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Effects of anisotropy on the high-field magnetoresistance of Weyl semimetals
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We study the effects of anisotropy on the magnetoresistance of Weyl semimetals in the ultraquantum regime.
We utilize the fact that many Weyl semimetals are approximately axially anisotropic. We find that anisotropy
manifests itself in the strong dependence of the magnetoresistance on the polar and azimuthal angles determining
the orientation of the anisotropy axis with respect to the applied magnetic field and electric current. We also
predict that the ratio of magnetoresistances in the geometries, where the magnetic field and anisotropy axes
are aligned and where they are orthogonal, scales as (v⊥/v‖)2 where v⊥ and v‖ are the corresponding Fermi
velocities.
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I. INTRODUCTION

Weyl [1–4] and Dirac [5–8] semimetals have attracted
intense interest in recent years. Due to their relativistic 3D
Hamiltonian with the Fermi velocity playing the role of the
speed of light, they exhibit intriguing transport properties,
disorder-driven phase transitions [9,10], unusual topological
phenomena, e.g., the existence of Fermi arcs, (open in mo-
mentum space surface states connecting Weyl fermions of
opposite chiralities [11]), and, finally, pronounced QED-type
phenomena such as chiral anomaly [12–15]. To some extent,
the material is essentially a solid-state realization of QED
physics.

Of particular interest are the transport properties of Weyl
semimetals (WSMs) in the magnetic field perpendicular to
the transport voltage (transverse magnetoresistance). Recent
experiments undertaken in the ultraquantum regime [at which
temperature and chemical potential are much less than the en-
ergy gap between the zeroth and the first Landau levels (LLs)]
reveal unsaturated magnetoresistance [16–19], linear in the
magnetic field H (ρxx ∝ H). As is, this behavior seems sur-
prising since the usual relaxation-time arguments predict the
saturation of the magnetoresistance at high magnetic fields.
However, the transverse magnetoresistance of the compound
with massless Dirac spectrum in the ultraquantum regime was
theoretically studied by Abrikosov [20] in 1998. He assumed
the principal source of the disorder in the compound to be
Coulomb impurities. He found that magnetoresistance obeys
linear law as a function of the magnetic field H . In his work,
Abrikosov addressed the simplest isotropic gapless semicon-
ductor with the linear spectrum identical to the one of a Dirac
semimetal.

Actual WSMs are highly anisotropic compounds. Fortu-
nately, for theoretical analysis, some of the most popular ones,
such as Cd3As2 [5] or Na3Bi [21], are approximately axially
anisotropic with similar Fermi velocity ratios: ξ = v⊥/v‖ ≈ 4
and untilted Weyl cones. Naturally, the anisotropy of the ma-
terials substantially complicates the theoretical study. Most

theoretical works so far have addressed the anisotropy in
WSMs caused by a possible tilt of the Weyl node, the so-
called type II WSMs [22,23]. In the meantime, the anisotropy
of WSMs with untilted Weyl cones is expected to have a
dramatic effect on the experimental study of transport phe-
nomena. Indeed, active experimental interest has recently
awakened to the implications of anisotropy of WSMs with
untitled Weyl cones [19,24,25].

The effect of anisotropy of the untilted Weyl cone on
transport properties of WSMs with the Coulomb disorder has
not been studied theoretically yet. We note a comprehen-
sive work [26] where the effects of chemical potential and
temperature on magnetoresistance in an isotropic WSM with
the Coulomb disorder were (although mostly numerically)
addressed. Also of note is an exhaustive study of magne-
toresistance of isotropic WSMs with δ-correlated disorder
[27]. The effect of strong Coulomb disorder on the transverse
magnetoresistance was addressed in Ref. [28]. The effect of
anisotropy on the transport of WSM with long-range disorder
without magnetic field was studied in Ref. [29].

In this paper, we compute the magnetoconductivity and
magnetoresistance of a WSM with an axially anisotropic un-
tilted Weyl cone in the ultraquantum regime for not very
large impurity concentrations (weak disorder). We obtain the
magnetoresistance as a function of the magnetic field, and
of the polar and azimuthal angles of the anisotropy axis (see
Fig. 1 for the actual geometry). We analyze the scaling of the
conductivity tensor components with the anisotropy parame-
ter ξ = v‖/v⊥.

The paper is organized as follows. In Sec. II, we
introduce the anisotropic WSM Hamiltonian and discuss
the transformation properties of conductivity necessary for
the computation. Section III addresses the computation of the
magnetoconductivity. In Sec. IV, we deal with the magne-
toresistance and analyze its ξ and angular dependence. We
summarize the results of the paper in Sec. VI and discuss the
regime in which they are applicable.
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FIG. 1. Geometry of the problem. The anisotropy axis (n0) is
inclined by polar angle � and azimuth angle �. The voltage is
applied along the x axis.

