
PHYSICAL REVIEW B 108, 165123 (2023)

G2 integrable point characterization via isotropic spin-3 chains
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We investigate the physical properties of G2-symmetric integrable chains with local degrees of freedom in
the fundamental representation; given the typical connection between integrability and critical points, we test the
model’s properties against a hypothesis of conformal-invariant long-distance behavior. Leveraging an embedding
between the G2 exceptional Lie algebra and SU(2)-symmetric chains with local spin-3 representations, we
perform numerical analyses via exact diagonalization (ED) targeted at specific spin sectors, as well as via
non-Abelian density-matrix renormalization group . A basic study of the momentum-resolved ED spectrum
suggests the low-energy system is effectively described by a (G2)1 Wess-Zumino-Witten (WZW) theory, but
we find challenges in further numerical characterization of conformal data. The study and control of the
phenomenology of this model may have implications for the development of accessible models for Fibonacci
anyons.
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I. INTRODUCTION

Exceptional Lie algebras bring exotic and rich emergent
phenomenology to condensed matter systems. Some of the
earliest accounts of the topic include Zamolodchikov’s dis-
covery of E8 emergent behavior on the Ising model under
longitudinal and transverse fields [1], with subsequent ex-
perimental verification in cobalt niobate [2], about two and
one decade ago, respectively. More recently, the interest ex-
tended from the E8 to include other exceptional algebras
such as G2 and F4, due to the potential impact these have
in topological phases and, in particular, topological quantum
computing [3,4].

Topological phases associated with the G2 group, in partic-
ular, support low-energy localized excitations whose behavior
matches that of Fibonacci anyons, the simplest anyon capable
of universal topological quantum computing [5]. Despite the
interest, due to the inherent complexity of the group structure,
proposals for realizing G2-symmetric systems are still limited,
and they are often too contrived for numerical or analytic
calculations or experimental implementation.

The purpose of this paper is to explore G2 physics from
a model realization based on a standard magnetic structure.
Working on 1D spin chains and following recent results by
some of us [6], we embed a G2-symmetric phase space within
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a SU(2)-symmetric magnetic model with local moments in
the spin-3 representation. This idea brings the model closer
to experimental relevance and also makes it amenable to ef-
ficient numerical analysis via SU(2)-symmetric non-Abelian
density-matrix renormalization group (DMRG) methods. Ap-
proaches to make exceptional algebras realizable in physical
settings is an active field of research [7].

Among the different characteristics of the G2-symmetric
phase space, we focus on those of a well-known integrable
point [8–10]. The typical association between isolated in-
tegrable models and critical points suggests that this point
may be described by a conformal field theory (CFT) with
G2-symmetry. The simplest such theory would be a Wess-
Zumino-Witten (WZW) (G2)1 CFT, whose single primary
field satisfies the same fusion rules of Fibonacci anyons.
The confirmation that this integrable model is described by
a (G2)1 WZW CFT would also open the possibility for the
existence of a critical phase with emergent G2 symmetry,
akin to the Uimin-Lai-Sutherland SU(3)-symmetric phase of
the bilinear-biquadratic spin-1 SU(2) chain [11–14]. Such
systems would be prime candidates for coupled-wire con-
structions [15–17] of 2D topological phases with Fibonacci
anyons starting from an SU(2)-invariant system.

In principle, the integrable G2 chain has been characterized
in the 1980s [8–10]. These classic references suggest that
the low-energy physics of the model is indeed described by
a (G2)1 WZW CFT. Yet, recent results have suggested that,
albeit gapless, this model is not a CFT, but rather possesses
two low-energy excitation sectors with different spin-wave
velocities [18]. The fact that G2 is not generated by a simply-
laced algebra impacts the analysis of the analytic solution in
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a nontrivial way. The body of this work thus analyses the
hypothesis that this integrable G2 model is described by a
(G2)1 WZW CFT via numerical methods. From exact diag-
onalization, we demonstrate that the low-energy spectrum of
a small realization of the system does suggest the expected
organization and degeneracy of a (G2)1 WZW CFT. Fur-
ther characterization of the conformal data via non-Abelian
DMRG, however, leads to mysteriously conflicting results.
We estimate the central charge and primary field conformal
dimensions from standard techniques such as energy spectrum
analysis and entanglement entropy finite-size scaling, as well
as a very recent new method using cyclic orbifolds and wave-
function overlaps [19], but find mismatching values. Reasons
for the mismatches are put forward and include strong effects
due to marginal perturbations and small system sizes, as well
as the possibility that, indeed, the problem is not described by
a CFT.

This paper is organized as follows. Section II describes the
embedding of G2 chains in spin-3 SU(2) symmetric ones, per-
forms a cartographic analysis of what is known of the phase
space of G2 chains, and explores the finite-size spectrum of
the integrable point via exact diagonalization. The case for
a possible (G2)1 behavior is made. Section III contains the
bulk of our numerical characterization, including results from
finite-size scaling of the energy spectrum, entanglement en-
tropy, and wave-function overlap. We conclude in Sec. IV.
We present pedagogical appendices on the conventions used
to map SU(2) and G2 chains, a conformal field theory explo-
ration of (G2)1, and its cyclic orbifolding. Finally, we present
a reference Appendix where our numerical analysis is rede-
ployed on the Takhtajan-Babujian integrable point of spin-1
chains, whose continuum description in terms of an SU(2)2

WZW CFT is well-established. The expected conformal data
results are recovered in this case, demonstrating our numerical
calculations are sound.

II. G2 INVARIANCE WITHIN SPIN-3 ISOTROPIC CHAINS

For our purposes, we write general SU(2)-invariant spin-3
chains in either of two forms,

H =
N∑

i=1

6∑
n=0

αn(Si · Si+1)n (1)

=
N∑

i=1

6∑
S=0

KSPS (Si, Si+1), (2)

where Si = (Sa
i ), a = x, y, z, are spin-3 operators acting at

lattice site i, αn and KS are constants, and PS (Si, Si+1) are
standard SU(2) projectors on the multiplet S of the sum of two
local Si and Si+1 spins; we use periodic boundary conditions
overall. While Eq. (1) displays the familiar form in terms of
SU(2)-invariant bilinears and their powers, Eq. (2) is more
convenient to analyze the symmetry structure of the parameter
space.

