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Quantum Monte Carlo study of a bilayer U (2) × U (2)-symmetric Hubbard model
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We carry out a sign-problem-free quantum Monte Carlo calculation of a bilayer model with a repulsive
intralayer Hubbard interaction and a ferromagnetic interlayer interaction. The latter breaks the global SU (2)
spin rotational symmetry but preserves a U (2) × U (2) invariance under mixing of same-spin electrons between
layers. We show that despite the difference in symmetry, the bilayer model exhibits the same qualitative features
found in the single-layer Hubbard model. These include stripe phases, whose nature is sensitive to the presence of
next-nearest-neighbor hopping, a maximum in the Knight shift that moves to lower temperatures with increasing
hole doping, and lack of evidence for intralayer d-wave superconductivity. Instead, we find a superconducting
phase, coexisting with stripes, whose critical temperature traces a dome as a function of doping and is due to
interlayer spin-polarized pairing that is induced by the ferromagnetic interaction.
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I. INTRODUCTION

Establishing the properties of strongly interacting models,
especially in dimensions larger than one, is a difficult prob-
lem. A canonical example is the two-dimensional fermionic
Hubbard model [1], whose apparent simplicity and widely
believed relevance to the high-temperature superconductors
have motivated an enormous amount of work over the past
six decades. Still, apart from the half-filled system with n = 1
electrons per site [2], the weakly interacting limit U/t → 0,
where U and t are, respectively, the on-site repulsion and
intersite hopping [3], and the Nagaoka limit U/t → ∞ with
a single doped hole [4], not much is known with theoretical
confidence. Particularly challenging is the intermediate range
U ∼ t , where obtaining a faithful map of the model’s behavior
depends on numerical calculations.

Currently, the leading technique to study this regime, both
in terms of its reliability and ability to handle relatively
large systems, is the density matrix renormalization group
(DMRG). To date, DMRG has been used to study Hub-
bard cylinders with up to six legs [5–14], where typically
U/t = 8–12 and n = 0.875. The consequences of includ-
ing next-nearest-neighbor hopping t ′ were also addressed
[9–11,13,14]. More numerous are DMRG studies of the t-J
model, the large U/t descendent of the Hubbard model, on
cylinders with up to eight legs [11,15–23]. In most cases
the calculations were carried out for J/t = 1/3, which would
correspond to U/t = 12 if the mapping to the Hubbard model
holds down to this range of interaction strengths, and for hole
densities of up to 1/8. Several studies included t ′ hopping,
which at times was also accompanied by a J ′ term [18,20,21].

The findings of these studies may be roughly summa-
rized as follows: (i) The vicinity of t ′ = 0 is characterized
by charge-density wave (CDW) modulations in the form
of filled stripes with one hole per unit length domain wall
[7,8,11,12,21] (nearly half-filled stripes or with 2/3 filling
were also observed [6,14,19], and the various types are al-
most degenerate [8]). They are accompanied by short-ranged

spin-density wave (SDW) modulations with twice the period
[11,19] and by exponentially decaying d-wave superconduct-
ing (d-SC) correlations [11,12] (see, however, Ref. [19]). (ii)
The presence of t ′ < 0 causes the stripes to become half-filled
[10,11,22] or exhibit an intermediate filling between 0.5 and
1 [13]. On four-leg cylinders both the CDW and the d-SC
correlations decay as power laws, but the former dominate.
There are conflicting results on wider systems. While only
short-range d-SC correlations have been found on a six-leg
cylinder [14], nonzero d-SC order was also reported [13]. Re-
gardless, the SDW correlations are still modulated with twice
the CDW period and decay exponentially. (iii) For t ′ > 0 and
larger than a small threshold the system enters a phase with
no stripes and robust power-law d-SC correlations [21–23].
Increasing t ′ further makes partially filled stripes reappear.
The power-law superconducting correlations decay somewhat
faster than the CDW correlations in Hubbard cylinders, while
the situation is reversed for the t-J model [11,14,21]. In both
cases the spin correlations decay exponentially.

