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Realization of ideal unconventional Weyl states with arbitrary topological charge
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Weyl points in crystalline materials can be treated as magnetic monopoles in momentum space, with
topological charges inscribed by Chern numbers. The main method of finding Weyl states with topological
charges greater than one, i.e., unconventional Weyl states, is to take advantage of crystal symmetries, but the
maximum topological charge that can be achieved is four. Here we provide a unified scheme for realizing a pair
of Weyl points using long-range spin-orbit coupling. This scheme requires no additional symmetry other than
the translational symmetry of the crystal and allows the realization of the Weyl point with arbitrary topological
charges. We give a concrete method for its realization in a circuit system and verify it experimentally. This
discovery reveals a scheme for realizing ideal unconventional Weyl states and using long-range spin-orbit
coupling for exotic states.
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I. INTRODUCTION

Weyl semimetals have been extensively investigated in
quantum and classical systems in recent decades for their abil-
ity to support Weyl points [1–15]. In crystals, the Weyl points
with distinct chiralities, either left-handed or right-handed,
can be regarded as monopoles and antimonopoles in momen-
tum space. According to the no-go theorem, Weyl points with
opposite chirality always appear in pairs in periodic lattice
systems [16]. Thus, the simplest and most fundamental case
is a material with only two Weyl points, known as the ideal
Weyl material. The two Weyl points in the ideal Weyl material
cannot be trivially gapped out and possess physics that may
not be favored for multipair Weyl points [17–20]. However,
most of the previously investigated Weyl materials are based
exclusively on inversion symmetry broken systems, where the
number of Weyl pairs is at least two. Realizing the ideal Weyl
states must break the time-reversal symmetry, which is a sig-
nificant challenge in the experiment. Although magnetic Weyl
semimetals have been reported [21–24], the experimentally
confirmed ideal Weyl materials remain scarce [25–27].

On the other hand, the monopole charge of a Weyl point
can be greater than one. Such a Weyl point lacks a high-energy
counterpart known as the unconventional Weyl point. In recent
years, considerable efforts have been made to investigate the
unconventional Weyl points [28–42]. These efforts are mainly
accomplished in the following two ways. The first is to design
multifold degenerate linear band crossing points with multi-
ple bands. The second is to design nonlinear band crossing
points with two energy bands. Both methods are based on
symmetries, such as time-reversal symmetry, crystalline ro-
tational symmetry, etc., to achieve the unconventional Weyl
points. Symmetry facilitates the design of the unconventional
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Weyl states in crystalline materials, but it also has limitations.
For instance, the crystals contain only two-, three-, four- and
sixfold rotational symmetry, limiting the topological charge
of the Weyl point typically to two, three, or four [35,39].
Even if more complex symmetries, such as the glide plane
or the screw axis in the nonsymmorphic space group, are
included, the topological charge is still limited to a few values.
In addition, an essential reason for the widespread interest
in the Weyl state is that it requires only the translational
symmetry of the crystal and does not require the protection of
any additional symmetry. Thus, it presents strong topological
stability, and the only way to eliminate the Weyl points is
to annihilate two antichirality Weyl points together. Based
on the above discussions, two questions naturally arise: Is it
possible to design the unconventional Weyl points not induced
by crystal symmetry? Can the topological charge of the Weyl
point can be equal to an arbitrary integer value, not just a few
currently available values.

II. MODEL HAMILTONIAN

This paper provides a scheme for implementing the ideal
Weyl states with an arbitrary topological charge by long-range
spin-orbit coupling instead of symmetries. Our scheme is
based on the following two-band model Hamiltonian:

H = h(k) · σ, (1)

where σ = (σx, σy, σz ) are the Pauli matrices and h(k) =
(h1(k), h2(k), h3(k)). We take

h1(k) − ih2(k) = (αcoskx − iβ cos ky)N (2)

and

h3(k) = m0 + γ1 sin kx + γ2 sin ky + γ3 sin kz, (3)

where α, β, γ1,2,3, and m0 are real parameters and N is
an arbitrary positive integer. For this two-band model, the
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FIG. 1. Topological properties of the model Hamiltonian Eq. (1).
(a) The geometric picture for the pair of Weyl points generated by
Hamiltonian Eq. (1) and the high-symmetry points in the three-
dimensional Brillouin zone. The four blue lines are the solutions
of h1(k) = h2(k) = 0. The orange closed surface is the solutions of
h3(k) = 0. Their intersection points W1 and W2 are the gap closing
points of the Hamiltonian Eq. (1), namely, the Weyl points. (b) The
Chern number as a function of kz. At the Weyl point, the change of
the topological Chern number is equal to the topological charge of
the Weyl point.

energy bands cross and form the Weyl points at the k points
where h1(k), h2(k), and h3(k) vanish. The number of Weyl
points can be tuned by the coefficients in Eqs. (2) and (3).
It is easy to check that the solutions for h1(k) = h2(k) = 0
form four straight lines in the three-dimensional Brillouin
zone, which are located at (kx, ky) = (±π/2,±π/2) points
and along the kz direction. Solutions for h3(k) = 0 may form
a closed surface as shown in Fig. 1(a) in orange. By selecting
the appropriate parameters, the orange surface may intersect
with one of the four straight lines, for example, the line
located at (kx, ky) = (−π/2,−π/2), and obtain two intersec-
tion points W1 and W2 as shown in Fig. 1(a). These two points
are the band-crossing points of Hamiltonian Eq. (1), namely,
the Weyl points we are searching for.