This parameter space supports a G2 embedding as follows
[6]: setting all KS = K , the Hamiltonian is fine-tuned to a
point of SU(7) symmetry. Relaxing the constraint so that
K1 = K3 = K5, while K2 = K4 = K6, combines the projec-
tors into a SO(7)-symmetric system. Since SO(7) ⊃ G2, the

symmetry can be further broken down. The Clebsch-Gordan
series for two fundamental irreducible representations (irreps)
of G2 reads

7 ⊗ 7 = 1 ⊕ 7 ⊕ 14 ⊕ 27. (3)

Here we denote the irreps by their dimensions, for example
with 7 being the smallest nontrivial irrep. To achieve these de-
generacies from our spin-3 isotropic Hamiltonian, all it takes
is to further loosen the constraints so that K3 is not necessarily
equal to K1 = K5, that is, the constraints are K1 = K5 and
K2 = K4 = K6.

Thus, if Pλ are G2 projectors on the space of the irreducible
representation λ, we have the identification

P1 = PS=0,

P7 = PS=3,

P14 = PS=1 + PS=5,

P27 = PS=2 + PS=4 + PS=6, (4)

leading to the general G2-symmetric Hamiltonian

HG2 =
N∑

i=1

∑
λ={1,7,14,27}

FλPλ(�i,�i+1) (5)

=
N∑

i=1

3∑
n=0

βn(�i · �i+1)n. (6)

Here �i = (�a
i ), a = 1, . . . , 14, are the G2 generators act-

ing on lattice site i, and �i · �i+1 = ∑
a �a

i �
a
i+1. Fλ and

βn control the parameter space of possible Hamiltonians;
some explicit conversions are described in Appendix A.
We choose the generators of G2 to have the normalization
Tr((�a)†�b) = 2δab.

The usefulness of this embedding is twofold: for one,
it makes this family of G2 Hamiltonians more physically
attractive, and they can be realized in more conventional
magnetism, albeit requiring high, spin-3 spins. Furthermore,
this embedding enables efficient numerical analysis based on
well-developed methods that leverage the SU(2) symmetry.

From now, we stick only to the G2 language, as it be-
comes the natural one for the problem. The phase space of
Hamiltonian (6) is 3-dimensional, as β0 simply redefines the
ground-state energy. With a cartographic projection, the pa-
rameter space can be described in a two-dimensional plane.
Figure 1(a) is a representation of the phase space using the
Mollweide projection.1 The colors indicate the ground state of
a 2-site problem. The space is mostly dominated by the blue
singlet region, followed by the “ferromagnetic” red region
(in the sense of the largest irrep having the lowest energy).
The black line that cuts the parameter space corresponds to
the line of SO(7)-symmetric Hamiltonians; the general many-
body physics along this line is well-known and includes a
ferromagnetic phase, an SU(7)-symmetric emergent phase,

1The standard transformation from {βi} to the coordinates (x, y) of
the map reads x = (2

√
2/π )λ cos θ , y = √

2 sin θ , where λ and θ are
defined from β1 = β cos φ cos λ, β2 = β cos φ sin λ, β3 = β sin φ,
β = √

β2
1 + β2

2 + β2
3 , 2θ + sin 2θ = π sin φ.
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(a)

(b)

FIG. 1. (a) Phase space of G2-symmetric chains under a Moll-
weide projection. Numbers indicate the ground state representation
for the 2-site problem. The black curve indicates the subspace
of SO(7)-symmetric Hamiltonians, with the white star and cross
marking the Reshetikhin SO(7)1 and generalized ULS SU(7)1

critical points, both integrable. The black cross marks the G2-
symmetric Hamiltonian found in Ref. [6], and the yellow cross
indicates the G2-symmetric integrable point of interest in this work.
(b) Momentum-resolved exact-diagonalization spectrum for the inte-
grable G2 point with N = 10 lattice sites. Irreducible representations
are indicated in colors (the lowest ones with dots and higher ones
with crosses). Multiplet collections and with corresponding hypo-
thetical (G2)1 primary-field identifications are marked in grey.

a gapped Haldane-like phase, and a dimerized phase [20].
The known critical points with conformal symmetry are indi-
cated on the phase diagram, including the Reshetikhin SO(7)1

point (�) [21,22], and the generalized Uimin-Lai-Sutherland
(ULS) SU(7)1 point (+) [11–13,20]. By studying phases with
potential emergent symmetries, some of us previously ex-
plored a point in this phase space, labeled by the black cross
(×) [6].

The focus of analysis for this work corresponds to the point
labeled by the yellow cross in the parameter space shown
in Fig. 1(a). This point corresponds to an integrable model
[8–10] we rederive in Appendix B,

H =
N∑

i=1

[
1

2
�i · �i+1 + 5

8
(�i · �i+1)2 + 75

592
(�i · �i+1)3

]
,

(7)

which we wrote in terms of powers of G2-invariant bilinears.
We note that even slightly changing the prefactors 1/2, 5/8,

or 75/592 in (7) immediately breaks the integrability of the
model.

We can also rewrite the model (7) in the more usual spin-3
language. Then the couplings are α0 = 1122/925, α1 =
303/1850, α2 = −3787/33300, α3 = −712/24975, α4 =
−1/29970, α5 = 49/149850, α6 = 1/59940, in terms of the
Hamiltonian of Eq. (1), or K0 = −4/37, K1 = K5 = 0, K2 =
K4 = K6 = 24/37, K3 = 18/37, in terms of the projectors
of Eq. (2). In terms of F [Eq. (5)], it is sufficient to use the
identification that, generically, F1 = K0, F7 = K3, F14 = K1

and F27 = K2. Again, for a full dictionary on how to convert
the couplings, we have tables in Appendix A.

Characterizing the physics of this model is important: be-
sides the relevance for modeling or generating, Fibonacci
anyon systems, as alluded to in the introduction, isolated
integrable Hamiltonians are natural candidates to be critical
points. The large continuous symmetry of the microscopic
Hamiltonian Eq. (7) suggests that, if this indeed corresponds
to a critical point and displays conformal invariance, the odds
are that the critical physics here is controlled by the (G2)k

class of WZW theories. If k = 1, only one nontrivial primary
field would be allowed, strongly limiting the allowed pertur-
bations on this critical point. This suggests the existence of a
larger region of the parameter space where an emergent (G2)1

liquid dominates the long-wavelength physics. This would
happen in direct analogy to the SU(3)1 low-energy behavior of
spin-1 bilinear-biquadratic Hamiltonians close to the explic-
itly SU(3)-symmetric, and integrable, Uimin-Lai-Sutherland
point [11–13].

