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Strong nonreciprocal acoustic extinction and asymmetric audibility from spinning fluid scatterers
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Lorentz reciprocity places important constraints on the response of systems to wave excitations, and surpassing
these constraints is of both fundamental and applied interest. In the context of scattering, reciprocity requires that
the total extinction of an object is identical when excited from opposite directions, regardless of the asymmetry of
the scatterer. Here, we demonstrate that, by combining multiple scatterers that break time-reversal symmetry, this
extinction symmetry can be largely violated. We consider spinning cylinders, demonstrating that nonreciprocity
must be paired with broken parity symmetry to enable large extinction contrast. As a dramatic example, we
show a system that strongly scatters when excited from one side, but it is cloaked for the opposite excitation. Our
results pave the way for approaches to asymmetric audibility and scattering manipulation, and they may readily
translate to other wave domains.
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I. INTRODUCTION

Wave propagation in time-reversal symmetric systems
obeys Lorentz reciprocity, a property formulated in acoustics
by Lord Strutt [1] and later in electromagnetism by Lorentz
[2]. Reciprocity guarantees symmetric wave propagation be-
tween two points in space: After changing the source and
observer, the received wave amplitude and phase are identical,
independent of the complexity of the environment. A conse-
quence of reciprocity of particular interest in this paper is that
the extinction cross-section, which describes the total power
intercepted from an incident wave by a scatterer, must be iden-
tical for excitations from opposite directions [3], independent
of how asymmetric the scatterer may be. As a byproduct, in
the presence of material loss, asymmetric objects may have
different scattering cross-sections when excited from opposite
sides [4], but their total extinction (scattering plus absorption)
must be identical, i.e., whatever difference in total scattered
powers for excitation from opposite sides must be compen-
sated by an opposite difference in absorption.

This extinction symmetry can be understood by consid-
ering the optical theorem, which dictates that the extinction
cross-section σext is proportional to the forward scattering
amplitude f (0), σext = 4π Im[ f (0)]/k0, where k0 is the wave
number in the surrounding medium. Due to reciprocity, the
amplitude and phase of forward transmission between source
and observer must remain the same under their exchange;
hence, if we place the object on the axis between source
and observer, the forward scattering amplitude must also be
independent of the incidence direction. As a byproduct, no
passive object can be cloaked asymmetrically: Ideally, sup-
pressing the scattering of an object from one side implies the
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absence of scattering and absorption since absorption causes
finite forward scattering in passive objects. Zero scattering
and absorption, i.e., zero extinction, from one direction also
requires zero extinction for excitations from the opposite
side.

In this paper, we aim at breaking this general constraint
by considering spinning acoustic scatterers that break time-
reversal symmetry [3,5]. We demonstrate that, under proper
conditions, this extinction symmetry can be largely violated,
and unidirectional cloaking can be enabled. Reciprocity can
be broken by incorporating a bias that is odd under time re-
versal, such as a magnetic field combined with gyromagnetic
materials in optics. In acoustics, temporal modulation [6],
nonlinear materials [7,8], and moving fluids [9–11] have been
considered. Nonreciprocity combined with acoustic meta-
materials has enabled forms of sound-matter interactions,
including nonreciprocal Willis coupling [12–15] and topolog-
ical acoustics [16–21]. In the following, we break reciprocity
in acoustics to violate extinction symmetry by considering
arrays of spinning cylinders [22–25]. We derive the scatter-
ing coefficients and define a polarizability tensor for small
cylinders, showing that a spinning cylinder supports a peculiar
quasistatic resonance at approximately half the angular veloc-
ity of the cylinder. We then use the optical theorem to flesh
out the requirements to induce asymmetric extinction. Finally,
we consider an array of three spinning cylinders to demon-
strate extreme contrast in extinction for opposite excitation
directions, resulting in strong scattering from one direction
but cloaking from the opposite direction.

II. DIPOLE APPROXIMATION

In Fig. 1(a), we consider a system consisting of a rotating
fluid with angular velocity �. Assuming that the fluid is invis-
cid, a fan generates a rotating fluid cylinder of radius rs, while
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FIG. 1. (a) Schematic geometry. The spinning fluid is generated
by a rotating fan. (b) Mie scattering coefficients for the −1, 0, and
1 angular scattering orders for � = 2π×200 rad/s. For a small spin-
ning rod, the m = ±1 components are at least one order of magnitude
larger than the others, with a clear resonance for one handedness. (c)
σ→

ext and σ←
ext normalized to the geometrical cross-section, calculated

using the dipole approximation, Mie theory, and numerically with
COMSOL Multiphysics. The dipolar approximation (shown in blue)
overlaps with Mie theory, as expected due to the dominance of the
±1 angular channels. Importantly, σ→

ext and σ←
ext also overlap for all

curves, indicating that, for a single spinning cylinder, the response is
necessarily symmetric.

