and 3 can
move in the corresponding sublattices, and reduce the topo-
logical order of the system. This restriction on the mobility
of excitations is an important property of the PTP that can be
compared with other topological systems like fracton codes
on 3D lattices. Fracton excitations are restricted to move in
certain subspaces due to quantum glassiness [32], and as a

result a topological overprotection occurs in fracton codes. In
our quantum loop gas model, frustration creates string tension
and pressure which lead to such an overprotection. Frustration
does not freeze excitations, but limits their mobility in ladder-
like subspaces.

V. GLOBAL ENTANGLEMENT

For characterizing topological phases, a powerful method
is to study the behavior of ground-state entanglement. Actu-
ally, the nonlocal nature of topological orders is reflected in
the long-range entanglement of the topological states [44–55].
Aside from topological entanglement entropy [44,45,56],
which is the most important measure for characterizing topo-
logical orders, multipartite entanglement measures are also
useful to reveal highly entangled nature of topological phases
[57–60]. In this regard, although the string order parameters

11 and 
22 can completely describe the orders of the ground
state of the system in different phases, to explore more prop-
erties it is useful to study the behavior of the ground-state
entanglement. In the following we study the behavior of the
global entanglement and its derivative to explore more differ-
ences of the TP and PTP phases.

Global entanglement is defined as GE = 2[1 −
1
N

∑
i tr(ρ2

i )], where ρi refers to the reduced density matrix
corresponding to the ith qubit. It has been shown that the
global entanglement in the toric code model in the presence
of the nonlinear perturbation (4) is equivalent to the internal
energy in the Ising model [59]. Actually, the linear entropy
for an edge qubit i in the perturbed toric code model is equal
to the interaction term SμSν in the classical Ising model,
where μ and ν are two classical spins resided on the two end
points of the edge i. Therefore, the global entanglement in
our frustrated quantum loop gas is given by

GE = 1 − 1
2

(〈
SμSν

〉2
A + 〈

SμSν

〉2
B

)
, (12)

where 〈SμSν〉A(B) refers to a link energy in A (B). Using the
free energy of the frustrated Ising model (see Ref. [40]), one
can readily obtain these expectation values and consequently
the GE of our quantum loop gas. In Fig. 6(a) we have plotted
the GE versus 1/β for multiple α. According to the phase di-
agram of our frustrated quantum loop gas, shown in Fig. 2, in
the narrow interval of 0.96 < α < 1 where the reentrance phe-
nomenon can occur, the system experiences different phase
transitions by increasing β. Interestingly, the different phase
transitions are completely observed in the behavior of the
GE. As seen, for large enough 1/β where the system is
deeply in the topological phase, the GE has its maximum
value, i.e., GE = 1. Far from the reentrance interval, for α > 1
(α < 0.96), by decreasing 1/β GE decreases monotonically,
falls down to 0.5(0) at the topological–partially topologi-
cal (topological-trivial) phase transition point, and sticks to
0.5 (0) in the partially topological (trivial) phase. In the reen-
trance interval (see α = 0.92, 0.94) GE behaves oscillatory,
it is 1 in the topological phase, tries to touch 0.5 in the PTP,
and becomes 0 in the trivial phase. The transition points are
locations that the GE curve concavity changes. These changes
are reflected as cusps and divergence in the GE derivative, as
clearly seen in Fig. 6(b).
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FIG. 6. (a) Global entanglement versus 1/β, for different values
of α. For |α| < 0.96 there is a phase transition from trivial to topo-
logical phase, and the GE changes from zero in the trivial phase to
1 in the topological phase. For 0.96 < |α| < 1 three phase transitions
happen by increasing 1/β. At the first transition point, GE changes
from zero in the trivial phase to near 1 in the topological phase, at
the second transition point GE changes from 1 to near 1

2 in the PTP,
and finally at the third transition point GE changes from 1

2 to 1 in the
topological phase. (b) Derivative of GE versus 1/β. The cusps and
infinite picks reveal exactly the location of phase transitions.

VI. SUMMARY AND OUTLOOK

It is known that the kinetic of excitations in a topolog-
ical phase is strongly reduced due to frustration. Here, we
examined the ground-state phase diagram of a frustrated
quantum loop gas model, and demonstrated that there is
a PTP in which the kinetic of excitations is partially re-
duced in the sense that there is a restriction for mobility
of excitations living in some sublattices. In this phase the
ground state is a tensor product of quasi-one-dimensional
fluctuating loop states, there are different types of excitations
living in three different sublattices, and excitations belong-
ing to a particular sublattice can move freely. Frustration
is a key factor to realizing this phase where string tension
and pressure lead to the PTP. This phase can in principle
be seen in frustrated toric code in the presence of Zeeman
fields, but we considered an exactly solvable model which
contains beyond the Zeeman terms. To obtain the ground-
state phase diagram, we mapped our frustrated quantum loop
gas model onto a classical Ising model. To characterize this
phase, we defined two nonlocal order parameters and also
considered global entanglement, and showed that these quan-
tities can well distinguish the PTP from other phases of the
system.

Finally, it is worth mentioning that topological excitations
with restricted mobility are also seen in three-dimensional
fracton codes due to quantum glassiness. In this regard, our
results propose that similar features can also be realized in
two dimensions due to frustration. Moreover, randomness can
also lead to the localization of excitations, so it is interest-
ing to study the combined effects of geometrical frustration
and randomness in toric codes, and check the possibility of
having topological excitations with restricted mobility in cer-
tain one-dimensional sublattices similar to lineons in fracton
codes.
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