Notwithstanding its advantages, DMRG is largely limited
to ladder geometries as it involves a computational cost that
grows exponentially with the ladder width. Furthermore, it
provides information about the ground state, and using it to
extract dynamical or finite-temperature information is still in
an early stage. Hence, it is desirable to augment DMRG by
another method that allows us to probe more two-dimensional
geometries away from the strict zero-temperature limit. To
this end, the determinant quantum Monte Carlo (DQMC)
technique appears as the method of choice. Like DMRG it is
also unbiased and, in principle, numerically exact. However,
away from half-filling it is plagued by the sign problem that
incurs a prohibitive computational cost as one attempts to
explore temperatures much smaller than the bandwidth. Nev-
ertheless, several brute-force unconstrained DQMC studies
[24–27] were able to probe the model down to temperatures
of about T ≈ 0.2t . Their findings show that even at these
relatively high temperatures the Hubbard model exhibits ubiq-
uitous and robust stripy correlations, in agreement with the
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DMRG results. At the same time, no signs of superconductiv-
ity were detected.

Here, we pursue a complementary approach where we use
DQMC to study a model that is free of the sign problem, as a
computational proxy to the two-dimensional Hubbard model.
Specifically, we revisit a bilayer model that was originally
introduced by Assaad et al. [28], describing two Hubbard
layers that are further coupled by a ferromagnetic interac-
tion between neighboring sites belonging to different layers.
While Ref. [28] considered only ground-state stripes corre-
lations for few doping levels and t ′ = 0, we have calculated
various charge, spin, and superconducting finite-temperature
correlation functions over a wide doping range and included
the effects of next-nearest-neighbor hopping. Our goal is to
contrast the behavior of the bilayer model with the available
data on the single-layer Hubbard model in order to estab-
lish the level at which the former may be used to glean
insights about the latter. This is not a priori clear since the
ferromagnetic interlayer coupling breaks the global SU (2)
spin rotation symmetry of the Hubbard model. Concomi-
tantly, it leaves intact a U (2) × U (2) symmetry, where each
U (2) transformation mixes same-spin electrons between the
two layers.

Our findings show strong similarities between the elec-
tronic signatures of the two models. In particular, the four-leg
bilayer sustains spin and charge stripe phases whose de-
pendence on t ′ and electronic density follows closely that
of stripes in the corresponding Hubbard system, as outlined
above. The overall trends persist also in the square systems
that we have investigated. When t ′ = 0 we find filled charge
stripes and spin stripes whose correlation length is larger
than the accessible system sizes up to a hole-doping level of
about 0.25, from where it steadily decreases. For t ′ = −0.25t ,
stripes exist over the same doping range but the charge stripes
host only 4/5–2/3 holes per unit length of the domain wall,
in close resemblance to a recent DMRG study of a six-leg
Hubbard cylinder [14]. For t ′ = 0.25t , the square systems
exhibit fractionally filled stripes and only above a minimal
hole concentration that resides near 1/8. However, we can
not rule out their existence at lower doping levels in the
thermodynamic limit.

We have looked for signatures of intralayer d-wave super-
conductivity by calculating the corresponding susceptibility
and vertex function. Our findings for t ′ = −0.25t and tem-
peratures above T = 0.2t conform with a DQMC study of
the Hubbard model under similar conditions [26], which did
not provide any evidence for a d-SC instability. Extending the
search down to T = 0.05t did not change this conclusion, nor
did changing the sign of t ′. Despite the fact that the largest
values of both the susceptibility and the vertex function were
obtained for t ′ = 0.25t and below 0.2 hole doping, neither
show signs of the finite-size scaling expected from the onset of
d-SC order. In contrast, we did find a sharp rise in the super-
conducting stiffness at low temperatures to values above the
threshold for a Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion. We provide evidence that the resulting superconducting
phase coexists with stripes and is due to interlayer spin-
polarized pairing induced by the ferromagnetic interaction.
Finally, the uniform spin susceptibility (Knight shift) peaks
at a temperature T ∗ that decreases with increasing doping, as

previously found for the Hubbard model [26]. Our ability to
probe the bilayer model down to much lower temperatures
allows us to detect the leveling off of T ∗ above 0.3 hole
doping.

II. MODEL AND METHODS

To ensure that a fermionic Hamiltonian is free of the
sign problem it is sufficient that its kinetic part and its
Hubbard-Stratonovich-decoupled interaction commute with
some antiunitary operator [29]. A special case is when
the fermionic determinant factorizes into two identical real
copies, thus guaranteeing its positivity. Pursuing this route,
Assaad et al. [28] considered the following bilayer Hamilto-
nian on a square lattice, which we also study:

H = −
∑
l=1,2

∑
σ=↑,↓

⎛
⎝∑

i, j

ti jc
†
liσ cl jσ + μ

∑
i

c†
liσ cliσ

⎞
⎠

− U

4

∑
i

(n1i↑ − n1i↓ + n2i↑ − n2i↓)2. (1)

