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Scrambling of quantum information in unitary evolution can be hindered due to measurements and localiza-
tion, which pin quantum mechanical wave functions in real space, suppressing entanglement in the steady state.
In monitored free-fermionic models, the steady state undergoes an entanglement transition from a logarithmically
entangled critical state to area law. However, disorder can lead to Anderson localization. We investigate free
fermions in a random potential with continuous monitoring, which enables us to probe the interplay between
measurement-induced and localized phases. We show that the critical phase is stable up to a finite disorder,
and the criticality is consistent with the Berezinskii-Kosterlitz-Thouless universality. Furthermore, monitoring
destroys localization, and the area-law phase at weak dissipation exhibits power-law decay of single-particle
wave functions. Our work opens an avenue to probe this phase transition in electronic systems of quantum dot
arrays and nanowires and allow quantum control of entangled states.
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I. INTRODUCTION

The preservation of information in many-body quantum
systems poses a substantial challenge in quantum computing.
Generically, as quantum systems evolve in time, any initial
quantum information is scrambled throughout the system,
becoming inaccessible through local measurements, leading
to thermalization. In recent years, it has become clear that
there are quantum systems that can fail to thermalize, the
most prominent example being the phenomenon of many-
body localization (MBL) [1–5]. In such systems, quantum
information remains accessible via local measurements even
at long times and preserves correlations in the initial state.
The MBL phase transition separating localized and chaotic
phases of matter is characterized by a singular change in the
entanglement properties of the system.

Entanglement phase transitions can also occur in quantum
trajectories of open quantum systems [6–8]. The transition oc-
curs due to a competition between measurements and unitary
evolution, hence the name measurement-induced entangle-
ment transition (MIET). This type of phase transition has
been of interest in many recent studies [9–127]. Typically, one
considers a quantum circuit with unitary gates interspersed
with local measurements at random locations. The transition
between the volume-law and the area-law phase occurs at a
finite measurement probability and is known to occur in a
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wide variety of systems: unitaries can be randomly drawn
either from the Haar measure or the Clifford group [6–9],
or a Hamiltonian evolution of interacting systems [45–49],
while the measurements can be chosen to be projective or
weak. The universal properties of the MIET in random unitary
circuits have similarities with those of percolation, though
there appear to be some differences in surface critical behavior
[8,11,16–19,21].

Intriguingly, the phase diagram changes significantly for
a free-fermionic system [32–44]. The volume-law entangled
steady state for nonzero measurement probability is fragile
due to its lack of multipartite entanglement in free-fermion
systems [32,33]. For a range of measurement probabilities,
an extended critical phase with logarithmic growth of entan-
glement and conformal symmetry emerges [33]. Beyond a
critical measurement probability, the systems transition into
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FIG. 1. (a) Sketch of disordered monitored free fermions.
(b) Phase diagram. The density plot shows the effective central
charge estimate cL/2. Data collapses of half-chain entanglement en-
tropy (green circles) and central charge (blue squares) are used to
estimate the transition boundary (solid line).
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an area-law phase. A substantial amount of evidence implies
that this MIET is within the Berezinskii-Kosterlitz-Thouless
(BKT) universality class [33,34], which puts it in a distinct
class from random unitary circuits. Recent developments also
suggest that the transition happens due to pinning of the
wave-function trajectory to the eigenstates of the measure-
ment operator [34].

However, several important questions relating to the ro-
bustness of the critical logarithmic phase remain unanswered.
For example, the logarithmic phase remaining stable against
breaking of the continuous U(1) symmetry, for particle num-
ber conservation, to a discrete Z2 fermion parity symmetry is
associated with continuous replica symmetry breaking which
does not appear to have a physical analog [31,34,38,60]. For
free-fermionic systems in one dimension (1D), it is particu-
larly interesting to ask about robustness to quenched disorder.
For a noninteracting Hamiltonian, arbitrarily weak disorder
localizes the single-particle modes in 1D, a phenomenon
known as Anderson localization [128–130]. The role of mea-
surements can destroy the localized phase at intermediate
couplings while facilitating localization into product states at
strong coupling. The competition between measurements and
quenched disorder can result in a rich phase structure for an
entanglement transition and is also relevant for observing the
critical to area-law phase transition in an experimental setting.
Disorder plays an essential role in a system of electrons in
quantum dot arrays and nanowires where these phenomena
can be explored.

