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Point-gap bound states in non-Hermitian systems
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In this paper, we systematically investigate impurity-induced bound states in one-dimensional non-Hermitian
systems. By establishing the relationship between bound-state energy and the requisite impurity potential, we
conveniently construct an impurity potential diagram corresponding to point gaps. This diagram indicates both
the minimal impurity potential required to generate bound states within each point gap and the distribution of
bound states across these point gaps for a given impurity potential. From this, we reveal that a finite impurity
potential is required to generate bound states in the absence of Bloch saddle points; otherwise, even a negligible
impurity potential can yield bound states. Additionally, we show that bound states in point gaps with nonzero
spectral winding numbers are sensitive to boundary conditions and abruptly shift to the edges upon opening the
boundaries, signifying the bulk-boundary correspondence in point-gap topology.
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I. INTRODUCTION

When a system interacts with external environments,
such as optical systems with balanced gain and loss [1–6]
or quasiparticle excitations with a finite lifetime [7–9], its
nonunitary time evolution or broadened spectral function
necessitates an effective non-Hermitian Hamiltonian descrip-
tion [10–15]. Recently, many intriguing phenomena emerged
in non-Hermitian band systems, with a major focus on the
non-Hermitian skin effect (NHSE) [16–40]. This effect is
characterized by the condensation of the majority of system
eigenstates on its boundary when open boundary conditions
(OBCs) are imposed. These localized eigenstates can be
quantitatively described using the generalized Brillouin zone
(GBZ) that is made of complex momenta [18,21,25,27].

Impurities are common in realistic materials and signif-
icantly responsible for their transport properties [41]. For
instance, doping impurities in semiconductors enhance con-
ductivity [42], and magnetic impurities in metals lead to the
Kondo effect [43]. This importance motivates the investiga-
tion of impurity states in non-Hermitian systems [44–50].
It was known that NHSE manifests as a boundary phe-
nomenon in non-Hermitian systems, and impurities with
codimension-1 can be treated as a soft boundary [38,51].
Given this connection, it is natural to ask whether NHSE
influences the formation of impurity bound states. More-
over, impurities serving as soft boundaries can be applied
to investigate the bulk-boundary correspondence [52–58].
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In non-Hermitian band systems, the complex eigenvalues
enrich the types of energy gaps [14,15]. It allows us to
assign a spectral winding number to each point gap when
the periodic boundary condition (PBC) is applied. Previous
studies revealed that NHSE has a point-gap topological ori-
gin [25,26], i.e., the collapse of a point gap with a nonzero
spectral winding number leads to the emergence of NHSE
under OBCs. Therefore, an additional question arises whether
bound states in point gaps can reflect the bulk-boundary cor-
respondence regarding point-gap topology in non-Hermitian
systems.

In this paper, we present a general theory of impurity-
bound states in one-dimensional (1D) non-Hermitian lattice
systems, utilizing the Green’s function method to establish
the exact relationship between the strength of the impurity
potential and the corresponding bound-state energy. We re-
veal that in the absence of Bloch saddle points [59], a finite
threshold for the impurity potential is required to generate
bound states; otherwise, even an infinitesimal impurity po-
tential can result in bound states, highlighting the crucial
role of Bloch saddle points in determining the minimum
impurity potential necessary for the appearance of bound
states. Here, the Bloch saddle points are defined as the mo-
menta ks at which ∂kH(ks) = 0. Moreover, the envelope of
the bound state exhibits asymmetric localization away from
the impurity site when NHSE is present, as illustrated in
Fig. 1(d). Additionally, we show that a single impurity can
confine multiple bound states, among which those residing
in the point gaps with nonzero spectral winding number
are sensitive to boundary conditions and are pushed to the
edges when OBCs are applied, indicating the presence of
NHSE.
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FIG. 1. (a) and (c) represent the PBC spectra (the black curves)
as well as the bound-state energy EBS located in the point gaps (the
black asterisk). (b) and (d) show the logarithm of the amplitude of
two bound states (the black lines), that is, ln |z̃in|r (the red line) on
the right side (r + 1 > 0) and ln |z̃out|r (the blue line) on the left
side (r + 1 < 0). The Hamiltonian parameters {t−2, t−1, t0, t1, t2} in
Eq. (6) are set to be {−2, −2, 4.4 − 4.5i, 2,−2} for (a) and (b) and
{−1, 1/2, 2 − 3i, 1, 1} for (c) and (d).