� = 0 outside the spinning core. This geometry has been
investigated experimentally in Ref. [13], where the expres-
sion for the azimuthal velocity vφ = �rêφ was verified (see
Supplemental Material [26] for possible implementations).
We can derive the polarizability of a fluid rod rotating at speed
�. The density and speed of sound are ρs(ρ0) and cs(c0) for
the cylinder and background medium, respectively. All angles
in the following are defined between the corresponding vector
direction and the x axis. From the linearized Navier-Stokes
equations in the adiabatic approximation (implying no tem-
perature exchange), for a cylindrical radius r2

s � 2(c0/�)2,
the Mie scattering coefficient for a rotating fluid cylinder reads
(see Supplemental Material [26])

ζm = − λmρ0Rm(λmrs)Jm(k0rs) − k0ρsJm(λmrs)J ′
m(k0rs)

λmρ0Rm(λmrs)Hm(k0rs) − k0ρsJm(λmrs)H ′
m(k0rs)

.

(1)
Here, k0 = ω/c0, with ω being the angular frequency of the
impinging wave, λ2

m = (M2−4�2)/c2
s , M = (ω−m�), and

the auxiliary function Rm(λmrs) is given by

Rm(λmrs) = ω

M2 − 4�2

[
MJ ′

m(λmrs) − 2m�
Jm(λmrs)

λmrs

]
,

(2)
where Jm(z) is the Bessel function of the first kind. It is
worth noting that, although the choice of boundary conditions
alters the expression of Eq. (2), it does not significantly affect

the scattering features within in the subwavelength regime of
interest (see Sec. 2 in the Supplemental Material [26] for more
details). Figure 1(b) shows the dispersion of the first three
Mie coefficients. The zeroth-order Mie coefficient is approx-
imately two orders of magnitude smaller than the other two
within the targeted frequency range, indicating that the system
is dominated by the dipolar response if the cylinder radius is
subwavelength. As a result, in the following, we consider only
the dipolar response, which can be conveniently described
through the polarizability tensor ¯̄α, relating the induced dipole
moment vector D to the velocity field v of the impinging wave
(see Supplemental Material [26]):[

Dx

Dy

]
= ¯̄α

[
vx

vy

]
=

[
αxx −αxy

αxy αxx

][
vx

vy

]

= 4i

ω2

[
ζ1 + ζ−1 −i(ζ1 − ζ−1)

i(ζ1 − ζ−1) ζ1 + ζ−1

][
vx

vy

]
. (3)

Note that ¯̄α(�) �= ¯̄α(�)T (the superscript T represents the
transpose of a matrix), indicating that the cylinder violates
reciprocity [27]. As the cylinder itself is symmetric, the off-
diagonal terms arise due to the rotation, and indeed, it is
straightforward to verify that, under a time-reversal operation,
the tensor is symmetric: ¯̄α(�) = ¯̄α(−�)T .

In the long-wavelength limit and under the assumption that
the cylinder and background media are the same, we obtain
the interesting result:

ζ±1 = −�

� ± (2ω ± �)
(
4i

/
πk2

0r2
s

) . (4)

Equation (4) indicates that a quasistatic resonance can arise
without the need for impedance mismatch at the cylinder
boundary. This rotation-induced resonance has frequency ωres,
obeying

4ω2
res = �2

[
1 − π2

16

(
ωresrs

c0

)4
]
, (5)

derived by requiring that the real part of the denominator of
ζ±1 vanishes. Equation (5) can be further approximated using
(�rs/c0)4 � 1, which results in ωres ≈ �/2 (see Supplemen-
tal Material [26]). Hence, despite being made of the same
material as the background, a small spinning cylinder strongly
scatters at frequencies half the angular spinning frequency. In
other words, the rotation of a fluid drastically changes the ma-
terial effective properties around half the spinning frequency
in the quasistatic regime. The result is consistent with the
numerical calculations in Fig. 1(b), which highlight a strong
resonant response for ζ−1 at 100 Hz, due to the rotation. The
large contrast between ζ−1 and ζ+1 is another manifestation
of broken symmetry due to spin. As may be expected, the
angular-order spinning against the fluid rotation is the one
being amplified, as it feels a stronger Doppler shift due to the
faster relative velocity.