Motivated by this question, in this paper, we investigate
the impact of quenched disorder on the measurement-induced
transition in a 1D free-fermion system. A careful analysis
of the entanglement entropy and central charge leads us to
a phase diagram in terms of measurement strength γ and
disorder W [see Fig. 1(b)] which exemplifies the robustness of
the logarithmic phase and the relationship between Anderson
localized and measurement-induced area-law phases of non-
interacting electrons.

II. MODEL

We consider spinless fermions hopping in a 1D lattice with
a random potential, subject to continuous measurements [see
Fig. 1(a)]:

H =
L∑

i=1

(c†
i ci+1 + H.c.) +

L∑
i=1

hini, (1)

where the random potential is distributed uniformly hi ∈
[−W,W ] with disorder strength W . The system is initially set
to a separable Néel state. The evolution is implemented using
the stochastic Schrödinger equation:

d|ψ (t )〉 = −i H dt |ψ (t )〉 − γ dt

2

∑
i

(ni − 〈ni〉)2|ψ (t )〉

+
∑

i

(ni − 〈ni〉)dηt
i |ψ (t )〉, (2)

which describes the continuous monitoring of particle number
operator ni on each site, with measurement strength γ [32].

The Itô increments dηt
i have zero mean and variance of γ dt

(see Appendix for details).
We monitor each quantum trajectory, characterized by a

set of measurement outcomes for a single realization of the
random potential; the results are then averaged over multiple
trajectories. Importantly, this provides access to averages of
nonlinear functions of the reduced density matrix, which in
turn allow us to capture the entanglement phase transition.
Specifically, we use the von Neumann entropy, a measure
of entanglement between subsystem A and its complement,
defined as S = −tr(ρA ln ρA), where ρA is the reduced den-
sity matrix of A. Here, S is initially zero for a separable
state and grows in time, saturating near a fixed point S∞ at
long times, estimated as time average after saturation S∞ =
lim�T →∞

∫ tsat+�T
tsat

S(t )dt/�T . Finally, S∞ is averaged over
trajectories, giving S̄.

Entanglement phase transitions can be directly observed by
monitoring how S̄ changes with the system size L. However,
even in free-fermion circuits, where we can access larger
system sizes, finite-size effects are significant and impede our
analysis. Special care needs to be taken for the critical phase,
where both S̄ and the correlation length ξ diverge logarithmi-
cally with L—extraction of the critical point is difficult for
phase transitions with slowly diverging length scales [33].
This critical phase is expected to be described by a 1+1D
nonunitary conformal field theory (CFT) with periodic bound-
aries, with

S̄(l, L) = c

3
ln

(
L

π
sin

π l

L

)
+ s0, (3)

where l is the length of the subsystem A, c is the effective
central charge of the nonunitary CFT, and s0 is the residual
entropy. For large enough systems, c is expected to be zero in
the area-law phase and finite in the log phase and thus can be
used as a transition diagnostic.

III. RESULTS

A. Phase diagram

Using the results for S̄(L/2, L) as a function of L, we
perform a fit to Eq. (3) and obtain a central charge estimate
cL/2. This allows us to draw the dependence of cL/2 on the
measurement strength γ and the disordered field strength
W —see Fig. 1(b). The central charge remains nonzero at low
values of γ and W , implying the existence of the critical
phase. However, at large values of either γ or W , cL/2 stays
close to zero, a signature of the area law. This suggests that
the logarithmic phase survives the introduction of the random
disordered field, and only when the field is strong enough
(W � 3.5), the phase breaks down.