To clarify the topological nature of the Weyl points, we ex-
pand Hamiltonian Eq. (1) at point (kx, ky ) = (−π/2,−π/2)
up to the lowest order in k to obtain an effective Hamiltonian
HW = kN

−σ+ + kN
+σ− + mσz, where k± = αkx ± iβky, σ± =

(σx ± iσy)/2 and m = m0 − γ1 − γ2 + γ3 sin kz is the mass
term. The Weyl points have linear band splitting along the kz

direction and kN band splitting along the kx and ky directions.
Taking kz as the parameter, the Chern number in the kx-ky

plane is calculated as C(kz ) = sgn(m)N/2, which changes by
±N when it passes the Weyl points W1 and W2 where the
mass term changes signs. Therefore, the topological charge
of the Weyl point is ±N . The above analysis confirms that
a single pair of Weyl points with topological charge ±N can
be performed by Hamiltonian Eq. (1) and that the existence
of Weyl points is not due to symmetry but the long-range
spin-orbit coupling. Since the Hamiltonian Eq. (1) is capable
of realizing a Weyl point with topological charge N equals 5,
7, or 9, whereas there is no five-, seven- or ninefold crystalline
rotational symmetry or other symmetries that can protect such
a Weyl point.

The model Hamiltonian Eq. (1) can implement both con-
ventional and unconventional Weyl states with a minimum
number of two bands but at the price of requiring the N th
nearest-neighbor hopping terms in the form of Pauli matrices.

FIG. 2. Building blocks for spin-orbit coupling in circuit.
(a) Schematic diagram of cells m and n, and the connection module
consists of resistors, inductors and capacitors. In cells m and n, the
inductors or capacitors are connected head to tail to form a loop
structure with C3 symmetry that generates a twofold degenerate
pseudospin space. The connection module is used to connect the
nodes in cells m and n. (b)–(d) The list of designed connection
modules m±σx,y and m±iσz that give ±σx,y and ±iσz types of tunneling
matrices in the twofold degenerate pseudospin space. The solid lines
indicate capacitors and the same color indicates devices with the
same parameter.

This requirement makes it difficult to reach in condensed
solid materials or artificial rigid materials. However, because
of their extremely high level of connection freedom, circuit
networks can be used to achieve many states of matter [43,44].
At present, the conventional Weyl states and type-II Weyl
states have been discussed in circuit networks, which adopt
the scheme of breaking the inversion symmetry of the system
[45–48]. However, the ideal Weyl states due to broken time-
reversal symmetry and unconventional Weyl states have yet to
be discussed in the circuit. In the following, we present details
of the realization of the ideal Weyl states with topological
charge N equal to 1 and 2 in the circuit network.

III. THE WEYL CIRCUIT WITH TOPOLOGICAL CHARGE
EQUAL TO ±1

We first provide the scheme for implementing the twofold
space required by Eq. (1) in the circuit and then design the
hopping terms in the form of Pauli matrices in this space.
The twofold space can be implemented by the pseudospin
module as illustrated in Fig. 2(a). The three identical inductors
are connected to a triangular structure with C3 rotational sym-
metry and time-reversal symmetry. These symmetries guar-
antee that this structure possesses an eigenstate characterized
by the one-dimensional representation of the C3 symme-
try group and a twofold degenerate eigenstate characterized
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FIG. 3. The Weyl circuit with topological charge equal to ±1.
(a) Schematic of the unit cell of Weyl circuit with N = 1. The green,
gray, and yellow blocks are the connection modules used for the
three-dimensional connections. Their configuration details are shown
in Figs. 2(b)–2(d). The lower and left nodes in connection modules
are connected to nodes 1–3 of cell i. The upper and right nodes
are connected to the nodes in cell i + δ, where δ = x̂, ŷ, ẑ. The U0

module is used to realize the on-site matrix in Eq. (4). (b) Circuit
diagram of the U0 module, which consists of inverting op-amps and
resistors. (c) Eigenfrequency dispersions of the Weyl circuit along
high-symmetry lines, where the indices of high-symmetry points
are given in Fig. 1(a). The bands cross at points W1 and W2 in the
Brillouin zone. Near the crossing point, the bands are linear along
the kx , ky, and kz directions. (d) The Chern number in the kx-ky plane
as a function of kz, which changes by ±1 when it passes by W1 and
W2 points. (e) The surface states on the (010) surface. A Fermi arc
links the projections of the two Weyl points on the surface Brillouin
zone.

by the two-dimensional representation of the C3 symmetry
group. The latter can be used as the pseudospin space re-
quested in Eq. (1). Connecting the pseudospin modules with
devices in a braided configuration allows the electrical signals
to flip spins and are subject to a spin-orbit couplinglike effect
as they pass between them. We design six connection modules
that are proportional to ±σx,y and ±iσz matrices as depicted in
Figs. 2(b)–2(d), which can be used to connect the pseudospin
modules at arbitrary distances to implement the hopping terms
required by the model Hamiltonian Eq. (1). More details are
provided in Appendix A.

For N = 1, the Hamiltonian Eq. (1) can be explored with a
square lattice described by the tight-binding Hamiltonian

HN=1 =
∑
i, j

3∑
k=0

(c†
i+δk , jÛkci, j + H.c.), (4)

FIG. 4. The printed circuit board and the experimentally ob-
served edge states for the N = 1 Weyl circuit. (a) Unit cell of the
printed circuit board fabricated according to Figs. 3(a) and 3(b).
The yellow box indicates the connection modules and the inductors.
The red box indicates the interface of the U0 module. (b) The printed
circuit board of the U0 module. (c)–(f) The experimentally measured
band structure for kz = −π , −π/2, 0, and π/2. The black color
represents the experimental data. The green curve is the computed
band structure of a slab with four cells in the y direction. The k = −π

and k = 0 planes are close to the Weyl points, where there exists a
small gap in the band structure. For the k = −π/2 subsystem, an
edge state crosses the gap. The signal source is connected to the cell
at y = 4. Therefore, only the edge state localized at this boundary
can be detected, while the edge state at the y = 1 boundary cannot
be detected. For kz = π/2, there are no edge states in the gap.

where i and j indicate the lattice site, δk are hopping vectors,
Ûk are spin-orbit coupling operators, and their expressions are
given in Table I. The hopping operators can be implemented
with the connection modules illustrated in Figs. 2(b)–2(d).
For example, Û1 can be constructed by connecting mσ1 and
m−iσ3 modules in parallel and Û2 can be constructed by con-
necting mσ2 and m−iσ3 modules in parallel. The operator Û0

characterizes the coupling within the unit cell, which can be
implemented by using the inverting operational amplifier as

TABLE I. The hopping vectors δi and the corresponding spin-
orbit coupling operators Ûi for the Weyl circuit with topological
charges equal to 1 and 2. p ≡ (α2 − β2)/2. x̂, ŷ, and ẑ indicate the
unit lattice vectors in the x, y, and z directions, respectively.