II. FORMULATION OF THE MODEL

A. Hamiltonian

We start with the standard anisotropic Hamiltonian for
electrons in the Coulomb disorder potential

H = H0 + Himp,

H0 =
∑

i=⊥,‖

∫
ψ†(r)σ i

(
vi

[
p − e

c
A

]
i

)
ψ (r)dr, (1)

Himp =
∫

ψ†(r)u(r)ψ (r)dr, (2)

where H0 is the anisotropic Hamiltonian of noninteracting
Weyl fermions, ψ (r) and ψ†(r) are the fermion annihilation
and creation operators, σ‖ = (σ · n0)n0, σ⊥ = σ − n0(σ · n0)
are the Pauli matrices, v‖ and v⊥ are the Fermi velocities,
and n0 is the unit vector determining the direction of the
anisotropy axis (see Fig. 1). The term Himp is responsible for
the interaction between electrons and Coulomb impurities.
Since we are interested in the transverse magnetoresistance,
the magnetic field is perpendicular to the xy plane, i.e., the
plane, in which the current measurement is performed. For
reference, we present the details of the derivation of Hamilto-
nian Eq. (1) in Appendix A.

As is well-known, the Nielsen–Ninomiya theorem [30]
states that Weyl nodes should appear in pairs within the Bril-
louin zone. However, due to the smoothness of the disorder
potential (see details in the Discussion section), we discard
the charge carrier scattering between the nodes. Therefore,
to determine the full conductivity, one simply multiplies the
result from a single Weyl node by the number of nodes in
the Brillouin zone of the WSM. Throughout the paper, we set
h̄ = 1 and introduce the variable �, related to the magnetic
field (the distance between the zeroth and the first LL) and the
magnetic length lH :

�2 = 2eHv‖
c

, l2
H = c

eH
. (3)

B. Disorder potential

The screened disorder potential reads

u(k) = 4πe2

ε

1

k2 − 4πe2

ε
�(k2)

, (4)

where ε is the dielectric constant and �(k) is the Fermi gas
polarization operator taken in the static limit (frequency is
set to zero): �(k2) ≡ �(ω, k2)|ω=0. In the situation of the
ordinary Fermi liquid, the momentum transferred by the static
disorder potential to a charge carrier is much smaller than
the Fermi momentum k � kF. This entails the possibility to
expand �(k2) in terms of k/kF � 1 in Eq. (4) and keep
the first term only: �(k) = �(0) + k2∂k2�(0) + ..., where
�(0) = −dn/dμ is the thermodynamic density of states.
This leads to the standard static screening of the Coulomb
interaction.

In our problem, as we will see in the course of calculations,
the situation is more subtle. The role of Fermi momentum is
assumed by the inverse magnetic length l−1

H . We may write the
expression for the exact polarization operator in the following
suitable form:

�(k2) = − dn

dμ
(1 + c1(klH )2 + c2(klH )4 + ...)

= − dn

dμ

[
1 + k2l2

H f
(
k2l2

H

)]
, (5)

where f (0) �= 0 and f (x) is some dimensionless function
measuring a deviation of the polarization operator from its
value at zero momentum. At low temperatures, only the zeroth
Landau level is occupied and dn/dμ is easily calculated (see,
e.g., Ref. [31]), yielding dn/dμ = (2π2vl2

H )−1. Using Eq. (4),
we write the following expression for the screened disorder
potential:

u(k) = 4πe2

ε

1

k2
[
1 + 2α

π
f
(
k2l2

H

)] + 2α

π l2
H

, (6)

where

α = e2

ε h̄v‖
(7)

is the so-called fine structure constant for WSM.
We will see that the main contribution to the conductiv-

ity related to the disorder potential comes from the k � l−1
H

momentum range, where lH is defined in Eqs. (3) (see Ap-
pendix C for details). As a result, in contrast to the Fermi
liquid theory, the argument of function f entering denomi-
nator of Eq. (6) is of the order of unity. Therefore, the whole
expression is f (k2l2

H ) ∼ O(1) in our problem, provided f (x)
has no poles on a real axis for x ∼ 1. This is indeed the case,
as can be inferred from, e.g., Ref. [32].

However, as is known quite well, a typical WSM, like
Cd3As2, has an additional small parameter α � 1, which for
Cd3As2 is equal α ≈ 0.05 [5,33]. This drastically simplifies
our analysis. Taking into account exact �(k2) in the Coulomb
disorder Eq. (4) instead of �(0) is equivalent to keeping the
term with function f in expression Eq. (6). However, as one
sees from Eq. (6), f enters with small prefactor α in the
renormalization of the Coulomb field.
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Thus, keeping the term containing f in Coulomb interac-
tion Eq. (6) yields small (of the order of α) corrections to the
observables. We, on our part, will keep only the terms of the
order of O(ln α) and O(1). Therefore, we will substitute �(k2)
by �(0) in disorder potential Eq. (4) and use the standard
Lindhard expression for the renormalized Coulomb potential

u(k) = 4πe2

ε

1

k2 + κ2
, (8)

where κ2 = 2απ−1l−2
H � l−2

H is the inverse Debye screening
length squared, from now on.