For many years, results from the mathematical physics
literature suggested that (G2)1 WZW CFT is the description
for the low-energy behavior of integrable model (7) [9]. Yet,
recently, a different analysis was put forward that suggests the
description in terms of a product of two c = 1 CFTs with
different velocities [18]. To explore numerically which re-
sults should be accurate, we consider the momentum-resolved
spectrum via exact diagonalization of Hamiltonian (7) for
system size N = 10 with periodic boundary conditions (which
are used throughout this work). Figure 1(b) displays the result;
relying on the G2 embedding in SU(2), we use the total Sz

conservation to achieve larger system sizes and use branching
rules [23] to reconstruct the sectors in terms of G2 multiplets;
symbols market as “2” mean there is a degeneracy between
G2 multiplets. We diagonalize system sizes up to N = 10.
Note that the G2 group has rank 2, implying the existence of a
second set of U (1) degrees of freedom that could be leveraged
to further simplify numerics; yet, the size of the local Hilbert
space for this chain is so large, that the next even size N = 12
would remain beyond computing capacity even after incorpo-
rating this further U (1) symmetry. We remain with N = 10 as
the state-of-the-art for an exact diagonalization of our model
of interest.

Some noteworthy observations follow: (i) the zero-
momentum ground state is a singlet; (ii) the first excited
state with finite momentum is a 14-dimensional multiplet (as
also observed in Ref. [18]); (iii) the lowest four multiplets
at π momentum form a 49-dimensional multiplet. While not
a demonstration, these are suggestive of a (G2)1 CFT: as
discussed in detail in Appendix D, a holomorphic (G2)1 dis-
plays two conformal towers 1 and τ ; at the lattice level, both
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holomorphic and antiholomorphic parts are expected to mix as
a tensor product. Comparing with the numerical results, both
the ground-state singlet and the first finite-momentum 14-
dimensional multiplet satisfy the expected degeneracies for an
identity conformal tower and its first Kac-Moody descendant,
generated by the 14 current operators that generate G2 at
the CFT level (labeled Ja in the figure). The 49-dimensional
multiplet satisfies the expected degeneracy of the product
of holomorphic and non-holomorphic τ τ̄ conformal towers.
Naturally, the lattice physics brings in G2-invariant marginal
operators capable of lifting the correct degeneracy.2

These observations serve as the starting point for our
hypothesis that this integrable G2 chain is a critical point
described by a (G2)1 WZW CFT. For the rest of the paper,
we analyze the scaling properties of states and observables to
determine if our hypothesis can sustain itself.

III. CONFORMAL DATA CHARACTERIZATION

In this section, we focus on the characterization of key
parameters of the integrable points based on the (G2)1 hy-
pothesis. The key conformal parameters we need to determine
from our model are the central charge c and scaling dimension
�τ of the only nontrivial primary operator τ . For the sake of
completeness, we state the expected values:

c = 14

5
= 2.8, �τ = 4

5
= 0.8. (8)

For details on these and additional conformal data for the
(G2)1 WZW CFT, see Appendix D.

A. Energy scaling

The spectrum of Fig. 1(b) serves as an anchor for non-
momentum-resolved but finer numerical analysis. Via SU(2)
non-Abelian DMRG, we extend our capacity for finite-size
scaling up to N = 20 (we use bond-dimension of 1000
throughout, corresponding to ∼11000 on a non-symmetry-
preserving DMRG scheme) and analyze the standard CFT
energy spectrum formulas:

E0,0(N )

N
= ε∞ − π

6N2
cv, (9)

Ei,n(N ) − E0,0(N )

N
= 2πv

N2
(�i + n). (10)

Here, i indicates a conformal tower, and n is an integer
corresponding to descendant multiplets. Branching for high
descendants can make the computation of n unwieldy, but
we only care about n = 1 here. As for the other quantities,
�i is the (sum of holomorphic and antiholomorphic) scaling
dimension(s), c is the central charge, and v is a nonuniversal
velocity. Further (logarithmic) corrections for the energies are

2The same happens for the SU(3)1 Uimin–Lai–Sutherland point for
spin-1 chains [14]. It is a known fact that including second-neighbor
terms fine-tuned can counterbalance the effect of the marginal pertur-
bation (see, e.g., the supplementary material of Ref. [24]. Yet, for the
spin-1 problem, a single SU(2) marginal operator is allowed, while
three G2 operators are possible for present case. We did not succeed
at tuning out the gaps in a system-size-independent manner.

known, but we do not consider them for the small system sizes
we can reach.

To access the central charge, we first need to compute
the nonuniversal spin-wave velocity v. To find it, we use the
spectrum in Fig. 1(b) and proceed similarly to the approach
of Ref. [24] as follows: under our hypothesis, the lowest-
energy 14 multiplet corresponds to the first Kac-Moody
descendent of the identity conformal tower Ja1, a = 1, . . . , 14
[cf. Fig. 1(b)]. We label this state with quantum numbers
n, i = 0, 1; its energy scaling, according to Eq. (10), reads

E0,1(N ) − E0,0(N )

N
= 2πv

N2
, (11)

and gives us access to v. The green dots on Fig. 2(a) shows
our results for the energy finite-size scaling, and Fig. 2(b)
the extracted velocities. Typically, the velocity is fitted to
v(N ) = v + a/N2 + b/N4 [24]. We find here an unusual pat-
tern, where v(N ) ≈ 0.1729(2) appears to change very little
with system size N for the system sizes we considered. Com-
bining this velocity with the scaling of E0,0(N ), from which
we can extract cv ≈ 1.212(2) [cf. Fig. 2(c)], we obtain our
first estimation of the central charge3 c ≈ 7.01(1). This is
exceedingly far from the expectation for (G2)1.

By targeting other SU(2) sectors with our non-Abelian
DMRG code, we can also study the finite-size scaling of
further relevant states. The orange and red dots in Fig. 2(a)
includes states in the multiplets 7 and 27. These states are
supposed to merge, as N → ∞, in a single 49-dimensional
multiplet of τ × τ̄ . Without canceling the contributions from
marginal operators, we can obtain a range of possible values
for the scaling dimension between �τ ∼ 1.1 and �τ ∼ 1.6.
Given the off behavior for c above, it is unsurprising that we
also find an off estimate for the scaling dimension. Yet, we
emphasize that the estimations of �τ above obtained via ratios
like (Eτ,0 − E0,0)/(E0,1 − E0,0), and are completely indepen-
dent of estimations of v or c.