Here, l is the layer index, μ is the chemical potential,
and nliσ = c†

liσ cliσ . The hopping amplitudes take the value
t between neighboring sites within a layer, and t ′ between
next-nearest neighbors on the same layer. Throughout the
paper we use a unit lattice constant and set t = 1, which
serve as the basic length and energy scales. The interaction is
also expressible as −(U/4)

∑
liσ nliσ + (U/2)

∑
li nli↑nli↓ −

2U
∑

i Sz
1iS

z
2i, where Sz

li = (nli↑ − nli↓)/2. Hence, up to a shift
of the chemical potential it amounts to local Hubbard repul-
sion (assuming U > 0) on each layer and a ferromagnetic
coupling between neighboring sites on different layers. Note
that the latter acts to penalize double occupancy on either
layers and thus adds to the effective Hubbard repulsion. More
importantly, while the interaction is invariant under U (2) ×
U (2) transformations acting separately on the two subspaces
of same-spin electrons, it breaks the global spin rotation sym-
metry and introduces effective attraction between the layers.

The particle-hole transformation, cliσ → (−1)ic†
liσ , where

the factor (−1)i equals −1 on one sublattice and 1 on the
other, leaves the Hamiltonian invariant with the exception
that t ′ → −t ′. It also changes the average site occupation
according to 〈n〉 → 2 − 〈n〉. Hence, we concentrate on the
hole-doped regime δ = 1 − 〈n〉 > 0, and rely on the relation
between the expectation values of observables 〈O〉(t ′, δ) =
〈O〉(−t ′,−δ) to deduce the behavior in the electron-doped
regime from the hole-doped counterparts.

In order to use the DQMC method we decouple the
interaction term in the Hamiltonian via a discrete Hubbard-
Stratonovich transformation that involves two Ising-like fields
taking values ±ψ1,2. They are accompanied by coefficients am

[30], which are chosen to ensure the validity of

e�τUñ2 = 1

4

∑
m=1,2

∑
λ=±1

ame
√

�τUλψmñ + O[(�τ )4], (2)

to order (�τ )4. Here, ñ = n1↑ − n1↓ + n2↑ − n2↓ = 0,±1,

±2, ψ1,2 =
√

2(3 ∓ √
6). and a1,2 = 1 ± √

2/3. All of our
DQMC simulations were conducted for U = 4 and inverse
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(a) (b) (c)

FIG. 1. Histogram of the hole concentration δ obtained from Monte Carlo sampling of a 14 × 14 square bilayer with (a) t ′ = −0.25,
(b) t ′ = 0, and (c) t ′ = 0.25, for various values of the chemical potential μ at a temperature T = 0.05.

temperatures extending up to β = 20. For these parameters we
used a Trotter step �τ = 0.1, see Ref. [31]. In the following
we present our results, obtained by averaging over 40000–
70000 sweeps, for systems with periodic boundary conditions
and sizes of up to 20 × 20.

III. RESULTS

A. Phase separation

We begin by mapping the density as a function of the
chemical potential with attention to the question of phase sep-
aration [31]. The existence of phase separation in the Hubbard
model has been controversial. An early DQMC study [32]
found no evidence for it when t ′ = 0, while subsequent studies
using the dynamical and variational cluster approximations
[33,34] reported its presence for both t ′ > 0 and t ′ = 0. To
determine the presence or absence of phase separation in
the model studied here, we fix the chemical potential and
follow the distribution of the hole concentration δ through-
out the Monte Carlo sampling. A bimodal distribution of δ

in the thermodynamic limit serves as an indicator for phase
separation.

Our results for square L × L bilayers exhibit a bimodal
distribution at low hole-doping levels, as depicted in Fig. 1.
Specifically, the data in the apparent phase-separated regime
comprise two peaks, one at half-filling (δ = 0) and another
that is distributed around an average δ∗. However, when we
fix the average hole concentration δ and increase the system
size we find that δ∗ approaches δ and that the δ∗ peak increases
at the expense of the peak at δ = 0. This behavior, shown in
Fig. 2 for representative systems with up to L = 20, indicates
that there is no phase separation in the thermodynamic limit.
In particular, the t ′ = 0.25, δ = 0.1 system exhibits δ∗ = 2/L
in the range L = 14–18 (associated with a configuration of
two filled charge stripes, as discussed below), whereas already
at L = 20 we find a single peak at δ = 0.1 with no additional
component at half-filling. The t ′ = 0 and t ′ = −0.25 systems
continue to exhibit bimodal distributions up to L = 20, but
extrapolating the data suggests that δ∗ → δ upon further in-
crease of the system size.