II. FORMATION OF BOUND STATES
IN NON-HERMITIAN SYSTEMS

We start with a general single-band tight-binding model
under PBCs, of which the Hamiltonian can be expressed as

H0 =
∑

r

n∑
l=−m

tl |r〉〈r + l| =
∑
k∈BZ

H0(z ≡ eik )|k〉〈k|, (1)

with H0(z) = ∑n
l=−m tl zl a Laurent polynomial of z, r repre-

senting the lattice site, and tl indicates the hopping parameter
that only depends on the (finite) hopping range l due to the
translation symmetry. As momentum k transverses the entire
BZ, the corresponding PBC spectrum forms arcs or loops,
denoted as σPBC, which divides the complex energy plane into
several disconnected regions called point gaps [13,15] and
labeled as E0, E1, . . . . We always specify E0 as the point gap
connected to infinity, as illustrated in Figs. 1(a) and 1(c).

Consider a single impurity at the center of the 1D periodic
chain,

V = λ
∑

r

δ(r)|r〉〈r|, (2)

where λ represents the strength of the impurity potential and
assumes a complex value [4]. The single-impurity potential
can produce bound states that are localized around the im-
purity site and have energies within point gaps, as shown
in Figs. 1(a) and 1(c). The eigen wave function ψE (r) with
energy E in the full Hamiltonian H = H0 + V can be deter-
mined using Green’s function [60], that is,

ψE (r) = λ ψE (0)G0(E ; r), (3)

where G0(E ; r) = 〈r|1/(E − H0)|0〉 with H0 under PBC.
Here, ψE (0) is known by the normalization condition of
ψE (r). Based on the Hamiltonian in Eq. (1), the Green’s

function can be further expressed in an integral form,

G0(E ; r) =
∮

C

dz

2π i

zr+m−1

PE (z)
, (4)

where m indicates the multiplicity of the pole in H0(z)
and PE (z) = zm(E − H0(z)) represents an non-negative-order
polynomial with respect to z for a given energy E . Under PBC,
the integral contour C, namely BZ, is the unit circle |z| = 1 in
the complex z plane. Therefore, for a given point-gap energy
EBS produced by the impurity potential of strength λ, the
corresponding bound state can be calculated as

ψBS(r) = λ ψBS(0)

{∑
|z|<1 R(EBS, z)zr, r + m − 1 > 0,∑
|z|>1 −R(EBS, z)zr, r + m − 1 < 0,

(5)

where m represents the multiplicity of the pole in the Hamil-
tonian H0(z) and is therefore a finite number; R(EBS, zi ) =
−zm−1

i /tn �m+n
j( �=i)=11/(zi − z j ) is the residue of the function

[z(EBS − H0(z))]−1 at its pole zi. Note that these poles cor-
respond to zeros of PEBS (z) in Eq. (4). Here, the bound states
refer to the right wave functions of the total Hamiltonian, the
spatial localization of which essentially arises from the spatial
correlation described in Eq. (4). Hence, the biorthogonal basis
is necessary when extended to more complicated multiband
cases (see more details in the Supplemental Material [60]).
It can be derived from Eq. (5) that bound states exhibit ex-
ponential localization; when away from the impurity site, the
localization behavior on the right (left) side of the impurity
is dominated by the largest (smallest) poles inside (outside)
|z| = 1.

Here, we consider two examples, one without NHSE
[Figs. 1(a) and 1(b)] and another with NHSE [Figs. 1(c)
and 1(d)], to show that the presence of NHSE results in
asymmetric decay behaviors for the bound states. The model
Hamiltonian is composed of the free part

H0(z) = t−2z−2 + t−1z−1 + t0 + t1z + t2z2 (6)

and the impurity potential in Eq. (2) with strength λ. The
bound states are created with an impurity potential λ = 15
in Fig. 1(a) and λ = 5.5 in Fig. 1(c). To better characterize
the localization behavior, we plot ln |ψBS(r)| for the bound
state in each case, marked by the black lines in Figs. 1(b)
and 1(d), which matches well with the straight lines of slopes
ln |z̃in| (the red line) on the right side of the impurity site
and ln |z̃out| (the blue line) on the left side. Here, |z̃in| (|z̃out|)
represents the largest (smallest) magnitude of the poles within
(out) |z| = 1. The slope of the bound state, ∂r ln|ψBS(r)|, is
merely the inverse of decay length and dominated by these
two dominant poles. As a result, the comparison between
Figs. 1(b) and 1(d) demonstrates that in the case of NHSE,
the bound state exhibits an asymmetric decay behavior away
from the impurity.