Estimation of the precise phase boundary is, however, dif-
ficult, as cL/2 does not decay sharply to zero. Large finite-size
effects necessitate a scaling analysis, which we perform in the
next sections. Nonetheless, two peculiar features can imme-
diately be seen in the density plot in Fig. 1(b): for small W ,
there is nonmonotonic behavior of the phase boundary [see
Fig. 2(a)]; and for small γ , the density plot shows a rapid
change of cL/2 for γ = 0 (Anderson localized) vs when γ is
finite [see Fig. 2(b)].
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FIG. 2. Effective central charge estimate cL/2, calculated using
half-chain entanglement entropy (a) for small values of W and (b) for
small values of γ .

B. Survival of the BKT universality class

We firstly discuss the case of small disorder strength. For
the clean system (W = 0), we can fully reproduce existing
results [32,33]. Importantly, Ref. [33] provides numerical ev-
idence of the BKT universality class, for which the half-chain
entropy can be collapsed using [131]

S̄(L/2, L, γ ) − S̄
(
L/2, L, γ S̄

c

) = F
[(

γ − γ S̄
c

)
(ln L)2

]
, (4)

where γ S̄
c is the critical point; the optimal collapse gives

γ S̄
c ≈ 0.31. Another estimate comes from investigating c as

a function of system size L. To do this, one extracts c(L)
for one specific L by fitting the entropy results for different
bipartitions to Eq. (3). Then the c(L) data can be collapsed
according to [33]

c(L)γ g(L) = F̃

⎡
⎢⎣ln L − α√

γ − γ
c(L)
c

⎤
⎥⎦, (5)

which yields γ c(L)
c ≈ 0.21. The scaling function g(L) = [1 +

1/(2 ln L − β )]−1 [33,131–133]. Although the two estimates
have substantial error bars (≈0.05), both are much lower than
estimate based on cL/2, where the transition would rather be
expected at γ

cL/2
c ≈ 0.8 [cf. Fig. 2(a)]. This strongly suggests

that cL/2 cannot provide a good estimate of the transition point
due to finite-size effects, and data collapses of S̄ and c(L) are
needed instead.

Armed with this knowledge, we introduce a small amount
of disorder (W = 0.25, 0.5, 1.0) [133]. The results for the
half-chain entropy and the central charge are shown in
Figs. 3(a) and 3(c). Judging from S̄(L/2), the corresponding
transition region where the entropy starts deviating signifi-
cantly from a ln(L) behavior for large L is 0.3 � γc � 0.37
for W = 0.5. We also perform the data collapse for S̄(L/2)
and c(L), shown in Figs. 3(e) and 3(g), finding γ S̄

c ≈ 0.40 and
γ c(L)

c ≈ 0.35 for W = 0.5. All performed data collapses are
of reasonably good quality, which suggests that the BKT uni-
versality class of the transition is preserved in the presence of
weak disorder. This is consistent with the idea that the relevant
symmetry is the continuous replica symmetry, which should
be preserved if the system is still free fermionic [31,34,60].

This result is corroborated further by the behavior of the
connected correlation function C̄(r) = 〈ni〉〈ni+r〉 − 〈nini+r〉
[see Figs. 4(a) and 4(b)], which decays algebraically as ∼r−2

in the critical phase, like the clean system [33]. Deep within
the area law, the correlations decay more rapidly, as expected,

FIG. 3. Behavior for small W (left plots) and small γ (right
plots). (a) and (b) Half-chain entropy S̄(L/2) for different values of
the measurement strength γ or disorder strength W (see labels on
the right). (c) and (d) Central charge c(L) as a function of γ (or W )
and system size L. Data collapses for (e) and (f) c(L) and (g) and (h)
S(L/2). Legend from (c) and (d) applies in (e)–(h).

FIG. 4. Connected correlation function C̄(r) for constant disor-
der strength (a) W = 0.5, (b) W = 1.0, and constant measurement
strength (c) γ = 0.0, (d) γ = 0.02. Plot opacity indicates the system
size (L = 128, 196, 256, 384, 512, and 768). Gray lines show the al-
gebraic decay of ∼r−2 expected for the critical phase.
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FIG. 5. Central charge as a function of measurement strength γ

and disorder W for a system with additional next-nearest-neighbor
interactions.

while for the exceptional point γ = 0, exponential decay is
present.