N = 1 i 0 1 2 3
δi 0 x̂ ŷ ẑ
Ûi m0σ3

1
2 ασ1 − i

2 γ1σ3
1
2 βσ2 − i

2 γ2σ3 − i
2 γ3σ3

i 0 1 2 3
δi 0 x̂ ŷ ẑ

N = 2 Ûi pσ1 + m0σ3 − i
2 γ1σ3 − i

2 γ2σ3 − i
2 γ3σ3

i 4 5 6 7
δi 2x̂ 2ŷ x̂ + ŷ x̂ − ŷ

Ûi
α2

4 σ1 − β2

4 σ1
αβ

2 σ2
αβ

2 σ2
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FIG. 5. The Weyl circuit with topological charge equal to ±2.
(a) Schematic of the unit cell of Weyl circuit with N = 2. The green,
gray, and yellow blocks are the connection modules used for the
three-dimensional connections. Their configuration details are shown
in Figs. 2(b)–2(d). The lower and left nodes in connection modules
are connected to nodes 1–3 of cell i. The upper and right nodes
are connected to the nodes in cell i + δ, where δ = x̂, ŷ, ẑ, 2x̂, 2ŷ,
x̂ + ŷ, and x̂ − ŷ. The U0 module is used to realize the on-site matrix
in Eq. (6). (b) Circuit diagram of the U0 module, which consists
of inverting op-amps, capacitors, and resistors. (c) Eigenfrequency
dispersion of the Weyl circuit along high-symmetry lines, where the
bands cross at points W1 and W2 in the Brillouin zone. Near the Weyl
points, the bands are linear along the kz directions, but parabolic
touched in the kx and ky directions. (d) The Chern number in the
kx-ky plane as a function of kz. (e) The surface states on the (010)
surface. Two Fermi arcs link the projections of the two Weyl points
on the surface Brillouin zone.

shown in Fig. 3(b). The details about the U0 circuit module
are presented in Appendix B.

The structure of a unit circuit cell is illustrated in
Figs. 3(a) and 3(b). Using these unit cells, a three-dimensional
circuit network with translational symmetry can be con-
nected according to the tight-binding Hamiltonian Eq. (4).
The Kirchhoff’s equations for the circuit network can be
written as

(h1(k) ⊕ H circuit
N=1 (k))ṽ = ω−2(0 ⊕ I2)ṽ (5)

in the pseudospin space, where ⊕ stands for direct sum of
the constant representation space and the pseudospin space
of the C3 symmetry group, ṽ = (ṽ1, ṽ2, ṽ3)T are the node
voltages in the basis of the eigenfunctions of the C3 symmetry
group. H circuit

N=1 (k) = ∑3
i=0 di(k)σi is the Hamiltonian in the

pseudospin space, where d0(k) = 22
3 LCa, d1(k) − id2(k) =

− LCa
3 (cos kx − i

√
3 cos ky) and d3(k) = − 2

√
3

3 L(Ca(sin kx +
sin ky + sin kz ) + 1

2Rmω
). Rm, Ca, and L are parameters of the

FIG. 6. The printed circuit board and experimentally observed
edge states for the N = 2 Weyl circuit. (a) Unit cell of the printed
circuit board fabricated according to Figs. 5(a) and 5(b). The yellow
box indicates the connection modules and the inductors. The red
box indicates the interface for the U0 module. (b) The printed circuit
board of the U0 module. (c)–(f) The experimentally measured band
structue for kz = −π , −π/2, 0 and π/2. The black color represents
the experimental data. The green curve is the computed band struc-
ture of a slab with four cells in the y direction. The k = −π and
k = 0 planes are close to the Weyl points, where exists small gap
in the band structure. For the k = −π/2 subsystem, two edge states
cross the gap. The exciting signal source is connected to the cell at
y = 4. Therefore, only the edge states localized at this boundary can
be detected, while the edge states at the y = 1 boundary cannot be
detected. For kz = π/2, there are no edge states in the gap.

components. More details about the circuit are presented in
Appendix B.

We focus on H circuit
N=1 (k) in Eq. (5), where the term con-

taining Rm originates from the U0 module. If this module
is not included, the circuit consists of only two types
of devices, capacitors, and inductors, and the effective
Hamiltonian is given as H0(k) = H circuit

N=1 (k) − HU0 , where

HU0 = −
√

3L
3Rmω

σ3. The effective Hamiltonian H0(k) is time-
reversal invariant, i.e., T H0(k)T −1 = H0(−k), where T =
σ1K and K is complex conjugation operator. The U0 module
contains resistors and active devices; the operational ampli-
fiers break the time-reversal symmetry, i.e., T HU0 T −1 �= HU0 .
As a result, the whole circuit network breaks the time-reversal
symmetry, ensuring a single pair of Weyl points in the band
structure. In Fig. 3(c), we show the calculated frequency dis-
persion of H circuit

N=1 (k). One can see that the bands cross at Weyl
points W1 and W2 and have a linear dispersion in directions kx,
ky, and kz near the crossing points. The term h1(k) in Eq. (5)
is not our concern. By selecting the appropriate parameters, it
is possible to move the eigenfrequencies of h1(k) away from
the eigenfrequencies of H circuit

N=1 (k). The topological charge of
the Weyl point can be revealed by the topological number
C(kz ), which is the Chern number in the kx-ky space, with
kz as the parameter. The calculated Chern number C(kz ) is
shown in Fig. 3(d), where it increases by one at point W1 and
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decreases by one at point W2. Thus, the topological charge
of the Weyl point W1,2 equals ±1. In three-dimensional Weyl
materials, when the Weyl points are projected onto the ma-
terial’s surface, it can be observed that Fermi arcs connect
the Weyl points with opposite chirality. The number of Fermi
arcs is determined by the topological charge of the projected
Weyl points. This bulk-surface correspondence property is
frequently used to identify the topological nature of Weyl ma-
terials in experiments. The surface states in the (010) direction
calculated from the model Hamiltonian Eq. (5) are shown in
Fig. 3(e). The two Weyl points are linked with a Fermi arc,
which is consistent with the topological charge of the Weyl
points.