C. Transformation of the conductivity tensor

Before we proceed any further, it is quite suitable to intro-
duce the rescaling, which makes the spectrum isotropic:

r‖ = rs,‖, r⊥ = ξrs,⊥, ψ (r) = 1

ξ
ψs(rs), v⊥ = ξv‖. (9)

Transformation Eqs. (9) makes the disorder-free part of the
Hamiltonian isotropic:

Hs,0 = −iv‖
∫

ψ†
s (rs)σ

(
∇rs − i

e

c
A

)
ψs(rs)drs,

H ′
imp =

∫
ψ†

s (rs)u(rs,‖ + ξrs,⊥)ψ (rs)drs.

(10)

The transformation is performed in three steps. First, we rotate
the coordinate system so the new z′ axis becomes parallel to
the anisotropy axis. We rotate it by angle � about axis z and
then by angle � about the transformed y axis (see Fig. 1),

σ = Rσ ′R−1, (11)

where matrix R is presented in Appendix A, Eq. (A2). Second,
we perform the rescaling. We denote the rescaled conductivity
tensor in the rotated basis as σ ′

s . The correct transformation
rule is not immediately obvious. The details are summarized
in Appendix B. The transformation rule has the form

σ ′ = S1σ
′
sS−1, (12)

where matrices S and S1 are defined by Eqs. (B6) and (B7).
The scaling transformation also changes the components of

the magnetic field vector H. The transformation law is derived
in Appendix B [see Eq. (B5)]:

Hs = H (−ξ sin �, 0, ξ 2 cos �). (13)

We see that the magnetic field changes according to the law

Hs = ξηH, η =
√

ξ 2 cos2 � + sin2 �. (14)

It is important to note that Eq. (13) also entails the change of
the inclination angle of the vector with respect to the scaled
basis (though the direction of the vector, of course, stays
unchanged. However, to accentuate the fact that the measured
angle is changed, we draw the vector Hs in a slightly different
direction in Fig. 2 for illustrative purposes). As seen in the
figure, the rescaled magnetic field vector is inclined by an
angle

γ = − arctan

(
1

ξ
tan �

)
(15)

FIG. 2. (a) Rotated basis x′, y′, z′. Axis z′ is oriented along the
anisotropy vector n0. (b) Position of the rescaled magnetic field
vector Hs after the rescaling. We can see that it remains in the z′y′

plane but is rotated by angle γ about y′ axis.

in the rotated (x′z′) plane with respect to the z′ axis. To make
the calculation for the conductivity easier, we need to switch
to the coordinate system, in which the z axis is aligned along
the magnetic field vector. Therefore, we need to perform the
reversed rotation by the γ angle in the (x′z′) plane (we denote
the corresponding rotation matrix as Rγ ). Let us denote the
new conductivity tensor in the once more rotated basis as σ ′

s ,

σs = Rγ σ ′
sR−1

γ , (16)

where the Rγ matrix is identical to matrix R from Eq. (A2) up
to the change � → γ , � → 0. As a result, the initial conduc-
tivity tensor and the rescaled and rotated ones are related by
the following transform:

σ = RS1Rγ σ ′
sR−1

γ S−1R−1. (17)

This results in the following final expression for relating
components of the conductivity tensor in the rotated rescaled
basis and the initial one:

σxx = 1

ξ 2

[
η2σ ′

s,xx cos2 � + ξ 2σ ′
s,yy sin2 �

]
, (18)

where η is defined in Eq. (14).
We note here that the anisotropy axis is now inclined by

the polar angle γ in the (x′z′) plane. The latter means that
the axis’s azimuthal angle is zero. The components of the
conductivity tensor, in general, should depend on the Euler
angles.

Next, we realize that the conductivity tensor components
σ ′

s,xx and σ ′
s,yy ought to depend on the component of the vector

determining the direction of the anisotropy axis (anisotropy
vector). However, the only geometric difference between
tensor components σ ′

s,xx and σ ′
s,yy is the orientation of the

anisotropy vector with respect to x′y′ plane. Therefore, we

165125-3



DOTDAEV, RODIONOV, KUGEL, AND ARONZON PHYSICAL REVIEW B 108, 165125 (2023)

have σ ′
s,yy(ϕ) = σ ′

s,xx(π/2 − ϕ), where ϕ is the azimuthal
angle.