B. Stripe phases

We have already alluded to the ample numerical evidence
for the existence of robust charge and spin stripe phases in
the Hubbard model, especially for t ′ � 0. In order to look for

similar phases in the bilayer model we have calculated the
charge and spin structure factors

Sc,s(q) = 1

2

∑
l,i

e−iq·ri〈〈nc,s(l, ri )nc,s(l, 0)〉〉, (3)

with nc,s(l, ri ) = nli↑ ± nli↓. Henceforth, double angle brack-
ets denote connected correlation functions, i.e., 〈〈AB〉〉 =
〈AB〉 − 〈A〉〈B〉. We have found that over a wide range of
parameters Ss exhibits a peak at an ordering wave vector
Qs = 2π (0.5 − εs, 0.5), which is typically accompanied by
a peak of Sc at Qc = 2π (εc, 0). For square systems we have
observed similar features also along the y direction due to ro-
tated configurations of unidirectional stripes. Representative
examples are shown in Fig. 3. Peaks at the same momenta
also occur in the charge and spin susceptibilities

χc,s(q) = 1

2

∫ β

0
dτ

∑
l,i

e−iq·ri〈〈nc,s(l, ri, τ )nc,s(l, 0, 0)〉〉.

(4)

Because the SU (2) spin rotation symmetry is explicitly bro-
ken by the interlayer interaction, the spin structure factor
and the spin susceptibility differ between the z and x-y di-

FIG. 2. The size dependence of δ∗ in representative systems with
fixed average hole concentration δ. The error bars depict the standard
deviation of the distribution of hole concentrations that comprise the
δ∗ peak. For the L = 20, t ′ = 0.25 system we find that all Monte
Carlo configurations exhibit the same hole concentration δ = 0.1.
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(a) (b)

(c) (d)

FIG. 3. (a) The spin structure factor Ss(qx, π ) and (b) the charge
structure factor Sc(qx, 0) as a function of qx for a 28 × 4 periodic
system with t ′ = −0.25, δ = 0.163, and β = 10. The lines are a fit
to a double Lorentzian with an added background [35]. The peaks
occur at εs = 0.14 and εc = 0.29, respectively, and stay put upon
lowering the temperature. (c), (d) The same quantities for a 16 × 16
system with the same parameters at β = 20. The peaks shift from
their positions in the cylindrical system to εs = 0.11 and εc = 0.24.

rections. We show results for their z component, defined by
Eqs. (3) and (4), for which the peaks are clearly visible.
Whenever peaks occur in the Sz spin susceptibility they are
also present at approximately the same Qs in the suscepti-
bility of the transverse spin components [31]. Nevertheless,
whereas the height of the former decreases by more than
two orders of magnitude as one moves from half-filling to
δ = 0.3, the latter are essentially doping independent and
become comparable to their z counterparts only at high doping
levels. We do not find peaks in the transverse spin structure
factor.

In order to establish contact between the bilayer model
and the Hubbard model, we computed the structure factors
of a quasi-one-dimensional periodic bilayer of size 28 × 4.
Figure 4(a) depicts the positions of the peaks in Ss and Sc as
a function of δ. For t ′ = 0 we observe sharp spin peaks that
follow εs � δ/2 within a range of doping levels that extends
from 0.08 to about 0.3. Over a considerable portion of this
range they are accompanied by charge peaks at εc � δ. These
signatures are similar to the findings of DMRG [9–11] and
DQMC studies [25,26] of a Hubbard system with the same
geometry, and correspond to charge stripes that host one hole
per unit length and which serve as π -phase shift domain walls
for the antiferromagnetic order. We attribute the absence of
stripes at small δ to finite-size effects, as one can not embed
more than a single stripe within the system while preserving
the relation εc = δ. Instead, we observe in this regime alterna-
tions of the DQMC configurations between a half-filled phase
and a phase with δ = 1/Lx, which may be associated with a
single charge stripe.