Generally, the results of this section are puzzling. The
conformal data is way off the expectation for that of (G2)1.
Still, the method presented here is known to obtain trust-
worthy results in other situations. We successfully tested
it on the SU(2)2 Takhtajan-Babujian (TB) point of spin-1
bilinear–biquadratic chains (cf. Appendix E) to extract the
central charge cTB = 3/2 [25], for example. It has also been
previously used to analyze the SU(3)1 behavior in spin-1
bilinear-biquadratic chains and, under somewhat less certain
conditions, in spin-2 chains [6,24].

In what follows, we cross check these results by deter-
mining conformal parameters via two other fully independent
methodologies.

B. Entanglement entropy

Another well-known method of obtaining the central
charge of a CFT involves the finite-size behavior of the

3Surprisingly, this matches the value of the central charge for (G2)4,
as can be checked from Eq. (D1) in the Appendix. Still, the structure
of states from exact diagonalization and the previous literature on
Bethe ansatz solutions to this problem make (G2)4 a very unlikely
scenario.
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FIG. 2. (a) Finite-size scaling of the lowest states in the 7, 14, and 27-dimensional multiplets; vanishing of the gaps is apparent but not
conclusive. (b) Finite-size scaling of the ground-state energy, with factor cv extracted according to Eq. (9). (c) Extraction of velocity under the
hypothesis that the 14-dimensional sector ground state corresponds to the first Kac descendant of the identity tower of (G2)1 (cf. JaI in Fig. 1).

entanglement spectrum [26]

S( j, N ) = c

3
ln

[
N

π
sin

(
π j

N

)]
+ S0, (12)

where S0 is a constant asymptotic and nonuniversal contribu-
tion, and j is a size of bipartition of the lattice. While this
method has the advantage of bypassing the need to compute
the velocity v, the DMRG convergence can make this method
unreliable when the problem of interest contains phases close
by with competing ground states [24,27].

The results of our calculations are shown in Figs. 3(a)
and 3(b). Despite good fits to the expected functional shape
of the entanglement entropy, the central charge of the model
shows a strong dependence on system size. In the absence of a
systematic model or theory for this, we studied different fitting
functions, both linear and nonlinear, obtaining values for the
extrapolated central charge varying from c ∼ 2.8 to c ∼ 3.4.
These are much closer to the expected c = 2.8 for (G2)1 than
the results from the previous section.

The results from this method are strikingly discrepant from
the energy finite-size scaling of the previous session. The only
known G2-symmetric CFT with a central charge below 3.4 is
indeed the level-1 CFT of our hypothesis. Yet, it is hard to
say if the difficulty in fitting we observe is only due to finite-
size effects or if it comes to be due to the system not being
well described by a pure CFT. Further analysis is necessary to
determine the nature of the system conclusively.

0.0 0.1 0.2 0.3 0.4

1/logN

0

1

2

3

c

0 5 10 15 20
j

0

1

2

3

4

S
j

N = 12

N = 14

N = 16

N = 18

N = 20

N = 22

N = 24

(a) (b)

FIG. 3. (a) Finite-size scaling of entanglement entropy and fitting
according to Eq. (12). (b) Finite-size scaling of the extracted values
of central charge c.

C. Wave-function overlap

A new method has recently been introduced to extract the
CFT data from numerical realizations of the critical theory
[19]. The process involves considering two identical periodic
copies of the system of interest at a size N , described by a
CFT with (nonchiral) primary fields φ1

α and φ2
β , and a third

periodic copy of size 2N and primary fields φ3
γ . Then, one

considers the overlap

Aαβγ ≡ 〈
φ3

γ

∣∣φ1
αφ2

β

〉
. (13)

Leveraging a process of cyclic orbifolding the original CFT
of interest, it is possible to show that finite-size realizations of
the CFT enforce scaling laws on the overlaps above that are
fixed by the conformal data of the CFT. Details are discussed
in the original work [19] and summarized in Appendix D.
The simplest overlap to consider involves the identity primary
state,

A111 ∝ N−c/8 + · · · . (14)

Here 1 indicates the identity conformal tower, and the ellipses
correspond to subdominant contributions from descendants.
This overlap offers a direct venue to the central charge c
by finite-size scaling. The correspondence between the CFT
and lattice states is very simple in this case, and one simply
follows

〈13|1112〉 ↔ 〈3 : S = 0, 0|1 : S = 0, 0; 2 : S = 0, 0〉, (15)

where the notation |n : S, i〉 indicates the ith state in total
angular momentum S for spin-chain n (with lengths N for
n = 1, 2 and 2N for n = 3). i = 0 indicates the ground state.
In other words, we identify |1n〉 ↔ |n : S = 0, 0〉.

Figure 4(blue) displays the results of our numerical anal-
ysis. The all-identity conformal tower overlap estimates a
central charge c ≈ 3.37(1), closer to the expected value of
(G2)1 than to the unexpected value found in Sec. III A, but
not satisfactorily close to 2.8, our original expectation. Given
the small system sizes we can reach, the corrections in the
ellipses might be important and may the responsible for
the discrepancy with the expected result. To show that our
method is nevertheless trustworthy, we repeat the analysis in
Appendix E.

Interestingly, the method of wave-function overlaps also
allows for a simple way to estimate scaling dimensions of
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4 6 8 10 12
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2 × 10−1
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c = 3.373

|〈τN , 1N |12N〉|
Δτ = 0.227

|〈1N , 1N |τ2N〉|
Δτ = 0.585

FIG. 4. (blue) Wave-function overlap extracting the central
charge according to ground state overlap as in Eq. (14). (green) and
(orange) similarly correspond to overlaps extracting the Fibonacci
primary scaling dimension according to Eqs. (16) and (17), respec-
tively. States τ used for the overlap computation corresponds to the
singlet state of the multiplet collection indicated by τ τ̄ in grey in
Fig. 1.

primary operators, provided one can accurately access excited
states numerically. Two noteworthy results are

A11γ

A111
∝ N−�γ /2 + · · · , (16)

Aγ11

A111
∝ N−�γ /2

(
1 + a

N
+ · · ·

)
. (17)

On the last ratio above, a is a constant, and the first sub-
dominant power law is controlled by (γ , 1̂), a primary field
in the twist sector of the cyclic orbifold of the original CFT.
These overlaps require the calculation of an excited state
(corresponding to the primary γ ) on chain copy n = 1, 2, of
size N , or n = 3 of size 2N .