III. ACOUSTIC EXTINCTION CONTRAST

Under excitation with an incident plane wave, Fig. 1(c)
shows the left-to-right and right-to-left extinction cross-
section (σ→

ext and σ←
ext ) calculated through the dipole
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FIG. 2. (a) σ→
ext and σ←

ext of two spinning cylinders rotating in
opposite directions. We find two nondegenerate resonant peaks for
either direction of incidence. (b) Scattered field profiles at the res-
onances, as calculated by the dipole approximation. A comparison
with COMSOL is presented in the Supplemental Material [26].

approximation (DA), Mie scattering theory, and numerically
with COMSOL Multiphysics. Despite breaking time-reversal
symmetry, there is no sign of nonreciprocity: The curves for
σ→

ext and σ←
ext cannot be distinguished. This is because a single

spinning object is back to its original state after 2π/� sec-
onds, which only causes a phase difference in the scattered
field for opposite excitations, preserving the same scattering
amplitude. To achieve asymmetric extinction, we need to also
break parity symmetry; hence, at least two spinning cylinders
(or an asymmetric geometry) are required. Next, we consider
N rotating cylinders located at separate positions at a distance
r jk = |r j − rk|. Their dressed dipole moments can be written
as [

D( j)
x

D( j)
y

]
= ¯̄α j

⎛
⎝[

v
( j)
0x

v
( j)
0y

]
+

N∑
k=1,k �= j

¯̄Gjk

[
D(k)

x

D(k)
y

]⎞
⎠. (6)

Here, the normalized velocity fields at position j equals
exp[iη j (φinc)][cos φinc, sin φinc]T , where the phase η j =
k0r j cos(φinc − φr1 ), and φinc is the incident angle. The inci-
dent pressure amplitude is assumed to be unity. The Green’s
tensor ¯̄Gjk yields the velocity field of one dipole at the
location of the other one and, in the long-wavelength ap-
proximation (k0r jk � 1), is given by (see Supplemental
Material [26])

¯̄Gjk = iω2 H2(k0r jk )

8

[
cos 2φ jk sin 2φ jk

sin 2φ jk − cos 2φ jk

]
, (7)

where H2(k0r jk ) denotes the Hankel function of the first kind.
We now specialize this formulation to the case of two

counterrotating cylinders, as shown in the inset of Fig. 2(a).
The angle φ jk , with j, k = 1, 2 and j �= k, represents the angle
between the distance vector r jk = r j − rk and the x axis.
Note that the choice of r jk cannot be too small, to avoid that
higher-order modes, neglected by the DA, become significant
in the near-field coupling. In this scenario, multiple scattering

theory (MST) [28] may be exploited to incorporate higher-
order angular modes.

Once the dipole moments are obtained, the total
far-field scattered wave psca asymptotically approaches
ftot (φ)exp(ik0r)/

√
r as r → ∞, with

ftot (φ) = ω2

4
exp

(
−i

3π

4

)√
2

πk0

×
N∑

j=1

[
D( j)

x cos φ + D( j)
y sin φ

]
exp[−iψ j (φ)].

(8)

Here, ψ j (φ) = k0r j cos(φr j − φ) denotes the phase correction
from position j to the origin (see Supplemental Material [26]).
To verify our theory, we compare the results of σ→

ext and
σ←

ext calculated from Eq. (8), MST, and COMSOL for rs = 5
cm, � = 2π×200 rad/s, and an angle φr1 = 45◦ between the
cylinders. The spinning cylinders and background medium
are both considered to be air with density of 1.21 kg/m3 and
sound speed of 343 m/s. Figure 2(a) shows the extinction
cross-sections for all three methods. There is a 2 Hz frequency
shift between numerical and analytical results due to the DA
in Eq. (1). However, apart from this shift, the cross-sections
are in excellent agreement.

In contrast with the result for a single cylinder, we observe
strong asymmetry at 95.4 and 102 Hz (97.2 and 103.6 Hz
for the COMSOL results). Hence, these spectra demonstrate
violation of the extinction symmetry because of breaking
both reciprocity and parity symmetry. This effect can also be
observed in the field patterns of Fig. 2(b), with a significant
difference in the scattered field when excited from −x or +x
(see Supplemental Material [26]).

To unveil the underlying physics behind the nonreciprocal
extinction phenomenon, we analytically derived the differ-
ence between σ→

ext and σ←
ext based on the optical theorem

(see Supplemental Material [26]) [29]:


σext = −2
√

π
/

k0[Re{
 ftot} − Im{
 ftot}], (9)

where 
 ftot is the contrast of total scattering amplitudes. For
a structure made of two cylinders spinning in the same direc-
tion, 
 ftot vanishes when k0d � 1; in contrast, for opposite
spinning directions, the difference of +x and −x scattering
amplitudes is (see Supplemental Material [26])


 ftot = ftot (0) − ftot (π )

=
√

8

πk0

ω2 e−iπ/4αxxαxyQ sin 2φr1 sin(2k0r1 cos φr1 )(
α2

xx + α2
xy

)2
Q4 − 2

(
α2

xx − α2
xy

)
Q2 + 1

,

(10)

where Q = iω2 H2(k0d )/8. From a symmetry standpoint, a
pair of identical spinning cylinders obeys C2 symmetry. Thus,
incident waves from opposite directions see the same geom-
etry and induce the same scattered fields. However, a pair of
counterrotating cylinders breaks C2 symmetry, giving rise to
an extinction cross-section contrast from opposite directions
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FIG. 3. (a) σext difference 
σext = σ→
ext−σ←

ext in terms of fre-
quency and φr1 . (b) σext contrast in terms of excitation frequency
and spinning frequency �. The two maxima move further apart for
increasing �, like Zeeman splitting.