In our design, the Weyl points are not protected by symme-
try. Hence their positions are not at the high-symmetry points
but the general points in the Brillouin zone. Therefore, a very
dense k point, i.e., a large real space network, is required
to observe the Weyl points in the experiment. The Chern
number C(kz ) changes at the Weyl point, and the value of
its change is just the topological charge of the Weyl point.
This property makes it possible to confirm the existence of the
Weyl point and its topological charge by measuring C(kz ). Ex-
perimentally, we can measure the number of edge states of the
two-dimensional subsystem parameterized by kz in the three-
dimensional system to obtain the Chern number C(kz ) with a
relatively small circuit network. Based on this idea, we fab-
ricate the printed circuit board (PCB) containing 20 × 4 × 4
unit cells with periodic boundary conditions in the x and z di-
rections and open boundary conditions in the y direction. The
structure of a unit circuit cell is shown in Figs. 4(a) and 4(b).
By performing the AC sweep analysis, we obtain the band
structure of the circuit network as shown in Figs. 4(c)–4(f).
The band structure has a clear gap for kz = π/2, and there are
no edge states. The experimental results are consistent with
the model calculation results as C(kz ) = 0 and the surface
states in this area do not have a Fermi arc. For kz = −π/2,
there is an edge state crossing through the bandgap, which is
consistent with the Chern number C(kz ) = 1 calculated from
model Hamiltonian Eq. (5). Therefore, a Weyl point exists in
the area between kz = −π/2 and kz = π/2, which has a topo-
logical charge equal to one. Increasing the number of circuit
cells enables a more accurate measurement of the location of
the Weyl point in the three-dimensional Brillouin zone. More
details about the experiment are presented in Appendix E.

IV. THE WEYL CIRCUIT WITH TOPOLOGICAL CHARGE
EQUAL TO ±2

We now provide the design scheme for the ideal unconven-
tional Weyl state with topological charge N = 2. In this case,
the Hamiltonian Eq. (1) can be explored with a square lattice
described by a tight-binding Hamiltonian

HN=2 =
∑
i, j

7∑
k=0

(c†
i+δk , jÛkci, j + H.c.), (6)

where i and j indicate the lattice sites, δk are hopping vectors,
Ûk are spin-orbit coupling operators, and their expressions are
given in Table I. As in the N = 1 case, these operators can
be obtained by using the basic connection modules given in

FIG. 7. Construct pseudospin space and matrix-form hopping in
the circuit. (a) Three components (capacitors or inductors) with the
same parameters are connected head to tail to form a triangle. The
nodes are labeled 1–3. (b) Two triangle cells, m and n, are connected
by module m−σx .

Figs. 2(b)–2(d). The Û0 term characterizes the coupling within
the unit cell that can be realized by using the inverting opera-
tional amplifier as shown in Fig. 5(b). The structure of a unit
circuit cell for the Weyl circuit is shown in Figs. 5(a) and 5(b).
Using these unit cells, a three-dimensional circuit network
with translational symmetry can be connected according to the
tight-binding Hamiltonian Eq. (6). The Kirchhoff’s equations
for the circuit network are given as(

h1(k) ⊕ H circuit
N=2 (k)

)
ṽ = ω−2(0 ⊕ I2)ṽ, (7)

in the pseudospin space, where H circuit
N=2 (k) = ∑3

i=0 di(k)σi is
the Hamiltonian in the pseudospin space, where d0(k) =
28
3 Ca, d1(k) − id2(k) = − LCa

3 (cos kx − i
√

3 cos ky)2, d3(k) =
− 2

√
3L

3 (Ca(sin kx + sin ky + sin kz ) + 1
2Rmω

). Rm, Ca, and L are
parameters of the components. In Fig. 5(c), we show the
calculated band structure of H circuit

N=2 (k). The two bands cross
at points W1 and W2 and have a linear dispersion to kz, but
parabolic touched in the kx and ky directions. The Chern
number C(kz ) as a function of kz is shown in Fig. 5(d). It
increases by two at point W1 and decreases by two at point
W2. Thus, the topological charge is equal to ±2 at the Weyl
points W1,2. The surface states on the (010) direction calcu-
lated from model Hamiltonian Eq. (7) are shown in Fig. 5(e),
where two Fermi arcs connect the projections of the two
Weyl points. More details about the circuit are presented in
Appendix C.

To verify the above theoretical results, we fabricate PCB
containing 20 × 4 × 4 unit cells with periodic boundary con-
ditions in the x and z directions and open boundary conditions
in the y direction. The structure of the unit circuit cell is shown
in Figs. 6(a) and 6(b). By performing AC sweep analysis, we
obtain the band structure of the circuit network as shown in
Figs. 6(c)–6(f). The band structure shows a clear gap for kz =
π/2, and there are no edge states, which is consistent with

FIG. 8. Schematic of the operational inverting amplifier.
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FIG. 9. The band structure as a function of Rm for Weyl circuit
with N = 1. The k-point path passes through the point (kx, ky ) =
(−π/2, −π/2) and along the kz direction. (a) for Rm = 50 	, (b) for
Rm = 70 	, (c) for Rm = 90 	, (d) for Rm = 110 	, (d) for Rm = 140
	, and (f) for Rm = 220 	. The parameter of capacitance is Ca = 0.2
nF and the parameter of inductance is L = 2.7 μH.

the model calculation results as C(kz ) = 0 and the surface
states in this area do not have a Fermi arc. For kz = −π/2,
two edge states are crossing through the band gap, which is
consistent with the Chern number C(kz ) = 2 calculated from
model Hamiltonian Eq. (7). Therefore, a Weyl point with a
topological charge equal to two exists in the area between
kz = −π/2 and kz = π/2.