In practice, computing Eq. (17) from lattice numerics
brings some extra subtlety. While G2 degeneracy is explicit at
the lattice level, Fig. 1(b) suggests splittings of the expected
conformal towers due to marginal perturbations. One is forced
to pick a given multiplet by hand when looking for states cor-
responding, say, to the τ conformal tower. Furthermore, since
our spin chain and DMRG routine rely on SU(2) symmetry to
enhance computational capacity, our diagonalization targets
sectors of fixed total angular momentum. As states of different
total angular momentum are orthogonal by construction, one
is forced to consider overlaps always within the same multi-
plet. For example, for A11γ , one identifies

〈13|11τ 2〉 ↔ 〈3 : S = 0, 0|1 : S = 0, 0; 2 : S = 0, 1〉. (18)

Here, we see that |τ 2〉 ↔ |2 : S = 0, 1〉, i.e., the first excited
state (i = 1) for the S = 0 sector on the lattice, matches the
first blue dot at momentum π in Fig. 1(b). Due to small system
sizes, the difficulty of convergence of DMRG for excited
states, and the issue with marginal perturbations, the overlap
involving τ states are much less trustworthy, and further dis-
crepancies are then expected when trying to estimate �τ .

The overlaps A11τ /A111 and Aτ11/A111 are shown in-
Fig. 4, green and orange, respectively. The corresponding

estimations for scaling dimensions return �τ ≈ 0.227 and
�τ ≈ 0.585. Indeed, these results are far-off the expected
values and distinct from each other as well.

IV. DISCUSSION AND CONCLUSION

We report on a numerical analysis of an integrable G2-
symmetric 1D chain. Embedding this model in the space
of SU(2)-symmetric spin-3 systems, we bring the G2 model
closer to physical relevance, as well as enable efficient numer-
ical analysis via non-Abelian density matrix renormalization
group.

Both simplicity and a momentum-resolved spectrum from
exact diagonalization suggest that the integrable system may
be described by a (G2)1 WZW CFT. Yet, when different
methods are used to extract the conformal information from
the system (central charge and conformal dimension), very
discrepant results are obtained. The methods explored here are
all based on finite-size scaling of different quantities, namely
of the energy spectrum of the chain, of its entanglement en-
tropy, and of the wave-function overlap of states that should
match primary fields in the CFT. The last method is a very
recently introduced approach to extracting conformal data
from numerical studies.

Since the discrepant results we find are very unexpected,
we test our methodologies against a different integrable
system whose conformal field theory description is well estab-
lished. In Appendix E, we deploy the very same methods for
the Takhtajan-Babujian point of spin-1 bilinear-biquadratic
spin chains, known to correspond to an SU(2)2 WZW CFT
[28–30]. All of our numerical data point to the same cen-
tral charge c ≈ 3/2, the expected value, suggesting that our
methods are implemented in a reliable way. Still, scaling
dimensions are not so easily obtained numerically for this
system [30], and the fact that the lowest state at momentum
π lies in the sector of S = 1 makes the wave-function overlap
method hard to deploy. Given the verified trustworthiness of
the deployed methodologies, we are left with a mystery at
hand.

We are thus left to consider alternative explanations for the
behavior of the G2 integrable chain. The leading contending
hypothesis is that of Ref. [18], which after a Bethe-ansatz
analysis, argues that this system is described by a pair of U (1)
CFTs with different velocities. By a shift and rescale of our
Hamiltonian [see Appendix B, in particular, Eq. (B6)], we can
directly compare our results. We learn that the Bethe ansatz
results for the ground-state energy, computed for system sizes
up to N = 40, match our ED and DMRG results, with system
sizes up to N = 20, within 0.002% differences. Furthermore,
Ref. [18] argues that the first excited state of this system
should correspond to a descendant of the slowest of the two
hypothesized U (1) CFTs, with velocity π/6 and a conformal
dimension equal to one. Indeed, our hypothesis for the first
excited state in Fig. 1 was also that this state corresponds
to unity conformal dimension, and upon rescaling, our esti-
mated velocity returns 37 × 0.17/12 ≈ 0.53 ≈ π/6. This is
optimistic. Furthermore, since the entanglement entropy and
wave-function overlap formulas we used can only be applied
to exact CFT systems, as opposed to the situation with two ve-
locities, this may suggest a possible reason for the conflicting
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results obtained via those methods. However, looking at the
bigger picture of the spectral structure of Fig. 1, our findings
also lead to several questions when compared to the possible
U (1) × U (1) description: (1) why would the first descendant
of a U (1) CFT be 14-dimensional? The descendent of the
faster U (1) CFT would have very high energy and likely with
degeneracy much higher than 14. (2) Why would the larger
microscopic G2 symmetry of the system be broken down in
the low-energy continuum limit? (3) How could we fit the
states close to k = π into the structure of the U (1) × U (1)
description of the system with such low energy in comparison
with the first descendant, and how do we fit their multiplicities
into the picture? We anticipate that some interesting dynamics
must be happening in this model to lead to such unexpected
behavior.

Naturally, the picture for a (G2)1 CFT, suggested by the
multiplet structure found via exact diagonalization, could sim-
ply be correct. Our entanglement entropy and wave-function
overlap analyses both estimate the central charge closer to
2.8, perhaps indicating that the system sizes we are able
to probe are simply not large enough to display the correct
CFT behavior. In this case, the challenge for future inquiries
becomes to determine what is happening with the exact diag-
onalization velocity estimation and the corresponding central
charge. Another possible future research direction which can
help shed clarity on the true behavior of this critical system is
the analysis of the problem with perturbations around the in-
tegrable point. Given the high dimensionality of the parameter
space, performing this analysis in a meaningful way may be a
challenging task.
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APPENDIX A: G2 DICTIONARIES

In this Appendix, we write down the mapping of the spin-3
model to the G2 invariant language (and the inverse mappings
as well). It is enough, for this purpose, to consider a two-site
problem.

1. Coupling Dictionary

We first determine the constraints on the couplings αn such
that the Hamiltonian is G2 symmetric [see the Hamiltonian in
terms of αn in Eq. (1)]. Let us keep α0, α1, α2, and α3 as free
parameters. The couplings α4, α5, and α6 read

α4 = 35350

65144169
α1 − 198

9929
α2 + 67426

804249
α3, (A1)

α5 = − 1

6561
α1 − 1

81
α3, (A2)

α6 = − 680

65144169
α1 + 1

9929
α2 − 842

804249
α3. (A3)

TABLE I. Conversion of the couplings, written in terms of β.