but only for appropriate geometrical configurations. For ex-
ample, Eq. (10) indicates that 
 ftot vanishes as φr1 = 0 and
π/2, for which σ→

ext and σ←
ext become identical because of

restored symmetry with respect to the excitation direction. We
show the contrast in extinction in Figs. 3(a) and 3(b), as a
function of orientation and spinning velocity. The extinction
contrast oscillates as the angle φr1 varies from 0◦ to 360◦,
reaching its maximum values when φr1 ≈ 37◦, 143◦, 217◦,
and 323◦, consistent with Eq. (9). A 180◦ rotation results in
the same extinction contrast, as expected due to symmetry
considerations. As may be intuitively expected, these angles
are close to the diagonal orientations with respect to the ex-
citation. In fact, within the DA, the orientation for maximal
contrast falls on the diagonal in the limit of d = 0; the slight
deviation from the diagonal stems from retardation effects due
to the nonzero separation.

As shown in Fig. 3(b), the dependence of the extinction
difference is linearly proportional to the rotation velocity
� within this frequency range. The difference between the
contrast maxima and minima, obtained by fitting the linear
dispersion is 
 f = 0.034�/2π−0.266, inducing a Zeeman-
like splitting in resonances induced by the spin, analogous
to gyromagnetic phenomena [22], where the rotation velocity
replaces the magnetic field strength.

IV. STRONG ACOUSTIC EXTINCTION CONTRAST

By increasing the number of cylinders, larger extinc-
tion contrast can be achieved. While it is cumbersome or
even intractable to derive analytic expressions as the num-
ber of cylinders increases, Eq. (6) can readily be solved
analytically to obtain the corresponding far-field response
via Eq. (8). As shown in the inset of Fig. 4(a), we con-
sider two counterclockwise-rotating rods located at (1.6, 2)rs

and (−1.6, 2)rs and one clockwise-rotating rod located at
(−6.5, 6.5)rs/

√
2, where the radius of rods rs is now 6 cm.

These locations have been determined through a geometrical
parameter sweep, and they may be further optimized through
inverse design techniques, particularly when more cylinders
are considered. The σ→

ext and σ←
ext spectra for this configuration

calculated with the DA are shown in Fig. 4(a) with dashed
lines. At 98.150 Hz, a strong extinction contrast is observed,
with σ→

ext > 10 times larger than σ←
ext . To verify that this

FIG. 4. (a) Extinction cross-section spectra of the array depicted
schematically in the inset, composed of three spinning rods. (b) and
(c) The total field profiles are illustrated for the two directions of
incidence, demonstrating strong extinction for excitation from the
left, while nearly ideal cloaking for incidence from the right.

contrast persists in the presence of higher-order modes, we
also show results calculated with MST (solid lines). While
incorporating higher-order modes induces a small frequency
shift and narrower linewidths, the large contrast remains un-
changed. The slight discrepancy arises because the cylinders
are in close proximity (see Supplemental Material [26] for the
spectra calculated with COMSOL). The asymmetry in extinc-
tion can also clearly be observed in the field patterns around
the rotating cylinders [Figs. 4(b) and 4(c)]. Strong scattering
occurs when the cylinders are excited from the left [Fig. 4(b)],
while the incident plane wave propagates almost unperturbed
when excited from the right [Fig. 4(c)], realizing a unidirec-
tional cloaking response that largely violates the extinction
symmetry obeyed by reciprocal scatterers.

V. CONCLUDING REMARKS

In this paper, we have investigated large nonreciprocal
extinction in arrays of spinning cylinders. First, we have un-
veiled an exotic nonreciprocal quasistatic resonance arising
at approximately half the spinning angular velocity. However,
for a single cylinder σ→

ext and σ←
ext remain identical. This is to

be expected because, despite spinning, a single cylinder does
not break parity symmetry. Instead, two cylinders with op-
posite rotation directions and broken parity can largely break
extinction symmetry. The underlying physics is analogous
to Zeeman splitting in atomic systems in the presence of a
magnetic field, with the distance between maximal extinc-
tion differences increasing linearly with the spin velocity �.
Finally, we showed a configuration of three spinning cylin-
ders supporting unidirectional transparency. Such asymmetric
audibility may have various applications, such as in noise
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control and scattering manipulation. Given the universality
of reciprocity and time-reversal symmetry in wave systems,
we expect that our results can readily translate to other fields,
including opportunities for asymmetric visibility [30].
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