III. NONZERO THRESHOLD OF IMPURITY POTENTIAL
FOR BOUND STATES

To further investigate the bound states in different
point gaps, we establish the exact relationship between
single-impurity potential λ and its bound-state energy EBS.
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Remarkably, we reveals that the absence of the Bloch sad-
dle point necessitates a finite threshold of impurity potential
for the formation of bound states; otherwise, an infinitesimal
impurity potential can excite bound states.

Combining Eqs. (3) and (4), one can obtain the rela-
tion between the impurity potential λ and the corresponding
bound-state energy EBS, that is,

λ−1(EBS) =
∑
|zi|<1

R(EBS, zi ), (7)

which gives the strength of the impurity potential λ required
for producing the bound state with energy EBS. Since the
bound-state energy EBS is not included in the σPBC, there
are no poles touching |z| = 1, ensuring the above relation is
always well defined. For each point gap Ei, we can assign a
spectral winding number [25] for H0(z) regarding the bound-
state energy,

∀EBS ∈ Ei, wBZ,Ei = nz − np, (8)

where np = m is the multiplicity of the pole in H0(z), and nz is
the number of zeros of EBS − H0(z) inside the BZ, depending
on the choice of bound-state energy EBS. Note that the zeros
exactly correspond to the counted poles in Eq. (7). Therefore,
when EBS lies in the point gaps Ei with wBZ,Ei = n or −m, all
poles are included either inside or outside the trajectory |z| =
1, which causes the right-hand side of Eq. (7) to vanish and
requires an infinite impurity potential to create bound states.
Here, n and m represent the longest hopping range to the left
and right in the Hamiltonian H0(z), respectively. Therefore,
we reach the first conclusion: The bound states cannot be cre-
ated within point gaps that possess spectral winding of n and
−m. Two examples are presented in Figs. 2(a) and 2(c) and
Figs. 2(b) and 2(d), respectively. The point gaps where bound
states cannot appear are labeled as E4 (wBZ,E4 = −m = −2)
in Fig. 2(a) and E1 (wBZ,E1 = n = 1) in Fig. 2(b).

We now examine the minimum impurity potentials that can
yield bound states within different point gaps. The minimum
bound-state energy shall be in the point gaps and close to
the PBC spectrum σPBC. We begin with EBS ∈ Ei and let it
approach E ∈ σPBC, as illustrated in Figs. 2(a) and 2(b), the
corresponding impurity potential λ(EBS) in Eq. (7) reaches
a limit value, as shown in Figs. 2(c) and 2(d). Likewise, for
each point gap Ei, we can define the set of minimum impurity
potentials required to create bound states in this point gap,

	Ei := { lim
EBS→E

λ(EBS)|EBS ∈ Ei, E ∈ σPBC}. (9)

As illustrated in Fig. 2(a), there are four disjoint point gaps
Ei=0,1,2,3 that allow for bound states. Relating to these point
gaps, we identify four sets of minimum impurity potentials
derived from Eq. (9), 	Ei=0,1,2,3 , i.e., four different colored
boundary curves in Fig. 2(c). When the impurity potential
λ is inside the gray region surrounded by 	E0 in Fig. 2(c),
it is insufficiently strong to give rise to bound states. As λ

surpasses the boundary 	E0 , bound states first appear in the
point gap E0. As shown in Fig. 2(c), generating bound states
in other point gaps necessitates even larger impurity poten-
tials. If λ goes into the colored region, e.g., the red region
encircled by 	E1 , multiple bound states are produced, one in
the point gap E1 and another [not shown in Fig. 2(a)] in the

FIG. 2. Comparison between two examples: (a), (c) without and
(b), (d) with a Bloch saddle point. (a) and (b) show the disjoint
point gaps Ei separated by the PBC spectra. Each point gap is la-
beled by the assigned spectral winding number. (c) and (d) illustrate
the diagram of impurity potential λ, which includes several regions
bounded by 	Ei corresponding to point gap Ei. For instance, when
bound-state energies in point gap Ei, as indicated by blue dots or
stars in (a) and (b), approach the PBC spectra (the red dots), the
requisite impurity potentials λ, denoted by blue dots or stars in
(c) and (d), correspondingly reach the boundaries 	Ei (the red dots).
The Hamiltonian parameters in Eq. (5) are {t−2, t−1, t1} = {2, 1/2, 1}
for (a) and (c) and {1/2, 1, 2} for (b) and (d).