Also, we should pay attention to the behavior of conduc-
tivity Eq. (18) at � = 0. In this case, the anisotropy axis
coincides with the direction of the magnetic field. In such a sit-
uation, the azimuthal angle � is, strictly speaking, undefined.
Therefore, the conductivity tensor is supposed to be indepen-
dent of � at � = 0. As will be proven in the next section,
at � = 0 (anisotropy axis is aligned along the direction of
the magnetic field), we obtain that σ ′

s,xx = σ ′
s,yy, and Eq. (18)

implies the relation σxx = σ ′
s,xx. The latter is quite natural

since in this case, the system effectively becomes isotropic
in the (xy) plane.

D. Debye screening

The inverse Debye screening length is determined accord-
ing to the standard equation

κ2 = 4πe2

ε

dn(H )

dμ
, (19)

where n is the particle density determined by the chemical
potential μ. The easiest way to compute the particle density at
the applied magnetic field is to switch to the rescaled rotated
basis. The rescaled density is related to the initial one via the

transform: ns = ξ 2n [see discussion of Eq. (B7)]. As a result,
the Debye screening is determined as

κ2 = 1

ξ 2

dns(Hs)

dμ
≡ 1

ξ 2

2α

π l2
Hs

, (20)

where lHs = c/eHs ≡ c/(eHξη) is the magnetic length in the
rescaled coordinate system.

The rescaled disorder potential leads to the modified disor-
der correlation function defined by the standard expression of
the disorder diagrammatic technique g(p) = nimp|u(p)|2:

g(p) = 16π2nimpξ
2α2v2

‖(
ξ 2 p2

‖ + p2
⊥ + ξ 2κ2

)2 . (21)

Now we are ready to compute the conductivity. To this end,
we are going to employ the Kubo formalism. As usual, the
conductivity contains two distinct contributions: one which
comes from the separate averaging of Green’s functions and
the vertex correction.

III. CONDUCTIVITY σxx

A. Kubo expressions and Green’s functions

The expression for conductivity is given by the standard
Kubo formula (see, e.g., Ref. [31]):

σxx = 2e2v2
‖

∫
dεdpdx′

(2π )3

df (ε)

dε
Tr

[〈
ImGR

11(x, x′; ε, p)ImGR
22(x′, x; ε, p)

〉 + 〈
ImGR

22(x, x′; ε, p)ImGR
11(x, x′; ε, p)

〉

− 1

4

〈[
GR

12(x, x′; ε, p) − GA
12(x, x′; ε, p)

][
GR

12(x′, x; ε, p) − GA
12(x′, x; ε, p)

]〉

− 1

4

〈[
GR

21(x, x′; ε, p) − GA
21(x, x′; ε, p)

][
GR

21(x′, x; ε, p) − GA
21(x′, x; ε, p)

]〉]
. (22)

Here, angular brackets denote the disorder averaging and f (ε)
is the Fermi distribution function. The integration over mo-
mentum p is performed in the (py, pz ) plane. The last two
lines in Eq. (22) (usually absent in standard analysis) appear
owing to the disorder vertex corrections and, as we will see
below, do not vanish only in the anisotropic case.

The Green’s functions entering Eq. (22) are defined as
follows:

GR(x, x′; ε, p) =
∞∑

n=0
Sn(xpy )GR

n (ε, pn)S†
n (x′

py
),

Sn(s) =
(

χn(s) 0
0 χn−1(s)

)
,

GR
n (ε, pz ) = ε+vσ·pn

(ε+i0)2−ε2
n
,

xpy = x − pyl2
H . (23)

Here, χn(s) is the normalized oscillator wave function of the
nth state and

pn = (0,
√

2n/lH , pz ) (24)

is the effective 2D momentum.

B. Summation of diagrams

In the ultraquantum limit (T → 0), the Fermi function
derivative can be substituted by the δ function, ∂ f (ε) =
−δ(ε − μ), and the integration over the energy can be explic-
itly performed. We will be interested in the small chemical
potential limit, μ � �. As a result, we discard μ in the further
computation of σxx (but we will keep it for the computation of
σxy to obtain a nonvanishing result). As well as in Abrikosov’s
study [20], only the zeroth and first Landau levels contribute
to the conductivity.

The clean system maps itself onto an isotropic one
[Eqs. (10)] and the result for the conductivity should coincide
with that of Abrikosov. Therefore, one immediately recovers
the vanishing conductivity in the zeroth order in the disorder
strength. Qualitatively, this can be attributed to the perpen-
dicular to the electric field drift of the electron orbits. Thus,
electrons need scattering to drift in the collinear to the electric
field direction. Therefore, we need to sum up the diagrams
shown in Fig. 3. The details of the derivation are presented in
Appendix C.

In the leading log approximation (the precision of
Abrikosov’s calculation [20]), the conductivity σxx has the
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FIG. 3. First-order contributions to the conductivity σxx .

form

σxx = α3

�2
v3

‖nimp[cos2 � + ξ−2 sin2 �] ln
1

α
. (25)

As we see, the anisotropy manifests itself in the � depen-
dence of Eq. (25). At ξ = 1, the � dependence drops out
and Eq. (25) reproduces the famous Abrikosov’s result for
the isotropic WSM [20]. However, conductivity Eq. (25) still
does not exhibit the � dependence. This is due to the the
insufficient precision of the log approximation. The result can
be improved by a more accurate computation of the corre-
sponding integrals.