The four-leg bilayer model and the corresponding Hub-
bard system continue to exhibit similar stripy charge and

spin correlations also when next-nearest-neighbor hopping
is included. For t ′ = −0.25 and below δ = 0.15 we observe
εc � 2δ, which indicates that the charge stripes are half filled,
as found for the Hubbard cylinder [9]. However, the density
of holes on the stripes increases when 0.15 < δ < 0.3. In both
doping ranges the period of the spin modulations is twice that
of the charge density. Here again, we associate the fact that
we do not observe stripes at small δ with finite-size effects. In
contrast, the absence of stripes below δ = 0.18 for t ′ = 0.25
seems to be a true property of the thermodynamic limit of
the model, at least in the temperature range that we have
considered. This is consistent with the DQMC results for the
Hubbard system [25]. We note that at doping levels above
δ = 0.3 and for all values of t ′, the model exhibits a phase
with short-ranged stripe correlations that are accompanied by
a change in the dependence of εs on δ, see Fig. 4(a). This range
of parameters has not been investigated in the context of the
Hubbard cylinder and it would be interesting to close this gap
in order to see if the similarities between the models continue
to hold true for high doping levels.

Having mapped out the behavior of the quasi-one-
dimensional system we proceed to discuss the stripe charac-
teristics of more two-dimensional geometries, which are not
amenable to DMRG calculations. Accordingly, we have com-
puted Ss and Sc of L × L periodic bilayers, with L = 12–20.
The results for t ′ = 0, which are depicted in Fig. 4(b), show
the same linear doping dependence εs = δ/2 and εc = δ as
in the four-leg bilayer. However, in the square systems the
linear dependence does not change across the transition from
the region where the correlation length of the spin stripes,
ξs, exceeds the system size to the regime where ξs < L. Fig-
ure 4(c) demonstrates that changing the hopping amplitude to
t ′ = −0.25 has little effect on the doping range that supports
stripes and on the stripes correlation length. At the same time,
the slope of εc(δ) increases, thereby implying that the number
of holes per unit length of a charge stripe reduces from 1 for
t ′ = 0 to 2/3–4/5 when t ′ = −0.25. This observation bears
resemblance to the findings of a recent DMRG study of a
six-leg Hubbard cylinder [14]. Finally, the square t ′ = 0.25
systems show signatures of fractionally filled charge stripes
that we did not detect in the four-leg torus. Furthermore, spin
stripes appear at lower doping levels in the square systems
than in the four-leg bilayer, see Fig. 4(d). In fact, given the
limited range of system sizes available to us, we are unable to
exclude the existence of spin stripes at even lower values of δ

as L is further increased.

C. Superconductivity

The question of whether the two-dimensional repulsive
Hubbard model exhibits superconductivity at a temperature
scale that is relevant to the cuprate superconductors has been
the focus of extensive research over the years. The current
evidence points to a negative answer when t ′ = 0 [12], and
arguably also for t ′ < 0 [14]. The situation is somewhat more
promising for t ′ > 0, where power-law d-SC correlations are
detected, albeit with a faster decay than the CDW correlations
[14]. Hence, it is interesting to look for signs of supercon-
ductivity in the bilayer model, with emphasis on d-SC, which
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(a) (b)

(c) (d)

FIG. 4. (a) The position of the peak in Ss for a 28 × 4 periodic bilayer as a function of hole doping at β = 10. The dashed lines correspond
to εs = δ/2 and εs = δ. The inset depicts the associated peak position in Sc, where here the dashed lines trace εc = δ and εc = 2δ. (b) The
position of the peak in Ss (circles) and in Sc (squares) for t ′ = 0 periodic square systems as a function of hole doping at β = 20. The dashed
lines correspond to εs = δ/2 and εc = δ. The inset depicts the correlation length of the spin stripes ξs = 2π/�q, where �q is the full width at
half-maximum of the Lorentzian fit to the peak in Ss. (c), (d) Similar data for systems with t ′ = −0.25 and t ′ = 0.25, respectively. The slopes
of the dashed lines are 5/8 and 5/4.

is expected to be the dominant channel in the presence of
repulsive interactions.

To this end, we have calculated the intralayer d-wave
pair-field susceptibility

χd = 1

2

∫ β

0
dτ

∑
l=1,2

∑
i

〈�d (l, ri, τ )�†
d (l, 0, 0)〉, (5)

where �d (l, ri ) = 1
4

∑
α=±x̂,±ŷ ηα (cli↑cli+α↓ − cli↓cli+α↑)

with ηα = 1 for α = ±x̂ and ηα = −1 for α = ±ŷ. To reveal
the effects of interactions on the superconducting properties
we have also evaluated the particle-particle interaction vertex