E0. More details about the λ diagram are presented in the
Supplemental Material [60]. Therefore, the finite gray area
covering the origin λ = 0 in Fig. 2(c) indicates a finite thresh-
old of impurity potentials required to generate point-gap
bound states.

While Hamiltonian H0(z) exhibits a Bloch saddle point,
an infinitesimal impurity potential can excite bound states.
We define the Bloch saddle point as the saddle point with
a unit modulus that satisfies ∂zH0(z)|z=zs = 0 and |zs| = 1
simultaneously. The energy at the Bloch saddle point is de-
noted as Es = H0(zs). One example with a Bloch saddle
point is shown in Figs. 2(b) and 2(d). When EBS approaches
Es ∈ σPBC, as illustrated in Fig. 2(b), there are at least two
poles in Eq. (7), denoted as zs1 inside |z| = 1 and zs2 out-
side |z| = 1, that are closest to each other with the distance
δzs = |zs1 − zs2| and coincide exactly at the Bloch saddle
point (δzs = 0) [60]. Consequently, the inverse of the impurity
potential λ−1(EBS) in Eq. (7) is dominated by the residue
R(EBS, zs1) ∝ 1/δzs. Based on Eq. (9), the minimum impurity
potential is attained at a Bloch saddle point energy, 	E0 (Es) =
limEBS→Es λ(EBS) ≈ δzs → 0, which means that an infinites-
imal impurity potential λ can excite the bound states with
energies near Es. The set of minimum impurity potentials 	E0

for the point gap E0 is shown in Fig. 2(d), which is composed
of three segments connected by two self-intersections. Thus,
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zero threshold of the impurity potential means the curve 	E0

crosses λ = 0, as shown in Fig. 2(d). More details for this
example are presented in the Supplemental Material [60].
Comparing with the case in Figs. 1(a) and 1(c), we conclude
the following: When the Hamiltonian lacks a Bloch saddle
point, a finite impurity potential is needed to excite the bound
states; otherwise, an infinitesimal impurity potential can pro-
duce bound states with energies near the Bloch saddle-point
energy.

IV. SENSITIVITY OF POINT-GAP BOUND STATES
TO BOUNDARY CONDITIONS

It has been known that the point gaps, characterized by
nonzero spectral winding in Eq. (8), will collapse when OBCs
are imposed. What happens to the bound states in these point
gaps when the boundary condition changes from PBC to
OBC? Here, we demonstrate that these point-gap bound states
exhibit a sensitivity to boundary conditions and are driven
towards the boundaries following the collapse of the point gap
at that bound-state energy.

The transition between boundary conditions can be
parametrized by the boundary link strength s under the
Hamiltonian Hs

0 = H0 − sHB, where H0 indicates the PBC
Hamiltonian and HB represents the boundary hopping terms.
As the parameter s goes from 0 to 1, the Hamiltonian Hs

0 is
modulated from PBC to OBC; correspondingly, the integral
contour C in Eq. (4) undergoes a continuous deformation
from BZ into GBZ with the intermediary trajectory denoted
as Cs [60]. In this process, the trajectory Cs sweeps through
the blue shaded region shown in Fig. 3(b), that is, the dif-
ference between the interiors of BZ and GBZ. We label
the intermediary spectrum as σs := {H0(z)|z ∈ Cs, 0 < s < 1}
and the OBC spectrum as σOBC. After introducing the
impurity potential V defined in Eq. (2), the total Hamilto-
nian becomes Hs = Hs

0 + V , and impurity states can appear.
Here, we define the inverse of decay length of the impu-
rity state with energy E on the right side of the impurity
site as

κ+ := ∂r ln |ψE (r)|, r + 1 > 0. (10)

Under the boundary condition with a boundary link s, it can
be derived from Eq. (5) that the localization behavior of the
impurity state with energy E is dominated by the largest poles
included by Cs instead of |z| = 1. Meanwhile, the relation be-
tween the bound-state energy and requisite impurity potential
can be obtained from Eq. (7), where the residue is summed
over the poles within the interior of trajectory Cs rather
than BZ.