After a simple but rather cumbersome analysis, we arrive
at the following expression (see Appendix C):

σxx = α3

2π�2
v3

‖nimp[cos2 � + ξ−2 sin2 �]

×
[

ln
4πξ 2

αeC (ξ + η)2
− 2

ξ cos2 � + η sin2 �

ξ + η

]
, (26)

where η is defined in Eq. (14) and C is is the Euler–
Mascheroni constant.

Expression Eq. (26) is the α expansion of the integrals
entering Kubo formula Eq. (22), where the disorder averaging
is performed with correlation function Eq. (21). The omitted
terms in the computation of integrals entering Kubo expres-
sion Eq. (22) are of the order of O(α ln α). This is exactly the
precision with which we computed polarization operator in
Coulomb potential Eq. (8) and this makes the whole derivation
to be self-consistent. The plots with the � and � dependence
of magnetoconductivity are presented in Figs. 4 and 5.

IV. MAGNETORESISTANCE

The expression for magnetoresistance reads

ρxx = σxx

σ 2
xx + σ 2

xy

. (27)

Two terms entering the denominator of Eq. (27) are not of
the same order: σxx is proportional to the disorder strength,
while the first term in disorder expansion of σxy is disorder
independent. We are going to see that for not very highly

FIG. 4. � dependence of the conductivity σxx at different values
of the polar angle �. Here, � diminishes in π/24 steps (see curves
from 1 to 5); �n = π

2 − (n − 1) π

24 . The plots are drawn at the re-
alistic values of ξ = 4 (Cd2As3) and of the fine structure constant
α = 0.05.

compensated WSMs (see the exact condition below), the con-
dition σxx � σxy is always satisfied.

A. Hall conductivity σxy

The Hall conductivity includes the anomalous and normal
contributions. The full conductivity is disorder independent
in the lowest order of the perturbation theory [20,27]. The
expression, relating the Hall conductivity in the initial and
rotated and rescaled basis follows from Eq. (17) and reads

σxy = 1

ξ
σ ′

xy,sc

√
ξ 2 cos2 � + sin2 �. (28)

The expression for the Hall conductivity in the ultraquantum
limit in the isotropic system can be taken from, e.g., Ref. [20].
We have

σxy =
√

cos2 � + ξ−2 sin2 �
αμ

4π2
. (29)

FIG. 5. � dependence of the conductivity σxx at � = 0.
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B. Computation of the magnetoresistance

We need to express the Hall conductivity Eq. (29) via the
charge carrier density. In the scaled rotated basis, it is given
by the standard expression [20]: ns = �2

s μ/(4π2v‖), where
�2

s = 2eHsv‖/c is the magnetic field in the rescaled coordi-
nate basis.

Using the relation between magnetic fields Eq. (14), we
obtain the following relation for the charge carrier density:

n0 = �2μ

4π2v‖

√
cos2 � + ξ−2 sin2 �. (30)

We see that condition σxx � σxy is met as long as α2nimp �
n0. In the typical situation, the electroneutrality condition
entails nimp ∼ n0, therefore σxx � σxy is always satisfied.

Finally, plugging Eq. (30) into Eqs. (29) and (27), we
obtain the following expression for the magnetoresistance:

ρxx = �2nimpv‖
n2

0

[cos2 � + ξ−2 sin2 �]

×
[

ln
4πξ 2

αeC (ξ + η)2
− 2

ξ cos2 � + η sin2 �

ξ + η

]
. (31)

We see that the anisotropy is clearly pronounced in the re-
alistic WSM where (like in Cd3As2, ξ 2 ≈ 16 � 1). If the
anisotropy axis is oriented perpendicular to the magnetic field
H, the ratio of resistances scales as ξ 2:

ρxx(H ‖ n0)

ρxx(H⊥n0)
= ξ 2 + O

( 1

ln α

)
. (32)

Expressions Eqs. (26), (31), and (32) are the main results of
our paper.

It is quite interesting to point out once more that the az-
imuthal angle � dependence of the resistance manifests itself
in the subleading to the main log term. Such is the conse-
quence of averaging over long-range Coulomb disorder.