� = 1

χd
− 1

χ̄d
, (6)

where χ̄d is the uncorrelated d-wave pair-field susceptibility
[36]. Onset of superconducting quasi-long-range order in
the two-dimensional thermodynamic limit manifests itself
by an increase of χd with decreasing temperature. In a
finite system of linear size L the temperature dependence
should also exhibit BKT finite-size scaling of the form
χd = L7/4 f (L/ξ ), where ξ is the BKT correlation length,

see, e.g., Refs. [37,38]. In particular, one expects χd to
saturate at low temperatures at a value that increases with
L. Concomitantly, if the interactions indeed drive the system
towards a superconducting instability then the product �χ̄d

should approach −1 at the critical temperature.
We find none of the above signatures in the data for t ′ = 0

bilayers, as presented in Fig. 5. In particular, it is clear that
both χd and �χ̄d are already saturated at the lowest tem-
perature, T = 0.05, that we have considered. However, both
quantities show no significant size dependence at this temper-
ature, with χd exhibiting some fluctuations as a function of δ,
which we attribute to finite-size effects. Furthermore, while χd

reaches a maximum around δ = 0.25, �χ̄d attains its minimal
value of about −0.5 near δ = 0.1. The lack of correlation
between the doping dependence of the two functions is further
evidence that the t ′ = 0 bilayer shows no signs of a d-SC
instability. Figure 6 shows that a similar behavior is found for
t ′ = −0.25. If at all, the indications for d-SC are weaker, in
the sense that χd is maximal at δ = 0.7 whereas the minimum
of �χ̄d occurs near half-filling and is slightly higher than its
t ′ = 0 value. These findings conform well with the results of
a DQMC study of a t ′ = −0.25 single Hubbard layer, albeit at
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(a) (c)

(b) (d)

FIG. 5. (a) The intralayer d-wave pairing susceptibility as a func-
tion of hole doping for L × L periodic systems with t ′ = 0 at T =
0.05. (b) The d-wave superconducting vertex times the uncorrelated
pairing susceptibility of the same systems. (c), (d) The same quanti-
ties as a function of inverse temperature β for an L = 14 bilayer at
the specified hole doping levels.

higher temperatures [26]. Finally, the systems with t ′ = 0.25
exhibit the most favorable hints for the existence of some
d-SC tendencies. Specifically, χd and �χ̄d show simultaneous
maximal response at low doping levels below δ = 0.2, which
is also the largest among the bilayers that we have studied,
see Fig. 7. Nevertheless, the fact that the response is still far
from the instability threshold and does not show the expected
finite-size scaling leads us to conclude that d-SC does not
materialize in the bilayer model, at least for the parameters
used by us.

One may object to the sweeping nature of the last state-
ment as we have only referred to signs of uniform d-SC
order. Indeed, there have been suggestions that the cuprate

(a) (c)

(b) (d)

FIG. 6. Same as Fig. 5 but for t ′ = −0.25.

(a) (c)

(b) (d)

FIG. 7. Same as Fig. 5 but for t ′ = 0.25.

superconductors and perhaps some theoretical models may
harbor the more elusive pair-density wave (PDW) state that is
associated with a spatially oscillating superconducting order
parameter of zero mean [39]. On the theoretical side, the sta-
bilization of a PDW in interacting fermionic models has been
proved difficult, with the best evidence for PDW correlations
emerging from DMRG studies of a one-dimensional Kondo-
Heisenberg chain [40] and of the strong-coupling limit of a
Holstein-Hubbard cylinder [41]. To address the possibility of
the existence of d-wave pairing with a nonzero center-of-mass
momentum we have calculated the Fourier transform of the
pair-field susceptibility in Eq. (5). However, our results show
a single and robust peak of χd (q) at q = 0 with no evidence
for a PDW.

Despite not finding a pairing instability in the intralayer
d-wave channel we have not exhausted the search for
superconductivity. Indeed, a more universal indicator of su-
perconductivity is the superfluid stiffness, calculated from the
response to a vector potential that couples identically to the
two layers via [42]

ρs = 1
4 [�xx(qx → 0, qy = 0) − �xx(qx = 0, qy → 0)], (7)

where

�xx(q) = 1

2L2

∑
l,l ′=1,2

∫ β

0
dτ 〈 jx(q, l, τ ) jx(−q, l ′, 0)〉. (8)

Here, jx(q, l ) = −i
∑

j,σ {c†
l, j,σ [tcl, j+x̂,σ + t ′(cl, j+x̂+ŷ,σ +

cl, j+x̂−ŷ,σ )] − H.c.}e−iq·r j , is the Fourier transform of the
current density operator in the x direction. In the finite
L × L bilayers that we simulate we obtain the limit q → 0
in Eq. (7) by extrapolating �xx using its values at q = 2π/L
and q = 4π/L. A typical temperature dependence of ρs is
depicted in Fig. 8(d) for t ′ = 0 systems at δ = 0.35. Clearly,
ρs at this doping level shows little size dependence and obeys
the criterion for the BKT transition ρs(TBKT) = (2/π )TBKT at
a critical temperature TBKT � 0.08. Figure 8(b) shows that the
bilayer undergoes a BKT transition to a superconducting state
over an extended range of hole doping. The figure depicts
the ratio ρs(T )/(2T/π ) at T = 0.05, such that any point for