β

K K0 = β0 − 4β1 + 16β2 − 64β3

K1 = β0

K2 = β0 + 2
3 β1 + 4

9 β2 + 8
27 β3

K3 = β0 − 2β1 + 4β2 − 8β3

α α0 = β0 + 176
75 β1 + 1144

225 β1 − 3344
135 β3

α1 = 9
25 β1 + 58

25 β2 − 868
75 β3

α2 = − 433
1350 β1 − 989

2025 β1 + 16874
6075 β3

α3 = − 31
900 β1 − 1133

4050 β2 + 7843
6075 β3

F F1 = β0 − 4β1 + 16β2 − 64β3

F7 = β0 − 2β1 + 4β2 − 8β3

F14 = β0

F27 = β0 + 2
3 β1 + 4

9 β2 + 8
27 β3

The constraints for the couplings KS [Eq. (2)] to have a G2-
symmetric Hamiltonian are

K5 = K1, K6 = K4 = K2. (A4)

We are left with K0, K1, K2, and K3 as arbitrary parameters.
We list the conversion from the different couplings con-

stants. We write down the couplings in terms of β in Table I
[see Eq. (6)], of F in Table II [Eq. (5)], of K [Eq. (2)] in
Table III and, finally, in terms of α [Eq. (1)] in Table IV.

2. G2 projectors

To link the different representations of the model, we also
write down the projectors Pn in terms of the Casimir C2 ≡
(�i + �i+1)2 to the projectors of the Clebsch–Gordan series

TABLE II. Conversion of the couplings, written in terms of F .

F

K K0 = F1

K1 = F14

K2 = F27

K3 = F7

α α0 = 99F1
175 − 6F14

5 + 517F27
175 − 33F7

25

α1 = 6F1
25 − 21F14

50 + 63F27
100 − 9F7

20

α2 = − 431F1
6300 + 281F14

1350 − 4129F27
12600 + 203F7

1080

α3 = − 122F1
4725 + 343F14

5400 − 1007F27
12600 + 19F7

450

β β0 = F14

β1 = 1
28 F1 − 1

4 F7 − 3
4 F14 + 27

28 F27

β2 = − F1
28 + 5

16 F7 − F14 + 81
112 F27,

β3 = − 3
112 F1 + 3

32 F7 − 3
16 F14 + 27

224 F27
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TABLE III. Conversion of the couplings, written in terms of K .

K

α α0 = 99K0
175 − 6K1

5 + 517K2
175 − 33K3

25

α1 = 6K0
25 − 21K1

50 + 63K2
100 − 9K3

20

α2 = − 431K0
6300 + 281K1

1350 − 4129K2
12600 + 203K3

1080

α3 = − 122K0
4725 + 343K1

5400 − 1007K2
12600 + 19K3

450

F F1 = K0

F7 = K3

F14 = K1

F27 = K2

β β0 = K1

β1 = 1
28 K0 − 3

4 K1 + 27
28 K2 − 1

4 K3

β2 = − 1
28 K0 − K1 + 81

112 K2 + 5
16 K3

β3 = − 3
112 K0 − 3

16 K1 + 27
224 K2 + 3

32 K3

of two G2 fundamental irreps. They read

P1 = − 3

896
[C2 − 4][C2 − 8]

[
C2 − 28

3

]
,

P7 = 3

256
C2[C2 − 8]

[
C2 − 28

3

]
,

P14 = − 3

128
C2[C2 − 4]

[
C2 − 28

3

]
,

P27 = 27

1792
C2[C2 − 4][C2 − 8]. (A5)

Recall that we normalize the generators of G2 according to
Tr(�†

α�β ) = 2δαβ . For irreps 1, 7, 14, 27, we have, respec-
tively, C2 = {0, 4, 8, 28

3 }.

TABLE IV. Conversion of the couplings, written in terms of α.

α

K K1 = α0 + 2412190
804249 α1 + 74052

9929 α2 + 298144
9929 α3

K0 = α0 + 4832980
804249 α1 + 310032

9929 α2 − 433856
9929 α3

K2 = α0 − 19730
9929 α1 + 36612

9929 α2 − 62856
9929 α3

K3 = α0 − 3698390
804249 α1 + 147492

9929 α2 − 597656
9929 α3

F F1 = α0 + 4832980α1
804249 + 310032α2

9929 − 433856α3
9929

F7 = α0 − 3698390α1
804249 + 147492α2

9929 − 597656α3
9929

F14 = α0 + 2412190α1
804249 + 74052α2

9929 + 298144α3
9929

F27 = α0 − 19730α1
9929 + 36612α2

9929 − 62856α3
9929

β β0 = α0 + 2412190
804249 α1 + 74052

9929 α2 + 298144
9929 α3

β1 = − 500665
178722 α1 − 46035

9929 α2 − 150300
9929 α3

β2 = − 6528445
1072332 α1 − 12555

9929 α2 − 514875
9929 α3

β3 = − 498265
357444 α1 − 15795

39716 α2 − 215775
19858 α3

APPENDIX B: G2 INTEGRABLE POINT

In this Appendix we derive the integrable G2 spin chain (7).
We do so by first using the general construction of a rational
R-matrix given by MacKay [31], which then serves as starting
point in the quantum inverse scattering method [32,33]. We
consider a chain with fundamental G2 representations at each
lattice site. The tensor product on two neighboring sites can
be decomposed as given in Eq. (3), with the corresponding
eigenvalues of the quadratic Casimir operator given in the pre-
vious section. Following the general construction of rational R
matrices in irreducible representations [31] we directly obtain

R(λ) = P1 + λ + η

λ − η

λ + η

6

λ − η

6

λ − 2η

3

λ + 2η

3

P7

+ λ + η

λ − η
P14 + λ + η

λ − η

λ + η

6

λ − η

6

P27, (B1)

where the projectors are explicitly given in terms of the
Casimir operator in Eq. (A5), λ denotes the rapidity, and η

is a free parameter. It is straightforward to show that the R
matrix satisfies the Yang-Baxter equation

R12(λ − μ)R13(λ)R23(μ) = R23(μ)R13(λ)R12(λ − μ), (B2)

where the subindex denotes on which of the factors in the
tensor product 7 ⊗ 7 ⊗ 7 the R matrix acts nontrivially. The
R matrix further satisfies the normalization

R(λ = 0) = P1 − P7 − P14 + P27 = P, (B3)

with the permutation operator P, and R(λ)|η=0 = 1. We note
that the R matrix, Eq. (B1), has been obtained previously by
Ogievetsky [34] and its q deformation by Kuniba [35].