Interestingly, for W = 0.5, all collapses yield γc estimates
which are higher than those for both W = 0 and 1; this implies
that the nonmonotonicity of the phase boundary near small
W is a physical phenomenon and that introduction of weak
disorder shifts the transition point γc to higher values. This
behavior seems similar to the one observed in interacting
models [89], where a small amount of noise facilitated en-
tanglement spreading and extended the volume law. Here, a
small amount of disorder stabilizes the logarithmic phase, as
the observed values of c(L) appear to be higher [see Fig. 2(a)].
Alternatively, a weak disordered field slightly impedes the
ability of measurements to pin the wave function trajectory to
the eigenstates of the measurement operator, so that the area
law occurs at higher γc.

Since the entanglement transition is a direct result of the
competition between the unitary evolution and measurements,
we believe that this nonmonotonic behavior is tightly con-
nected to the speed of entanglement spreading dictated by the
hopping term. For this model, this speed seems low enough
that the introduction of a small amount of disorder scrambles
the information more efficiently, pushing γc to higher values.
We test this hypothesis by adding next-nearest-neighbor inter-
actions to the Hamiltonian:

H =
∑

i

(c†
i ci+1 + c†

i ci+2 + H.c.) +
∑

i

hini, (6)

which should increase the entanglement speed induced by the
hopping terms. We find that the nonmonotonicity in the phase
diagram is absent (see Fig. 5), as expected. This suggests that
the next-nearest-neighbor interactions increase the entangle-
ment speed enough, so that it is no longer impacted by a small
disorder.

We would also like to comment on the recent results of
Ref. [134], which put into question the existence of the crit-
ical phase in the clean model. The nonmonotonic behavior

observed in the disordered free-fermion system studied here
implies that the disorder may stabilize the critical phase, even
if it is absent in the clean case, signifying the presence of the
measurement-induced transition for a finite disorder strength.

C. Destruction of Anderson localization

We now discuss the topic of small measurement strengths.
For γ = 0, the system becomes an Anderson insulator and
exhibits an area law for any finite W . Below W � 1.1, finite-
size effects cause finite cL/2: localization length ξ in the
Anderson model is inversely proportional to W 2 [135], and ξ

becomes comparable with the considered system sizes when
cL/2 becomes nonzero. This should, however, not be an issue
for larger γ , as the characteristic length ξ is affected by both
the disorder and the measurements.

At very small but nonzero values of γ = 0.02, 0.04 [133],
we observe an abrupt change to the localized behavior. Here,
S̄(L/2) results suggest that a logarithmic dependence on the
system size is present for small W [Fig. 3(b)], with the
crossover to the area-law scaling at ∼1.5 � W � 2.5. We pin-
point the transition, extracting W S̄

c ≈ 2.1 and W c(L)
c ≈ 1.9 for

γ = 0.02. Importantly, Wc is large enough not to be impacted
by the characteristic length ξ being comparable with L, and
therefore, we believe the observed transition to be physical.
Our results suggest the BKT universality class is preserved for
the whole transition boundary in Fig. 1(b). Furthermore, the
connected correlators change their behavior between γ = 0
and 0.02 [see Figs. 4(c) and 4(d)] from faster than algebraic
to 1/r2 decay for W < Wc, indicating emergence of the con-
formal phase.

We thus conclude that Anderson localization is immedi-
ately broken for any finite value of γ , and the critical phase
reappears in the phase diagram. This phenomenon most likely
occurs due to measurements impeding interference through
impurity scattering—even very weak measurements change
the scattered fermionic modes, and destructive interference
is not possible, rendering the mechanism behind Anderson
localization disrupted. A similar mechanism occurs when
inelastic scattering is introduced to an Anderson-localized
medium, where the phase coherence between outgoing and
ingoing modes is disrupted [136]. Whether the measurements
force the system into the critical phase or the area law de-
pends on the shape of localized single-particle orbitals |ψi|2
at γ = 0 [see Figs. 6(a) and 6(b)], which can be read off
from the Slater determinant. At large disorder, the orbitals
decay rapidly, and the overlap between their envelopes is
negligible. The measurements have little impact, only sharp-
ening the orbitals at their localization centers, and the area
law is preserved. At small disorder, the orbitals are broad,
and their envelopes substantially overlap with each other.
The measurements effectively introduce scrambling between
them, which leads to a delocalized behavior and the critical
phase. This very simple picture would suggest that the transi-
tion happens approximately when ξ ∼ 1, while our numerical
results reveal a slightly larger critical localization length of
ξ ∼ 24/W 2