For topological charge N equal to three or higher values,
the design scheme is similar to the cases of N equal to 1 and
2, except that longer and more hopping terms are required,
which increases the complexity of the circuit structures. As
indicated in Eq. (1), the increase of connection complexity is
only on the x-y plane. The connections in the z direction are
the same for any N . In Appendix D, we give details of the
Weyl circuit for N = 3, 4, and 5.

V. CONCLUSION

This paper provides a model Hamiltonian with long-range
three-dimensional spin-orbit coupling instead of symmetry to
design the ideal conventional and unconventional Weyl states.
We verify our theory in circuit networks, where two types of
circuit modules are designed. The first one is the connection
modules that enable the implementation of long-range spin-
orbit coupling. The second one is the on-site module that
breaks the time-reversal symmetry. We can use these modules
to realize Weyl states with a topological charge equal to an
arbitrary integer. Our design scheme is highly generalizable.
It can be used to construct topological Chern insulating states
with an arbitrary Chern number in two-dimensional systems
and be extended to arbitrary spatial dimensions to implement
states of matter that are difficult to access in solids.

FIG. 10. Band structure as a function of Rm for Weyl circuit
with N = 2. The k-point path passes through the point (kx, ky ) =
(−π/2,−π/2) and along the kz direction. (a) For Rm = 50 	, (b) for
Rm = 70 	, (c) for Rm = 90 	, (d) for Rm = 110 	, (e) for Rm = 140
	, and (f) for Rm = 220 	. The parameter of capacitance is Ca = 0.2
nF and the parameter of inductance is L = 2.7 μH.
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APPENDIX A: PSEUDOSPIN SPACE AND SPIN-ORBIT
COUPLING IN CIRCUIT

For the circuit illustrated in Fig. 7(a), three identical com-
ponents (capacitors or inductors) are connected head to tail
to form a triangle with C3 rotational symmetry. As shown in
Table II, the C3 symmetry has an irreducible two-dimensional
representation with basis functions that are complex conju-
gates of each other. Therefore, we can choose these twofold
degenerate eigenstates as the basis functions for the pseu-
dospin space. We use the inductor circuit as an example to
present the derived details. The Kirchhoff’s current equations

TABLE II. Character table for C3 point group, where ε = ei2π/3.
The two sets of characters in representation E are complex con-
jugates of each other. For systems with time-reversal symmetry,
representation E is twofold degeneracy.

C3 E C3 C2
3

A 1 1 1

E
1 ε ε∗

1 ε∗ ε
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FIG. 11. (a) Eigenfrequency dispersion of the N = 3 Weyl circuit along high-symmetry lines. (b) The (100) surface states of the Weyl state
with topological charge equal to three. There are three Fermi arcs connecting the projection of the Weyl points. (c) The (010) surface states
for N = 3 Weyl circuit. (d) Eigenfrequency dispersion of the N = 4 Weyl circuit. (e)–(f) The (100) and (010) surface states of the N = 4 Weyl
state. (g)–(i) Band structure and the (100) and (010) surface states of the n = 5 Weyl state. the Fermi arcs on the (010) surface are overlapping
and only three are visible. In the above three Weyl circuits, the parameter of the inductor in the pseudospin modules is L = 2.7 μH, and the
parameter of the capacitor is Ca = 0.2 nF. The resistor in the U0 module is Rf = 90 	 for N = 3 and Rf = 130 	 for N = 4 and 5.

for the circuit in Fig. 7(a) can be written as

⎡
⎣i1

i2
i3

⎤
⎦ = 1

iωL

⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦

⎡
⎣v1

v2

v3

⎤
⎦, (A1)

where v1,2,3 are the voltages on the nodes, and i1,2,3 are the
currents flowing into each node. L is the inductance of the
inductors. ω is the frequency of the AC signal. We abbreviate
the 3 × 3 admittance matrix on the right-hand side of Eq. (A1)

as ML. Diagonalizing ML, we obtain

U †MLU = �, (A2)

where the eigenfunctions U and eigenfrequencies � are
given as

U = 1√
3

⎡
⎣1 ε ε∗

1 ε∗ ε

1 1 1

⎤
⎦, � = −

⎡
⎣0

3
3

⎤
⎦, (A3)
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FIG. 12. (a), (b) The printed circuit boards designed according to the model Hamiltonian Eqs. (4) and (6), which are assembled together
to form the 20 × 4 × 4 Weyl circuit systems.

and ε = ei2π/3. The twofold degenerate states in Eq. (A3), i.e.,
φs1

= 1√
3
(ε, ε∗, 1)T and φs2

= 1√
3
(ε∗, ε, 1)T, can be chosen as

the basis functions of the pseudospin space. φ0 = 1√
3
(1, 1, 1)T

is the basis function for the constant representation space.
Now, we provide connection modules that generate Pauli

matrix-type couplings. We take module m−σ1 , which generates
a −σ1 type coupling, as an example to show the derivation
details. Ohm’s law indicates the sum of the currents entering
each node in Fig. 7(b) are given as

im1 = yL(vm3 + vm2 − 2vm1 ) + yCa (vn3 − vm1 )

+ yCa (vn1 − vm1 ), (A4)

im2 = yL(vm1 + vm3 − 2vm2 ) + yCa (vn3 − vm2 )