V. DISCUSSION

We studied the magnetoresistance of WSM with an axial
anisotropy. We found that the magnetoresistance is strongly
renormalized as a function of the polar and azimuthal angle
between anisotropy axis and the applied voltage plane. Some
remarks are relevant here. First, we computed the contribution
to conductivity from a single Weyl node. If the internodal scat-
tering by disorder can be discarded, the total conductivity can
be found by multiplying our Eq. (31) by the number of Weyl
nodes in the Brillouin zone. The internodal scattering can be
neglected if the momentum transferred by disorder is much
smaller then the distance between the adjacent Weyl nodes
in momentum space. For Cd3As2, this distance reads [34]
2k0 = 0.012 Å−1, while for TaAs [35] it is 2k0 = 0.0183 Å−1.
On the other hand, the inverse Debye length in a typical mag-
netotransport experiment with field H ∼ 1 T is κ ∼ 10−4 Å−1

[see Eq. (8) and the comment below it]. Therefore, indeed,
we have 2k0 � κ and the internodal scattering can be safely
neglected.

As argued in Ref. [36] at temperatures T � n1/3
impv, the

electron–electron interaction starts dominating the transport
in WSMs. For a typical magnetotransport experiment [8],

the charge carrier density n ∼ 1018 cm−3, which yields the
limiting temperature T � 360 K for the transport to be dom-
inated by the Coulomb impurity scattering. Therefore, we
conclude that our findings should be valid in the majority of
experiments dealing with magnetoresistance measurements in
WSMs.
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APPENDIX A: DERIVATION OF THE ANISOTROPIC
HAMILTONIAN

In the rotated coordinate system, in which the z′ axis
is aligned along the anisotropy axis n0, we have the
self-explanatory expression for the Hamiltonian (the vector
potential of the magnetic field is added in Appendix B)

H0 =
∫

dr′ψ ′†(r′)h(p′)ψ ′(r′),

h′(p′) = [v⊥(σx px′ + σy py′ ) + v‖ pz′ ], (A1)

where ψ ′(r′) are spinors in the rotated basis. We want to get
back to the laboratory system, in which the anisotropy axis z′
(n0) is inclined at Euler angles (�,�). The change from the
laboratory system to the inclined is achieved by the rotation
about the z axis by angle � and about the new y axis by �.
It is the standard Euler matrix relating vectors via p = Rp′,
where

R =
⎛
⎝cos � cos � − sin � sin � cos �

cos � sin � cos � sin � sin �

− sin � 0 cos �

⎞
⎠. (A2)

Therefore, the transformed Hamiltonian is rewritten as
h(p′) ≡ h(R−1 p). We also need to transform the spinors ac-
cording to the 2D representation of the rotation group ψ ′ =
Uψ , where the unitary matrix U = Uy(�)Uz(�) is the prod-
uct of unitary rotation matrices Un(ϕ) = exp[iσ · nϕ/2] by
angle � about z and by � about the new y axis:

U =
(

e
i�
2 cos �

2 e− i�
2 sin �

2
−e

i�
2 sin �

2 e− i�
2 cos �

2

)
. (A3)

Taking into account the fact that the Jacobian of the rota-
tion is equal to unity (dr′ = dr), we see that the transformed
Hamiltonian Eqs. (A1) become

H0 =
∫

drψ†(r)h(p)Uψ (r),

h(p) = U †h(R−1 p)U . (A4)

Taking expression Eqs. (A1) for the Hamiltonian 2 × 2 matrix
h′(p′) and performing direct substitution of R from Eq. (A2)
and multiplication by matrices Eq. (A3), we arrive at expres-
sion Eq. (1).
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APPENDIX B: TRANSFORMATION
OF THE CONDUCTIVITY TENSOR

As pointed out in Sec. II C, the transformation due to
rotation of the conductivity tensor is achieved via transform
Eq. (11) with matrix Eq. (A2). The rescaling of coordinates
z = z′, (x, y) = ξ (x′, y′) leads to the volume measure trans-
form: dr = ξ 2dr′. We require that the particle number be
given by the same expression

N =
∫

ψ ′†(r′)ψ ′(r′)dr′, (B1)

as before the rescaling. Hence, we postulate the scaling of ψ

in such a way that expression Eq. (B1) remains invariant,∫
drψ†(r)ψ (r) =

∫
ψ†(Rr′)ψ (Rr′)ξ 2dr′, (B2)

which entails the ψ-operator scaling law Eqs. (9).
To understand how the conductivity tensor is transformed

under rescaling, we need to write the transformations for the
electric field and current density. The electric field transfor-
mation law can be found from the requirement that the part
of the Hamiltonian responsible for the coupling to the ex-
ternal electromagnetic field should remain unchanged (since
the very definition of the conductivity is the response of the
current to the external potential).