c ≈ 6 [135].
Furthermore, we find a clear distinction between the

Anderson-localized area law and the measurement-induced
area law for γ > 0. The former is characterized by
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FIG. 6. (a) and (b) Averaged steady-state fermion orbitals |ψi|2
for L = 192 for different values of W . Inset in (b) shows the
log-log plot, suggesting power-law decay. (c) and (d) Autocorrela-
tion functions C̄(τ ) for different values of W and system sizes L =
128 (lighter), 256, and 512 (darker). Left plots: γ = 0; right plots:
γ = 0.02.

exponential decay of the orbitals, while the latter exhibits
power-law localization, |ψi(x)|2 ∼ x−α [inset in Fig. 6(b)]
[133]. Autocorrelation functions C̄(τ ) [Figs. 6(c) and 6(d)]
also showcase this difference. For γ = 0, C̄(τ ) quickly sat-
urates to a constant and does not decay. However, for γ > 0,
C̄(τ ) plateaus for a long period (τ ∼ 100), and eventually de-
cays due to the disruption from measurements to a minimum
value of 1/(2L). The plateau size depends on γ , where for
large γ , the decay begins earlier. The decay itself seems to be
approximately a power law, with larger systems taking more
time to reach the minimum value.

IV. CONCLUSIONS

The results presented in this paper show the nontriv-
ial interplay between Anderson localization and continuous
measurements. We convincingly demonstrate that the en-
tanglement phase transition from the critical phase with
conformal symmetry to the area-law phase survives the in-
troduction of quenched disorder. Moreover, the universality
class of this transition also seems to be preserved, which
strongly suggests that the logarithmic phase is stable to weak
perturbations. We also find that a small amount of disorder can
help stabilize the critical phase. Gathering all our data from
the collapse of entanglement entropy and effective central
charge, we estimate the true transition boundary between the
logarithmic and area-law phases [solid line in Fig. 1(b)]. In
general, our results convincingly suggest the conformal phase
and free-fermion MIETs are viable for experimental probing
in systems such as nanowires and quantum dot arrays, which
host Anderson localization along with implementation of lo-
cal measurements [137].

We find that an introduction of monitoring in the
Anderson-localized model results in an instant destruction of
the localization for weak disorder. The delocalization results
from the destruction of the coherent processes leading to a
liquid state, although, at sufficiently large disorder, the system
transitions into an area-law state which is markedly distinct
from Anderson localization as the orbitals exhibit a power-law

decay in space instead of exponential. The temporal behavior
of the autocorrelations exhibits parametrically longer decay
time scales compared with Anderson localization. There are
several interesting directions for future work emerging from
our results. The role of interactions in the logarithmic phase
and its relationship to MBL remains a challenging open prob-
lem. The fate of the critical phase for integrable models which
do not map to free fermions could also provide classes of
measurement-induced criticality.

All relevant data present in this publication can be accessed
at [138].
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APPENDIX: METHODOLOGY

The evolution considered in this paper preserves particle
number and can be efficiently simulated with a method based
on the stochastic Schrödinger equation [32]. The wave func-
tion is a pure Gaussian state of N particles on L sites and can
be described by an N × L matrix U :

|ψ〉 =
N∏

k=1

⎛
⎝ L∑

j=1

Ujkc†
j

⎞
⎠|0〉, (A1)

where c†
j are the fermionic creation operators, and |0〉 is the

vacuum state. Physically, U is a matrix of fermion orbitals
(single-particle wave functions), and det(U ) is a Slater deter-
minant. In this paper, we always consider a case of half-filling
and start the evolution from a Neél state.