The R matrix, Eq. (B1) can now be used as input to con-
struct an integrable Hamiltonian. We follow Ref. [33], noting
that the relation to our convention is provided by Scd

ab ↔ Rcd
ab .

We define the transfer matrix via

τ
σ ′

1...σ
′
N

σ1...σN (λ) = R
σ ′

1γ1
σ1γ2 (λ)Rσ ′

2γ2
σ2γ3 (λ) · · · Rσ ′

N γN
σN γ1 (λ) (B4)

acting on the Hilbert space H = ⊗N
i=1 V with V = 7. Now

using Rγ δ

αβ (λ = 0) = Pγ δ

αβ = δδ
αδ

γ

β we get

H = ∂

∂λ
ln[τ (λ)]

∣∣∣
λ=0

=
N∑

i=1

Hi, Hi = ∂

∂λ
R(λ)

∣∣∣
λ=0

P,

(B5)

where the factor P ensures the correct indices as compared to
Ref. [33]. Periodic boundary conditions are imposed. Using
Eq. (B1) in Eq. (B5) as well as C2 = 4 + 2�i · �i+1 and set-
ting η = 37/2 we arrive at Eq. (7), up to an additive constant.
This construction, albeit the Hamiltonian was less explicitly
stated, has also been demonstrated in Refs. [8–10]. The link to
the conventions used by Martins is provided by [see Eq. (20)
in Ref. [18]]

H = 12

37

(
HMartins

(√
2� + 7

12
N

))
, (B6)

with H defined in Eq. (B5) and � referring to the G2 genera-
tors as defined by Ref. [18].
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APPENDIX C: VICINITY OF THE INTEGRABLE POINT

In this Appendix we study the integrability in the vicinity
of the model (7). Specifically we consider the general Hamil-
tonian H (α, β ) = ∑

i Hi with

Hi = 1

2
�i · �i+1 + α

4
(�i · �i+1)2 + β

8
(�i · �i+1)3 (C1)

and periodic boundary conditions imposed. Grabowski and
Mathieu [36] (see also Ref. [37]) suggested a very hands-on
way to check integrability of a given translationally invariant
chain. They considered the boost operator

B =
N∑

i=1

i Hi, (C2)

which yields a candidate for the first conserved charge

H3 = [B, H] = −
N∑

i=1

[Hi, Hi+1]. (C3)

If H3 is indeed a conserved charge, i.e., [H3, H] = 0, then one
must have

MN ≡
N∑

i=1

[Hi + Hi+1, [Hi, Hi+1]] = 0, (C4)

which can be checked by straightforward calculation. This
condition has to be satisfied for all chain lengths N � 3, in
practice considering short chains is sufficient to get an idea.

Applying the above argument to the model (C1), we first
calculate the eigenvalues of M3. From this we deduce that
the operator H3 = [B, H] commutes with (C1) provided β =
15α/37 (alternative solutions are β = −1 + α or β = 3(5α −
3)/31, which we do not consider further). A constraint on the
remaining parameter α is obtained from the requirement M4 =
0, which is numerically found to be satisfied for α = 5/2 only,
indicating that the general model (C1) is not integrable away
from this point.

APPENDIX D: (G2 )1 AND ORBIFOLDING

As per the main text, our principal hypothesis for the low-
energy, thermodynamic limit, properties of the G2 integrable
chain is that it is corresponds to a critical point described by
a (G2)1 WZW CFT. Here we provide a short summary of the
conformal data describing this field theory, and develop its
orbifolded version, relevant for the analysis of conformal data
via wave-function overlaps.

1. (G2 )1 conformal data

The G2 exceptional algebra contains 14 generators and has
dual Coxeter number g = 4, so that the conformal anomaly
(central charge) of a G2 WZW CFT at level k reads

ck = 14k

k + g
→ c1 = 14

5
= 2.8, (D1)

particularizing to our (G2)1 case of interest.

The conformal dimensions of holomorphic primary opera-
tors are given by

hλ = Cλ

2(k + g)
→ hλ = Cλ

10
, (D2)

again particularizing to (G2)1. Cλ is the quadratic Casimir for
a given G2 irreducible representation (irrep). For level k = 1,
only two conformal towers exist, whose corresponding pri-
mary operators we name 1, associated with the identity irrep,
and τ , associated with the fundamental, seven-dimensional,
irrep of G2. Their corresponding Casimirs read C1 = 0 and
Cτ = 4, so that their holomorphic conformal dimensions read

h1 = 0, hτ = 2/5. (D3)

The scaling dimensions of nonholomorphic primary fields
are related to the above by hλ = �λ/2, thus

�1 = 0, �τ = 4/5. (D4)

These are the parameters that control the finite-size scaling of
the amplitudes computed below.

The conformal characterization of (G2)1 is not complete
without the fusion and modular content. The fusion relations
for the primary fields are well-known and simple,

1 × 1 = 1, (D5)

τ × 1 = τ, (D6)

τ × τ = 1 + τ, (D7)

following the same pattern expected for Fibonacci anyons.
The quantum dimensions, which control the asymptotic
Hilbert space size upon multiple fusions, are

d1 = 1, dτ = 1 + √
5

2
. (D8)

We can now reconstruct the modular T and S matrices. For
T ,

Tηη′ ≡ θηe−2π i(c/24)δηη′ , θη ≡ e2π ihη , (D9)

⇒ T = e−π i/45

(
1 0

0 e4π i/5

)
, (D10)

where the Greek indices label primary fields. As for S , the
definition reads

Sαβ = 1

D
∑

η

dηCαβη

θη

θαθβ

(D11)

where Cαβη is the fusion coefficient for three primaries and
D = √∑

α d2
α is the total quantum dimension. To build the

matrix easily, just note that the matrix must be symmetric and,
since fusing with 1 is trivial, the first row corresponds to the
dimensions of the primary fields divided by the total quantum
dimension. Then, unitarity demands the bottom right entry to
be ****1, and thus

S = 1

D

(
1 dτ

dτ −1

)
. (D12)
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2. (G2 )1 orbifolding

The process of cyclic orbifolding a CFT is pedagogically
explained in Ref. [19]. Following their process, we quote the
results for the (G2)1 orbifolding theory. For two primary fields
in the parent CFT, five states are expected in the untwisted
sector—two symmetric, labeled s, two antisymmetric, labeled
a, and one mixed—, and four states survive in the twisted
sector. The twisted sector simply doubles the parent CFT
primaries into new fields labeled with an extra index 0̂ or 1̂.