The corresponding potential affected by the rescaling en-
ters the transversal part of canonical momentum and reads

−i

(
∂

∂r⊥
− ie

c
A⊥

)
= − i

ξ

(
∂

∂rs,⊥
− i

e

c
ξA⊥

)
. (B3)

Looking at Eq, (B3), we immediately establish the scaling
transformation for the vector potential

As,⊥ = ξA⊥, As,‖ = A‖. (B4)

Using definition E = −c−1∂t A, H = ∇ × A, we find trans-
formation scaling rules for the electric and magnetic fields

Es,⊥ = ξE⊥, Es,‖ = E‖,

Hs,⊥ = ξH⊥, Hs,‖ = ξ 2H‖. (B5)

Similarly, for the electric field, we find from Eqs, (B5):

E = SEs, S ≡ diag(ξ−1, ξ−1, 1). (B6)

Finally, we determine the current density transformation law
from its definition: j = nv. Recalling the operator definition
of the density and using Eqs. (9), we write ns = ψ†

s ψs = ξ 2n.
For the current density, we obtain

js,⊥ = ξ j⊥, js,‖ = ξ 2j‖

⇒ j = S1 js, S1 = diag(ξ−1, ξ−1, ξ−2). (B7)

Now, from the definition of the conductivity tensor: ji = σikEk

with the help of Eqs. (B5) and (B7), we determine the trans-
formation law relating initial and scaled conductivities:

S1 js = σSEs ⇒ σs = S−1
1 σS ⇒ σ = S1σsS

−1. (B8)

APPENDIX C: ANALYTICAL EXPRESSIONS FOR DIAGRAMS, BEYOND THE LOG APPROXIMATION

1. Expression for the conductivity

In this section, the parameters lH and �2 refer to the rescaled quantities. Using the orthogonality relations for the Hermite
polynomials, one easily convinces oneself that only the zeroth and first LLs yield nonexponentially suppressed expressions
corresponding to Figs. 3(a)–3(d):

(a) :
∫

d pz

2π
ImG0,11(pz )GR

1,21(pz )GR
1,12(pz )

∫
dq

(2π )3
ImGR

0,11(pz + qz )S0(q)g(q),

S0(q) =
∫

d pydx1dx2dx′

2π
eiqx (x1−x2 )χ2

0 (xpy )χ2
0 (x′

py
)χ1(x1,py )χ0(x1,py+qy )χ0(x2,py+qy )χ1(x2,py ).

(C1)

The diagrams in Figs. 3(a) and 3(b) lead to identical expressions. The diagrams in Figs. 3(c) and 3(d) read

(c) :
∫

d pz

2π

∫
dq

(2π )3
ImG0,11(pz )ImGR

0,11(pz + qz )G1,12(pz + qz )G1,12(pz )S1(q)g(q),

S1(q) =
∫

d pydx1dx2dx′

2π
χ2

0 (xpy )χ2
0 (x′

py+qy
)χ0(x1,py )χ1(x1,py+qy )eiqx (x1−x2 )χ0(x2,py+qy )χ1(x2,py ),

(C2)

(d ) :
∫

d pz

2π

∫
dq

(2π )3
ImG0,11(pz )ImGR

0,11(pz + qz )G1,21(pz + qz )G1,21(pz )S2(q)g(q),

S2(q) =
∫

d pydx1dx2dx′

2π
χ2

0 (x′
py

)χ2
0 (xpy+qy )χ0(x1,py )χ1(x1,py+qy )e−iqx (x1−x2 )χ0(x2,py+qy )χ1(x2,py ).

(C3)

The expressions for form-factors S0,1,2(q) are easily computed using the relations for the Hermite polynomials. We have

S0(q) = 1

4π
e−q2

⊥l2
H /2q2

⊥, S1,2(q) = 1

4π
e−q2

⊥l2
H /2±2iϕq2

⊥, (C4)

where q⊥ = (qx, qy) and ϕ is its direction in the xy plane.
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We also see that due to the presence of ImG0,11(pz ) = −πδ(v‖ pz ) and ImG0,11(pz + qz ), the integration over momenta pz

and qz is trivial, leading to, effectively, pz = qz = 0. As a result, the expressions for diagrams in Figs. 3(a)–3(d) are simplified

(a + b + c + d ) = 1

4�2

1

4π

∫
dq⊥

(2π )2
g(q⊥)e−q2

⊥l2
H /2q2

⊥(2 − e2iϕ − e−2iϕ ). (C5)

Here, g(q⊥) is the potential correlation function taken at momentum qz = 0. Using Eq. (21), we write

g(q⊥) = 16π2nimpξ
2α2v2

‖
(q2

⊥[(ξ 2 − 1) sin2 γ cos2(ϕ − ϕ0) + 1] + ξ 2κ2)2
. (C6)

Here, ϕ0 is the azimuthal angle of the anisotropy axis. We see that this angle is, in fact, equal to zero in the rotated coordinate
basis, since it belongs to the x′z′ plane. However, we will keep it arbitrary since we are going to need it for the computation of
the σyy component.