An illustrative example is shown in Fig. 3, and the Hamil-
tonian under PBC (s = 0) is the same as that in Fig. 2(a).
We start from two bound states within different point gaps.
One bound state with energy marked as E1 (the red cross)
in Fig. 3(a) resides in the point gap E1. Two poles of (E1 −
H0(z))−1 within GBZ are labeled as z1,2 [the red dots in
Fig. 3(b)]. The spectral winding number wBZ,E1 = −1 in
Eq. (8) means that only one pole z2 is located in the intermedi-
ary region between BZ and GBZ. As the boundary conditions
change from PBC to OBC, Cs deviates from BZ, traverses the
pole z2 within the shaded region (s = sc) shown in Fig. 3(b),

FIG. 3. (a) The spectra under different boundary conditions and
the two bound-state energies E0 and E1, marked by the blue and
red crosses. (b) BZ, GBZ, and critical trajectory Csc that crosses
the pole z2. The red and blue dots denote the poles related to E1

and E0, respectively. (c) The inverse of decay length κ+ for ψE1 (r)
experiences one jump at s = sc. Two insets show the spatial pro-
files of impurity states with the boundary link s1 = 1 − 10−9 and
s2 = 1 − 10−30, respectively. For comparison, the bulk states shown
by the gray profiles are localized on the edge once s �= 0. The system
parameters in H0(z) are the same as Fig. 2(a).

and eventually enters GBZ. Before and after the transition
(s = sc), the dominant pole enclosed by Cs will be changed.
As a result, κ+ for the bound state with energy E1 experiences
a jump, as shown in Fig. 3(c). Correspondingly, the bound
state ψBS(r) transitions into an edge mode with a diverging
amplitude (κ+ > 0) under a large-size limit, as illustrated by
the red profile in the insets of Fig. 3(c). It exhibits that the
bound state in the point gap with nonzero spectral winding is
unstable and sensitive to the boundary conditions. In contrast,
the bound state with energy E0, labeled by the blue cross in
Fig. 3(a), stays in the point gap E0. Due to the zero spectral
winding number of E0, the trajectory Cs does not across any
(blue) poles for 0 � s � 1, as shown in Fig. 3(b). Therefore,
this point-gap bound state is stable during the change in
boundary conditions, indicated by the blue profile in the insets
of Fig. 3(c).

In general cases, we start from a bound state ψBS(r) with
the energy EBS inside the point gap Ei under PBC (s = 0), and
examine its localization behavior as the boundary conditions
vary from PBC to OBC. Suppose that the point gap has a
spectral winding wBZ,Ei = q, as defined in Eq. (8), the BZ con-
tains np + q poles in Eq. (7), while GBZ always encloses np

poles [25]. There are q poles distributed in the intermediary re-
gion between BZ and GBZ. As the boundary condition varies
from PBC (s = 0) to OBC (s = 1), the spectrum σs traverses
the energy EBS q times before finally collapsing into the OBC
spectrum σOBC. Accordingly, the trajectory Cs sweeps q poles
as it deforms from BZ into GBZ, resulting in the inverse of
decay length κ+ experiencing q abrupt changes. One example
with q = 2 is shown in the Supplemental Material [60]. The
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number of jumps in κ+ exactly corresponds to the spectral
winding number wBZ,Ei = q of the point gap, indicating the
bulk-edge correspondence regarding the point-gap topology.

V. CONCLUSIONS

In summary, we investigate the interplay between point
gaps and bound states induced by a single impurity within
1D non-Hermitian lattice systems. We establish the exact
relationship between the bound-state energy and required
impurity potential and reveal the critical role of the Bloch
saddle point on the minimum threshold of impurity potentials.
Specifically, in the absence of a Bloch saddle point, a finite
impurity potential is required for the generation of bound
states; otherwise, an infinitesimal potential is sufficient to

create bound states with energies close to that of the Bloch
saddle point. Meanwhile, we show that the presence of NHSE
causes the asymmetric localization length of bound states.
We demonstrate that the bound states within the point gaps
characterized by nonzero spectral winding are unstable and
sensitive to boundary conditions. The sensitivity of point-gap
bound states indicates the bulk-edge correspondence of the
point-gap topology specific to non-Hermitian systems.
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