The measurements and time evolution are implemented
using the stochastic Schrödinger equation, where a monitor-
ing of an operator O is done by evolving the wave function
according to

d|ψ (t )〉 = −iHdt |ψ (t )〉 + M|ψ (t )〉, (A2)

where the measurement operator is M = [(O − 〈O〉t )dηt −
γ

2 (O − 〈O〉t )2dt], with ηt a Wiener process and γ the mea-
surement strength/rate. We will measure operator ni = c†

i ci

on every site. This evolution can be approximated by trotteri-
zation |ψ (t + dt )〉 ≈ eMe−iHdt |ψ (t )〉.

Importantly, this corresponds to an evolution of the matrix
U that fully describes the Gaussian state:

U (t + dt ) = eMe−ihdtU (t ), (A3)

where M is a matrix with elements Mi j = δi j[ηi +
(2〈ni〉 − 1)γ dt], and h corresponds to the free-fermion
Hamiltonian H = ∑

i c†
i ci+1 + H.c., and has elements hi j =
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FIG. 7. Averaged entanglement entropy S as a function of time
for four values of disorder W and measurement strength γ : (a) W =
0.0, γ = 0.4, (b) W = 0.25, γ = 0.4, (c) W = 1.5, γ = 0.02, and
(d) W = 1.5, γ = 0.0. The system size is L = 256. Different colors
signify the time steps dt = 0.01, 0.02, and 0.05. The curves collapse
well for all used timesteps. At long times, entropy reaches the satu-
ration value S∞.

δi, j+1 + δi, j−1 + hiδi, j . After each timestep dt , the wave func-
tion needs to be properly normalized, which can be done by a
QR decomposition of matrix U (t + dt ) = QR, and setting the
new matrix U to be Q.

Figure 7 shows that setting dt = 0.05 is enough to describe
the continuous-time regime, and we find that lowering dt does
not change our results within the statistical error bars.

1. Observables

Using the matrix U , one can define the correlation matrix
D = UU † with elements Di j = 〈c†

i c j〉, giving us direct access
to expectation values. Furthermore, to calculate entanglement
entropy S of a bipartition of the system into subsystem A and
its compliment B, we restrict D to indices associated with
the subsystem A and then diagonalize the restricted matrix
to obtain its eigenvalues λi. Here, S is then simply given by

S = −
∑

i

[λi ln λi + (1 − λi ) ln(1 − λi )]. (A4)

The connected correlation functions C(r) can be determined
from the correlation matrix:

C(r) = |Di+r,i|2 = 〈ni〉〈ni+r〉 − 〈nini+r〉. (A5)

Similarly, the autocorrelation function C(τ ) can be calculated
in the same manner:

C(τ ) = |Di,i(t, t + τ )|2, (A6)

where D(t, t + τ ) = U (t + τ )U †(t ).
Finally, one can easily extract the fermion orbitals by tak-

ing the columns of U , i.e., |ψi(r)|2 = |Ui,r |2. We move the
orbitals spatially so that they are centered around the maxi-
mum value and then average them over many realizations.
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FIG. 8. Time dependence of averaged entanglement entropy
S for (a) γ = 0.02, L = 256, (b) γ = 0.02, L = 385, and (c) W =
0.5, L = 256. The time after which the value reaches saturation value
is roughly proportional to the system size L but is also impacted by
the disorder strength W and the measurement rate γ .

2. Equilibration to the steady state

The time it takes to reach the steady state is nontrivially
dependent on two variables: measurement strength γ and dis-
order W . In the absence of the disorder, for large γ , we find
that the equilibration takes O(1) time, while for small γ , it
takes at most O(L) time. Introducing the disorder prolongs the
equilibration time roughly proportionally to W (see Fig. 8).

We also note that near W ≈ 2, the time dependence of the
trajectory-averaged half-chain entropy seems to collapse into
one curve [see Fig. 9], with the initial behavior scaling as
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FIG. 9. Emerging conformal symmetry near W = 2 for γ =
0.02. Entanglement entropy is rescaled as S/ ln L, while the time
is scaled as time/L. Dashed line is a fit to a logarithmic behavior.