+ yCa (vn2 − vm2 ), (A5)

im3 = yL(vm1 + vm2 − 2vm3 ) + yCa (vn1 − vm3 )

+ yCa (vn2 − vm3 ), (A6)

in1 = yL(vn3 + vn2 − 2vn1 ) + yCa (vm3 − vn1 )

+ yCa (vm1 − vn1 ), (A7)

in2 = yL(vn1 + vn3 − 2vn2 ) + yCa (vm3 − vn2 )

+ yCa (vm2 − vn2 ), (A8)

in3 = yL(vn1 + vn2 − 2vn3 ) + yCa (vm1 − vn3 )

+ yCa (vm2 − vn3 ), (A9)

where im,n, vm,n, and yL,Ca are the currents, voltages, and
admittance of the devices, respectively. In the stationary AC
signal analysis, yCa = iωCa for capacitors and yL = 1/iωL
for inductors. Writing the above equations into matrix form,
we get

[
im

in

]
=

[ 1
iωL ML − iω2CaI3 iωCaM−σ1

iωCaMT
−σ1

1
iωL ML − iω2CaI3

][
vm

vn

]
,

(A10)

where im(n) = (im(n)1 , im(n)2 , im(n)3 )T, vm(n) = (vm(n)1 , vm(n)2 ,

vm(n)3 )T, ML is defined in Eq. (A1), and I3 is the identity
matrix. Matrix M−σ1 corresponds to the connection module
m−σ1 , which is given as

M−σ1 =
⎛
⎝1 0 1

0 1 1
1 1 0

⎞
⎠. (A11)

The 6 × 6 matrix on the right-hand side of Eq. (A10) is the
admittance matrix. With no external current source, the sum of
the currents entering each circuit node equals zero, therefore
Eq. (A10) can be formulated as[−2I3 M−σ1

MT
−σ1

−2I3

][
vm

vn

]
= 1

ω2LCa

[
ML 0
0 ML

][
vm

vn

]
. (A12)

Using the transformation matrix U given in Eq. (A3), we
obtain[ −2I3 U †M−σ1U

U †MT
−σ1

U −2I3

][
ṽm

ṽn

]
= �

ω2LCa

[
ṽm

ṽn

]
, (A13)

165128-8



REALIZATION OF IDEAL UNCONVENTIONAL WEYL … PHYSICAL REVIEW B 108, 165128 (2023)

where ṽm(n) = U †vm(n), and

U †M−σ1U =
⎡
⎣2 0 0

0 0 −1
0 −1 0

⎤
⎦ = 2 ⊕ −σ1. (A14)

In this paper, the currents and voltages with a tilde above
take the eigenfunctions of the C3 symmetry group as basis
functions, and those without a tilde refer to currents and volt-
ages at the circuit nodes. For the twofold degenerate states in
Eq. (A13), tunneling from cell n to cell m is characterized by a
Pauli matrix −σ1. Using the same method, we can design the
connection modules that connect cells m and n, with coupling
matrices in the form of ±σ1,2 and ±iσ3.The results are listed
below:

M+σ1 =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠, U †M+σ1U = 1 ⊕ σ1, (A15)

M−σ1 =
⎛
⎝1 0 1

0 1 1
1 1 0

⎞
⎠, U †M−σ1U = 2 ⊕ (−σ1), (A16)

M+σ2 =
⎛
⎝0 1 2

1 2 0
2 0 1

⎞
⎠, U †M+σ2U = 3 ⊕

√
3σ2, (A17)

M−σ2 =
⎛
⎝2 1 0

1 0 2
0 2 1

⎞
⎠, U †M−σ2U = 3 ⊕ (−

√
3σ2), (A18)

M+iσ3 =
⎛
⎝1 2 0

0 1 2
2 0 1

⎞
⎠, U †M+iσ3U = 3 ⊕ i

√
3σ3, (A19)

M−iσ3 =
⎛
⎝1 0 2

2 1 0
0 2 1

⎞
⎠, U †M−iσ3U = 3 ⊕ (−i

√
3σ3).

(A20)

APPENDIX B: WEYL CIRCUIT WITH TOPOLOGICAL
CHARGE EQUAL TO ±1

This Appendix gives details of the Weyl circuit with topo-
logical charge equal to ±1. The admittance matrix of the
Kirchhoff’s equation for the three-dimensional circuit net-
work constructed with the unit cell of Figs. 3(a) and 3(b) can
be written as

Y = yLML + yCa eik·δ1 (Mσx + M−iσz )+yCa e−ik·δ1 (Mσx + M−iσz )

+ yCa eik·δ2 (Mσy + M−iσz )

+ yCa e−ik·δ2 (Mσy + M−iσz ) + yCa eik·δ3 M−iσz

+ yCa e−ik·δ3 M−iσz − 22yCa I3 + y0M0, (B1)

where Mσi are the admittance matrices corresponding to the
connection modules. The last term y0M0 is for the on-site
module [the U0 module in Fig. 3(b)]. In the following, we
present the schemes for the design of the on-site module.

We design the on-site module by using the operational in-
verting amplifiers. The inverting amplifier is shown in Fig. 8.
For an ideal operational amplifier, we have v+ = v− = 0 and
i− = 0. This results in va/R f = −vb/(2R f ), i.e., vb = −2va.