165131-6



QUANTUM MONTE CARLO STUDY OF A BILAYER … PHYSICAL REVIEW B 108, 165131 (2023)

(a) (c)

(b) (d)

(e)

FIG. 8. (a) The equal-time interlayer pair correlations as a func-
tion of doping for L × L periodic systems with t ′ = 0 at T = 0.05.
(b) The superfluid stiffness of the systems, normalized by ρBKT =
2T/π = 0.1/π . (c), (d) The pair correlations and the superfluid
stiffness as a function of temperature for δ = 0.35. The dashed line
depicts 2T/π . (e) The superfluid stiffness of non-interacting (U=0)
bilayers at T = 0.05.

which the ratio is larger than one corresponds to a system that
exhibits a transition at a temperature T > 0.05. The results
also demonstrate the strong finite-size effects in ρs at high
doping levels, which cause the stiffness to oscillate between
positive and negative values. Such a behavior reflects changes
in the Fermi surface and is inherited from the noninteracting
limit, see Fig. 8(e). It is noticeable whenever the interaction
effects are diminished, as is the case for large δ. This issue
can be mitigated by introducing a weak uniform magnetic
field to the model [43], but we forewent the modification
since the problem is significant only in a region where the
qualitative behavior is already clear.

A question remains as to the nature of the superconducting
state. The presence of the ferromagnetic interaction between
the layers makes interlayer spin-polarized pairing a natural
candidate for the instability channel. We have corroborated
this hypothesis by calculating the equal-time interlayer pair
correlations

S⊥ = 1

2

∑
iσ

〈�⊥σ (ri )�
†
⊥σ (0)〉, (9)

where �⊥σ (ri ) = c1iσ c2iσ . Figure 8(c) shows that the temper-
ature dependence of S⊥ begins to develop size dependence
slightly above TBKT and saturates at low temperatures to a

(a) (c)

(b) (d)

(e)

FIG. 9. Same as Fig. 8 but for t ′ = −0.25. The black curve in
(b) depicts the BKT transition temperature, deduced from the BKT
criterion, as a function of doping. (e) depicts the collapse of the S⊥
data for a system with δ = 0.35 using the expected BKT scaling. The
line is a guide to the eye.

value that grows with L. These signatures strongly support
the identification of TBKT with the onset of quasi-long-range
�⊥ correlations. Furthermore, the doping dependence of the
low-temperature S⊥ follows that of ρs and exhibits size depen-
dence within the range of doping levels where the system is
below its TBKT according to the BKT criterion, see Fig. 8(a).
We note that S⊥ of the t ′ = 0 bilayers attains its maximum
around δ = 0.35. This fact may be tied to the decline of
the intralayer d-SC susceptibility of the δ = 0.35 system at
temperatures below its TBKT, as seen in Fig. 5(c).

Both ρs and S⊥ continue to exhibit similar trends in the
presence of nonzero t ′. Figure 9 shows that the t ′ = −0.25
bilayer sustains a superconducting phase over a wider range
of doping levels as compared to the t ′ = 0 bilayer. The fig-
ure also contains results for the doping dependence of TBKT, as
deduced from the BKT criterion, and demonstrates that it fol-
lows the behavior of the low-temperature superfluid stiffness.
Namely, the two trace a dome as a function of δ, achiev-
ing a maximum around δ = 0.4. Further evidence in favor
of the onset of quasi-long-range order comes form applying
the BKT scaling ansatz S⊥(L, T ) = L7/4 f [L/ξ (T )], where
ξ (T ) ∼ exp[A/(T − TBKT)1/2], as T → TBKT from above.
Figure 9(e) shows the scaling, where A = 0.17 and TBKT =
0.72 yield the best data collapse. Figure 10 shows that for
t ′ = 0.25 the leading edge of the superconducting dome
shifts to lower values of doping, somewhat below δ = 0.2.
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(a) (c)

(b) (d)

FIG. 10. Same as Fig. 8 but for t ′ = 0.25.

For reasons that are not clear to us the fluctuations associ-
ated with finite-size effects are much reduced in the results
for the t ′ = −0.25 bilayers, while they are enhanced in the
t ′ = 0.25 systems.