Next, we are able to perform exactly the integration over ϕ and integration over q⊥.
To go beyond the leading log approximation, we need to perform exact integration over ϕ in Eq. (C5). We use the following

suitable integrals:∫ π

−π

dϕ

(cos2 ϕ + a2)2
= π

a3

2a2 + 1

(a2 + 1)3/2
,

∫ π

−π

dϕ cos 2ϕ

(cos2 ϕ + a2)2
= − π

a3

1

(a2 + 1)3/2
, a2 = q2

⊥ + ξ 2κ2

q2
⊥(ξ 2 − 1) sin2 γ

. (C7)

Then, we have for Eq. (C5):

(a + b + c + d ) = nimpξ
2α2

�2(1 + (ξ 2 − 1) sin2 γ )3/2

∫ ∞

0
q3

⊥dq⊥e−q2
⊥l2

H /2 q2
⊥[1 + (ξ 2 − 1) sin2 γ cos2 ϕ0] + ξ 2κ2

(q2
⊥ + κ2ξ 2)3/2

(
q2

⊥ + κ2ξ 2

1+(ξ 2−1) sin2 γ

)3/2 . (C8)

Let us introduce a new integration variable: q2
⊥ = q2

0s, q2
0 = ξ 2κ2

1+(ξ 2−1) sin2 γ
. Using relation κ2l2

H = 2α/(πξ 2) (in the exponen-

tial function), and the handy relation 1 + (ξ 2 − 1) sin2 γ = ξ 2/η2, we arrive at the following dimensionless and convenient to
analyze the integral:

(a + b + c + d ) = nimpη
3α2

2ξ�2
I (ϕ0), I (ϕ0) =

∫ ∞

0

s[1 + (ξ 2 − 1) sin2 γ cos2 ϕ0] + ξ 2/η2

(s + 1)3/2(s + ξ 2/η2)3/2
se−αη2s/(πξ 2 ) ds. (C9)

The integral in Eqs. (C9) can be computed for any value of ϕ0. However, we are going to need it at only two values: ϕ = 0 (for
σ ′

s,xx) and for ϕ = π/2 (for σ ′
s,yy). For brevity, let us denote a = ξ/η � 1. We are going to estimate them beyond log accuracy

using the fact that α � 1:

I (0) = a2
∫ ∞

0

s

(s + 1)1/2(s + a2)3/2
e−αη2s/(πξ 2 ) ds, I

(π

2

)
=

∫ ∞

0

s

(s + 1)3/2(s + a2)1/2
e−αη2s/(πξ 2 ) ds. (C10)

For the conductivity, we have the following suitable expression:

σxx = 1

a2
σ ′

s,xx cos2 � + σ ′
s,yy sin2 � = α3v3

‖
2π

nimpη
3

ξ�2

[
1

a2
I (0) cos2 � + I

(π

2

)
sin2 �)

]
. (C11)

2. Computation of the integrals

In this case, both integrals entering Eqs. (C10) can be represented by the following expansion in α: ln 1
α

+ const + O(α). The
integral accumulates its value on a span s � α−1. That means the momentum is q � l−1

H . We are not interested in the O(α) terms.
However, we will extract const terms in both integrals since they carry the information on the � dependence of the conductivity.
Both integrals can be represented as

I (0) = a2[J − a2I0(α)], I
(π

2

)
= J − Iπ/2(α), J =

∫ ∞

0

1

(s + 1)1/2(s + a2)1/2
e−αη2s/(πξ 2 ) ds,

I0(α) =
∫ ∞

0

1

(s + 1)1/2(s + a2)3/2
e−αη2s/(πξ 2 ) ds, Iπ/2(α) =

∫ ∞

0

1

(s + 1)3/2(s + a2)1/2
e−αη2s/(πξ 2 ) ds. (C12)

Both integrals I0(α) and Iπ/2(α) have regular limits at α → 0. Since we are not interested in O(α) terms, we may set α = 0 in
them. We immediately obtain

I0(0) = 2

a(a + 1)
, Iπ/2(0) = 2

(a + 1)
. (C13)

It is convenient to transform integral J as

J ≡
∫ ∞

0

(
1

(s + 1)1/2(s + a2)1/2
− 1

s + 1

)
e−αη2s/(πξ 2 ) ds +

∫ ∞

0

1

s + 1
e−αη2s/(πξ 2 ) ds. (C14)

165125-8



EFFECTS OF ANISOTROPY ON THE HIGH-FIELD … PHYSICAL REVIEW B 108, 165125 (2023)

The first term in Eq. (C14) is the convergent one, and one sets α = 0. This gives ln(4(a + 1)−2). The second integral is easily
computed using the integration by parts. We obtain

J = ln
4πξ 2

(a + 1)2αη2eC
+ O(α), (C15)

where C is the Euler–Mascheroni constant.
Finally, let us deal with the the conductivity tensor. Using expression Eq. (18) from the main text, and changing the rescaled

�2− → �2ξη, we write

σxx = α3v3
‖

2π

nimpη
2

ξ 2�2
[(J − a2I0(0)) cos2 � + (J − Iπ/2(0) sin2 �)]. (C16)

Plugging Eq. (C13) into (C16), we obtain expression Eq. (26) for the conductivity.
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