Using the voltage-current relationship of the operational in-
verting amplifiers, the currents flowing into the three nodes in
Fig. 3(b) can be calculated as

i1 = (−2v3 − v1)/Rm, (B2)

i2 = (−2v1 − v2)/Rm, (B3)

i3 = (−2v2 − v3)/Rm. (B4)

In the above derivation, we choose R f � Rm, so the current
flowing through the R f branch can be ignored. Taking the
matrix form of the above three equations, the admittance
matrix of the U0 module is given by

y0M0 = − 1

Rm

⎡
⎣1 0 2

2 1 0
0 2 1

⎤
⎦. (B5)

The Kirchhoff’s equation i = Y v can be reduced to

(h1(k) ⊕ H circuit
N=1 (k))ṽ = ω−2(0 ⊕ I2)ṽ, (B6)

with no external input currents, where v = (v1, v2, v3) are
the voltage at the nodes in the unit cell, ṽ = U †v, and U is
defined in Eq. (A3). H circuit

N=1 (k) = ∑3
i=0 di(k)σi is the Weyl

Hamiltonian in the pseudospin space, where

d0(k) = 22

3
LCa, (B7)

d1(k) − id2(k) = − LCa

3
(cos kx − i

√
3 cos ky), (B8)

d3(k) = −2
√

3L

3

(
Ca(sin kx + sin ky + sin kz ) + 1

2Rmω

)
.

(B9)

The energy bands of H circuit
N=1 (k) are shown in Fig. 3(c). Here,

we show that the appearance and disappearance of the Weyl
point can be controlled by the parameter Rm. As shown in
Fig. 9, with the increase of Rm, the frequency bands change
from insulator to Weyl semimetal and then to the insulator.
The parameter Rm guarantees the existence of two Weyl points
in a wide range of values.

h1(k) is the Hamiltonian in the constant representation
space of the C3 symmetry group, which is given as

h1(k) = 3

Rm
+ iωCa(22 − 7 cos kx − 9 cos ky − 6 cos kz ).

(B10)

It is easy to verify that the real part of the eigenfrequency of h1

is equal to 0, and the imaginary part is greater than 0, which
means that the electrical signal decays with time and it is a
stable solution of the system.

APPENDIX C: WEYL CIRCUIT WITH TOPOLOGICAL
CHARGE EQUAL TO ±2

In this Appendix, we give details of the Weyl circuit with
topological charge equal to ±2. The admittance matrix of
the Kirchhoff’s equation for the three-dimensional circuit net-
work built with the unit cell of Figs. 5(a) and 5(b) can be

165128-9
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TABLE III. The hopping vectors and the corresponding hopping matrices for the Weyl circuit with topological charges equal to ±3. x̂, ŷ,
and ẑ denote the lattice vectors in the x, y, and z directions, respectively.

k 0 1 2 3
δk 0 x̂ ŷ ẑ
Ûk m0σ3 ( 3

8 α3 − 3
4 αβ2)σ1 − i

2 γ1σ3 ( 3
4 α2β − 3

8 β3)σ2 − i
2 γ2σ3 − i

2 γ3σ3

k 4 5 6 7
δk 3x̂ 3ŷ x̂ + 2ŷ x̂ − 2ŷ

N = 3 Ûk
1
8 α3σ1 − 1

8 β3σ2 − 3
8 αβ2σ1 − 3

8 αβ2σ1

k 8 9
δk 2x̂ + ŷ 2x̂ − ŷ
Ûk

3
8 α2βσ2

3
8 α2βσ2

TABLE IV. The hopping vectors and the corresponding hopping matrices for the Weyl circuit with topological charges equal to ±4.

k 0 1 2 3
δk 0 x̂ ŷ ẑ
Ûk ( 3

8 α4 − 3
2 α2β2 + 3

8 β4)σ1 + m0σ3 − i
2 γ1σ3 − i

2 γ2σ3 − i
2 γ3σ3

k 4 5 6 7
δk 2x̂ 2ŷ 4x̂ 4ŷ
Ûk ( 1

4 α4 − 3
4 α2β2)σ1 (− 3

4 α2β2 + 1
4 β4)σ1

1
16 α4σ1

1
16 β4σ1

k 8 9 10 11
N = 4 δk x̂ + ŷ x̂ − ŷ x̂ + 3ŷ x̂ − 3ŷ

Ûk
3
4 (α3β − αβ3)σ2

3
4 (α3β − αβ3)σ2 − 1

4 αβ3σ2 − 1
4 αβ3σ2

k 11 12 13 14
δk 3x̂ − ŷ 3x̂ + ŷ 2x̂ − 2ŷ 2x̂ + 2ŷ
Ûk

1
4 α3βσ2

1
4 α3βσ2 − 3

8 α2β2σ1 − 3
8 α2β2σ1

TABLE V. The hopping vectors and the corresponding hopping matrices for the Weyl circuit with topological charges equal to ±5. p1 =
5
16 α5 − 15

8 α3β2 + 15
16 αβ4, and p2 = 15

16 α4β − 15
8 α2β3 + 5

16 β5.

k 0 1 2
δk 0 x̂ ŷ
Ûk m0σ3 p1σ1 − i

2 γ1σ3 p2σ2 − i
2 γ2σ3

k 3 4 5
δk ẑ 3x̂ 3ŷ
Ûk − i

2 γ3σ3 ( 5
32 α5 − 5

8 α3β2)σ1 (− 5
8 α2β3 + 5

32 β5)σ2

k 6 7 8
δk 5x̂ 5ŷ x̂ + 2ŷ
Ûk

1
32 α5σ1

1
32 β5σ2 (− 15

16 α3β2 + 5
8 αβ4)σ1

k 9 10 11
δk x̂ − 2ŷ x̂ + 4ŷ x̂ − 4ŷ
Ûk (− 15

16 α3β2 + 5
8 αβ4)σ1

5
32 αβ4σ1

5
32 αβ4σ1

N = 5 k 12 13 14
δk 2x̂ + ŷ 2x̂ − ŷ 2x̂ + 3̂y
Ûk ( 5

8 α4β − 15
16 α2β3)σ2 ( 5

8 α4β − 15
16 α2β3)σ2 − 5

16 α2β3σ2

k 15 16 17
δk 2x̂ − 3ŷ 3x̂ + 2ŷ 3x̂ − 2ŷ
Ûk − 5

16 α2β3σ2 − 5
16 α3β2σ1 − 5

16 α3β2σ1

k 18 19
δk 4x̂ + ŷ 4x̂ − ŷ
Ûk

5
32 α4βσ2

5
32 α4βσ2
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written as

Y = yLML + yCa (eik·δ1 M−iσz + e−ik·δ1 Miσz )