We end this section by considering possible correlations
between the superconducting properties of the model and its
uniform magnetic susceptibility along the z direction (the
Knight shift). The temperature dependence of the Knight shift
is presented in Fig. 11 for a t ′ = 0 system at several doping
levels. We find that it exhibits a peak at a temperature T ∗ that
reduces with increasing hole doping until δ ≈ 0.3, where it
levels off. In the context of the cuprates such a peak is used
to define a crossover scale that is associated with the opening
of a pseudogap. As far as the model is concerned, there seems
to be no clear correspondence between T ∗ and the behavior
of the d-SC signatures. From Fig. 5 it is evident that the low

FIG. 11. The q = 0 spin susceptibility (Knight shift) versus tem-
perature for various doping levels of the 14 × 14 t ′ = 0 system. The
curves display a maximum at a temperature denoted by T ∗. The inset
depicts T ∗ as a function of doping.

temperature �χ̄d does not change within the range of doping
levels in which T ∗ changes by more than a factor of 3, while
χd increases over the same range. Both quantities appear
to saturate at a similar temperature that shows no consider-
able dependence on doping, and hence on T ∗. On the other
hand, the interlayer superconductivity onsets at a doping level,
which coincides with the point where T ∗ becomes δ indepen-
dent, see Figs. 8 and 11. However, the causal relation between
the two phenomena is unclear. Regardless of its relevance to
superconductivity, the appearance of the peak and the general
behavior of T ∗ are in agreement with DQMC results obtained
for the Hubbard model at more elevated temperatures [26].
This fact reinforces the conclusion that despite the difference
in their symmetries the bilayer model and the Hubbard model
display many common physical properties.

IV. SUMMARY AND OUTLOOK

What are the low-temperature properties of the repulsive
two-dimensional Hubbard model at the intermediate coupling
regime U ∼ t? By far, the most adopted approach towards
answering this question has been to apply DMRG to W × L
systems, then try to extract the L → ∞ behavior for fixed
W and finally look for W -independent characteristics within
the limited range of computationally manageable widths. Less
frequent attempts involved studying the model on a more
two-dimensional geometry (typically square) using DQMC.
However, this method suffers from the sign problem that con-
strains its application to relatively high temperatures, hence
complicating the comparison with the DMRG results for the
ground state. In the present work we have offered yet an-
other route that applies sign-problem-free DQMC to a bilayer
model, which contains the Hubbard interaction on each layer,
at the expense of introducing a ferromagnetic attractive in-
terlayer coupling that breaks the global SU (2) spin rotation
symmetry. Our primary goal was to assess the degree by
which the deformed model captures known behaviors of the
Hubbard model or exhibits qualitatively new features.

We have found that in a similar fashion to DMRG and
DQMC results for Hubbard systems, the most robust tendency
of the bilayer model is to develop stripy modulations in its
charge and spin densities. The agreement extends to specific
properties of the observed stripe phases. Namely, the charge
stripes are filled for t ′ = 0, exhibit fractional filling that is
larger than 1/2 when t ′ = −0.25, and are suppressed, espe-
cially at low doping levels, for t ′ = 0.25. The lack of spin
rotation symmetry renders the z and x-y spin responses of the
model inequivalent. Nevertheless, the z component of the spin
density shows very clear stripes, which become short-range
correlated and appear without accompanying charge stripes
at high doping. Whenever spin and charge stripes coexist the
period of the first is approximately twice that of the second.

Intralayer d-SC is absent in the bilayer model, at least
for the parameters that we have considered and down to a
temperature of T = 0.05 (which appears to be sufficiently
low to allow extending this conclusion to the ground state).
In accord with DMRG studies of Hubbard cylinders, systems
with t ′ > 0 show stronger signatures of d-SC. However, none
of them come close to the required level for a superconducting
instability. In contrast, we detect clear signs of interlayer spin-
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polarized superconductivity, which is expected in light of the
attractive ferromagnetic interaction that exists in the model.

Overall, our findings demonstrate that the bilayer model
constitutes a valuable computational proxy to the Hubbard
model, and may serve as a controlled test bed to study further
aspects of strongly correlated electrons. To this end, one may

consider augmenting the bilayer Hamiltonian with additional
terms, which nevertheless preserve the symmetry that keeps it
free from the sign problem. This strategy may also be pursued
in order to suppress the interlayer superconductivity since it
can act as a masking agent that obscures evidence for more
interesting forms of superconductivity at low temperatures.
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