S(L/2) ∼ ln(time/L). This suggests an emergence of z = 1
conformal symmetry near this point.

3. Finite-size scaling

The data collapse for the finite-size scaling analysis is
performed by minimizing the cost function ε, which mea-
sures how well the data collapse into a single curve given
the parameters. First, the data are rescaled using the finite-
size scaling Ansätze from Eqs. (4) and (5) to produce a
set of triples xi, yi, di representing the rescaled x coordinate,
rescaled y coordinate, and the error in the y coordinate. For ex-
ample, for Eq. (4), x = (γ − γ S̄

c )(ln L)2, y = S̄(L/2, L, γ ) −
S̄(L/2, L, γ S̄

c ), and d is the error of the half-chain entropy.
Then the triples are sorted by their x values, and one can
calculate the cost function:

ε = 1

n−2

n−1∑
i=2

w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1),

(A7)

where

w = (yi − ȳ)2

�2
, (A8)

ȳ = (xi+1 − xi )yi−1 − (xi−1 − xi )yi+1

xi+1 − xi−1
, (A9)

�2 = d2
i + (xi+1 − xi )2d2

i−1 + (xi−1 − xi )2d2
i+1

(xi+1 − xi−1)2
. (A10)

After obtaining the minimum εmin, one can estimate the error
in the collapse parameters by investigating the region where
ε = 2εmin.

In Table I, we report the estimates for the parameters from
data collapses in Figs. 3, 10, and 11. The scaling function g(L)
from Eq. (5) has the following form: g(L) = [1 + 1/(2 ln L −
β )]−1, and can be determined from a superfluid stiffness scal-
ing analogy for the BKT transition [33,131,132].

Supporting data for W = 0.25 and γ = 0.04 are shown in
Fig. 10.

TABLE I. Data collapse parameters for the entropy and central
charge results.

Entropy Central charge

Data γ S̄
c or W S̄

c γ c(L)
c or W c(L)

c α β

W = 0.0 [33] 0.31(5) 0.21(5) 3.99 4.37
W = 0.25 0.35(5) 0.31(5) 4.00 5.4
W = 0.5 0.40(6) 0.35(5) 4.1 7.6
W = 1.0 0.33(5) 0.29(5) 5.12 7.65
γ = 0.02 2.06(15) 1.92(25) 6.4 7.8
γ = 0.04 2.07(15) – – –

FIG. 10. Behavior of (a) and (b) half-chain entanglement entropy
S̄(L/2) for different values of the measurement strength γ (see labels
on the right) and (c) and (d) central charge c(L). Data collapse for (e)
and (f) S(L/2), and (g) and (h) c(L); legend from (c) and (d) applies
in (e)–(h). Left plots are for W = 0.25, and the right plots are for
W = 1.0.
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FIG. 11. Results for γ = 0.04. Behavior of (a) half-chain en-
tanglement entropy S̄(L/2) for different values of W (see labels on
the right) and (b) central charge c(L). Data collapse for (c) S(L/2);
legend from (b) applies in (c).

4. Decay of correlation functions

Although we find that single-particle wave functions are
power-law localized, the issue is that these orbitals are not
uniquely defined, as the matrix U can be multiplied on the
right by any unitary, while not changing the physical state.
However, we also find that, for γ > 0, correlation functions

FIG. 12. Connected correlation function C̄(r) for constant disor-
der strength (a) W = 0.0 (no disorder), (b) W = 0.5, and constant
measurement strength (c) γ = 0.0, (d) γ = 0.02. Plot opacity indi-
cates the system size (L = 128, 196, 256, 384, 512, and 768). Gray
lines show the algebraic decay of ∼r−2 expected for the critical
phase. Dashed lines in subfigure (c) show exponential decay for
Anderson localization.

do not seem to exhibit exponential decay (see Fig. 12, where
we show the data of Fig. 4 but on a linear-log plot), which
would be in agreement with our findings for the orbitals.
Perhaps the reason why we do not find scrambled orbitals
is due to the uniqueness of the method: both unitary evolu-
tion and measurements uniquely transform matrix U (during
normalization, QR decomposition is unique as well).
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