+ yCa (eik·δ2 M−iσz + e−ik·δ2 Miσz )

+ yCa (eik·δ3 M−iσz + e−ik·δ3 Miσz )

+ 1
4 yCa (eik·δ4 Mσx + e−ik·δ4 Mσx )

+ 3
4 yCa (eik·δ5 M−σx + e−ik·δ5 M−σx )

+ 1
2 yCa (eik·δ6 Mσy + e−ik·δ6 Mσy )

+ 1
2 yCa (eik·δ7 Mσy + e−ik·δ7 Mσy ) − 55

2 yCa I3 + y0M0,

(C1)

where Mσi are the admittance matrices corresponding to the
connection modules. which are listed in the Eqs. (A15)–
(A20). The last term y0M0 is for the on-site module (the
U0-module in Fig. 5(b)). In the following, we give the schemes
for designing the on-site module.

Using the voltage-current relationship of the inverting am-
plifier as shown in Fig. 8, the currents flowing into the three
nodes in Fig. 5(b) can be calculated as

i1 = (−2v3 − v1)/Rm + iωCa(−2v2 − v1)/2, (C2)

i2 = (−2v1 − v2)/Rm + iωCa(−2v1 − v2)/2, (C3)

i3 = (−2v2 − v3)/Rm + iω3Ca(0 − v3)/2. (C4)

Taking the matrix form of the above three equations, the
admittance matrix of the circuit is obtained as

y0M0 = − 1

Rm

⎡
⎣1 0 2

2 1 0
0 2 1

⎤
⎦ + iωCa

2

⎡
⎣−1 −2 0

−2 −1 0
0 0 −3

⎤
⎦.

(C5)

The Kirchhoff’s equation i = Y v can be reduced to

(h1(k) ⊕ H circuit
N=2 (k))ṽ = ω−2(0 ⊕ I2)ṽ, (C6)

with no external input currents, where H circuit
N=2 (k) =∑3

i=0 di(k)σi is the Chern insulator Hamiltonian in the
pseudospin space with

d0(k) = 28

3
LCa, (C7)

d1(k) − id2(k) = − LCa

3
(cos kx − i

√
3 cos ky)2, (C8)

d3(k) = −2
√

3L

3

(
Ca(sin kx + sin ky + sin kz ) + 1

2Rmω

)
.

(C9)

The energy bands of H circuit
N=2 (k) are shown in Fig. 5(c). Here,

we show that the appearance and disappearance of the Weyl
points can be controlled by the parameter Rm. As shown in
Fig. 10, with the increase of Rm, the frequency bands change
from insulator to Weyl semimetal and then to the insulator.
From the above discussion, it is clear that the Weyl points are
not due to symmetry but to the band-inversion mechanism.
The topological charge of the Weyl point is determined by the
specific form of the long-range spin-orbit coupling.

h1(k) is the Hamiltonian in the constant representation
space of the C3 symmetry group, which is calculated as

h1(k) = 3

Rm
+ 1

2
iωCa(58 − cos 2kx

− 12 cos ky − 12 cos kx(1 + cos ky)

− 6 cos 2ky − 12 cos kz ). (C10)

It is easy to verify that the real part of the eigenfrequency
of h1 is equal to 0, and the imaginary part is greater than
0. It indicates that the electrical signal corresponding to the
eigenfrequency decays with time and is a stable solution for
the system.

APPENDIX D: WEYL CIRCUIT WITH TOPOLOGICAL
CHARGE EQUAL TO ±3, ±4, and ±5

This Appendix presents the design of the Weyl circuit
with a topological charge N equal to 3, 4, and 5. By
the Fourier transformation, the hopping vectors and hop-
ping matrices in real space for the Hamiltonian Eq. (1)
are summarized in Tables III–V. Similar to the cases for
N equaling 1 and 2, the hopping matrices in Tables III–V can
be implemented with the connection modules in Figs. 2(b)–
2(d) and the on-site modules in Fig. 3(b) or Fig. 5(b). The
design scheme of the Weyl circuit for N equals 3, 4, 5, or
higher is similar to N equals 1 and 2, except that the hopping
distance and the number of hopping terms increase as N
increases. Here we do not sketch the specific circuits but give
the calculation results directly.

The effective Hamiltonian of the Weyl circuit is
H circuit

N (k) = ∑3
i=0 di(k)σi, where

d1(k) − id2(k) = −LCa

3
(cos kx − i

√
3 cos ky)N , (D1)

d3(k)= −2
√

3L

3

(
Ca(sin kx + sin ky + sin kz ) + 1

2Rmω

)
,

(D2)

d0(k) = 175
12 LCa for N = 3, d0(k) = 533

24 LCa for N = 4, and
d0(k) = 1771

48 LCa for N = 5. In Fig. 11, we present the fre-
quency dispersion of the Weyl circuits. There are two Weyl
points in the band structure for each case. Near the Weyl
points, the dispersion is linear along with the kz direction
and Nth order curve for kx and ky. The surface states in the
(100) and (010) directions are shown in Fig. 11. The number
of Fermi arcs is consistent with the topological charge of the
Weyl points.

APPENDIX E: EXPERIMENTAL DETAILS
OF THE WEYL CIRCUIT

The Weyl circuits for the experimental measurements are
shown in Fig. 12. The parameters of the components are
chosen as follows. Inductors L are 2.7 μH with ±5% tol-
erance. Capacitors Ca in the connection modules are 0.2 nF
with ±5% tolerance. Resistors Rm in modules U0 are 90.9 	

with ±1% tolerance, and resistors R f are 2.8 k	 with ±1%
tolerance. The operational amplifiers are AD8047. The volt-
ages at each node, including the amplitude and phase, are
probed by Rohde & Schwarz vector network analyzer ZNL6
5kHz-6GHz.
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