Altogether, the primary-field content of the untwisted sec-
tor, and the corresponding scaling dimensions, read

φ(1,1)s
→ �(1,1)s

= 2�1 = 0,

φ(τ,τ )s
→ �(τ,τ )s

= 2�τ = 8/5,

φ(1,1)a
→ �(1,1)a

= 2�1 + 2 = 2, (D13)

φ(τ,τ )a
→ �(τ,τ )a

= 2�τ + 2 = 18/5,

φ(1,τ ) → �(1,τ ) = �1 + �τ = 4/5.

For the twisted sector, we obtain

φ(1,0̂) → �(1,0̂) = c/8 = 1
30 ,

φ(1,1̂) → �(1,1̂) = c/8 + 1 = 31
30 ,

φ(τ,0̂) → �(τ,0̂) = c/8 + 2
5 = 13

30 ,

φ(τ,1̂) → �(τ,1̂) = c/8 + 2
5 + 1 = 43

30 .

(D14)

For our purposes here, we also need, at least part of, the
fusion content of the orbifold theory. The selection rules for
fusion of primaries α, β, γ , are fixed by the integers Nα,β,γ ,
typically assuming values 0 or 1. Whenever these integers
assume a vanishing value, the full three-point fusion can be
discarded. The relevant coefficients for the orbifold theory can
be obtained, using

N(α,β ),(γ ,ψ̂ ),(δ,χ̂ ) =
∑

η

SαηSβηSγ ηS∗
ηδ

S2
1η

(D15)

and

N(α,α)s,(γ ,ψ̂ ),(δ,χ̂ ) = 1

2

∑
η

S2
αηSγ ηS∗

ηδ

S2
1η

+ eiπ (ψ+χ )

2

∑
η

SαηPγ ηP∗
ηδ

S1η

, (D16)

where P = T 1/2ST 2ST 1/2 [19]. Conveniently, all necessary
orbifold fusion rules can be determined by the modular con-
tent of the parent CFT. Explicitly, the fusion rules of interest
for the cyclic orbifold of (G2)1 read

(1,1)s × (1, 0̂) = (1, 0̂),

(1,1)s × (1, 1̂) = (1, 1̂),

(1,1)s × (τ, 0̂) = (τ, 0̂),

(1,1)s × (τ, 1̂) = (τ, 1̂),

(D17)

starting from the symmetric identity sector,

(τ, τ )s × (1, 0̂) = (1, 0̂) + (τ, 1̂),

(τ, τ )s × (1, 1̂) = (1, 1̂) + (τ, 0̂),

(τ, τ )s × (τ, 0̂) = (1, 1̂) + (τ, 0̂) + (τ, 1̂),

(τ, τ )s × (τ, 1̂) = (1, 0̂) + (τ, 0̂) + (τ, 1̂),

(D18)

starting from the symmetric τ sector, and

(1, τ ) × (1, 0̂) = (τ, 0̂) + (τ, 1̂),

(1, τ ) × (1, 1̂) = (τ, 0̂) + (τ, 1̂),

(1, τ ) × (τ, 0̂) = (1, 0̂) + (1, 1̂) + (τ, 0̂) + (τ, 1̂),

(1, τ ) × (τ, 1̂) = (1, 0̂) + (1, 1̂) + (τ, 0̂) + (τ, 1̂),

(D19)

for the mixed identity-τ one.

3. Finite-size scaling and amplitudes

In possession of the fusion rules for the cyclic orbifold
version of a given CFT, one is ready to extract the conformal
data from wave-function overlaps. The general formula for
the wave-function overlap analysis described in the main text
reads [19]

Aαβγ = 〈
φ3

γ

∣∣φ1
αφ2

β

〉
=

∑
δ,χ

a(δ,χ̂ )N
−�(δ,χ̂ )C(α,β ),(δ,χ̂ ),(γ ,0̂), (D20)

where a(δ,χ̂ ) are nonuniversal constants and C(α,β ),(δ,χ̂ ),(γ ,0̂)
are the operator product expansion coefficients for the cyclic
orbifold CFT. Naturally, these coefficients are only finite when
a fusion channel exists between the corresponding primaries.

It is convenient to normalize this expansion by the all-
identity overlap Aγ11, and noting that C(α,β ),(1,0̂),(γ ,0̂) =
2−2�α−2�β+�γ Cαβγ is related to the parent CFT operator prod-
uct expansion coefficients Cα,β,γ , we can write a general
formula for the overlap of the (G2)1 CFT (in fact, valid for
any WZW CFT at level 1),〈

φγ
3
∣∣φ1

αφ2
β

〉
〈13|1112〉 = 2−2�α−2�β+�γ Cα,β,γ

+ a′
(1,1̂)C(α,β ),(1,1̂),(γ ,0̂)N−1

+ a′
(τ,0̂)C(α,β ),(τ,0̂),(γ ,0̂)N−�τ /2

+ a′
(τ,1̂)C(α,β ),(τ,1̂),(γ ,0̂)N−(�τ /2+1) + · · · .

(D21)

The first term is the thermodynamic limit result, while
the corrections arise at finite-size systems. Using the fusion
channels from the previous section, we recover the three note-
worthy overlaps from the main text, Eqs. (14), (16), and (17).

APPENDIX E: TAKHTAJAN-BABUJIAN REFERENCE

In this Appendix, we present the numerical results on the
TB model, serving as a benchmark for the three methods
used in the main text for the G2 model. The TB model is
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FIG. 5. Benchmark results with the Takhtajan-Babujian model. (a) Momentum- and total-spin-resolved energy spectrum. (b) The scaling
of the ground state energy. (c) Fitting of the spin wave velocity from k = 1 and k = 0 states, as done in the main text. (d) The entanglement
entropy and central charge for various system sizes. (e) Fitting of c(N ) against 1/(log N )3. (f) Wave-function overlap and the resultant central
charge. The extracted values of the central charge match c ≈ 3/2, as expected.

generally believed to be described by an SU(2)2 ∼ SO(3)1

WZW CFT. Both groups have dimension 3 and their dual
Coxeter numbers are g = 2 and g = 1, respectively. This gives
the central charge,

ck = 3k

k + g
→ cTB = 3

2
= 1.5. (E1)

We will see that all three methods give results consistent with
this claim.

The momentum- and total-spin-resolved energy spectrum
is shown in Fig. 5(a). The two-dome structure is consistent
with that of SU(2)2 ∼ SO(3)1 WZW CFT. Extraction of the
central charge from the energy spectrum constitutes determi-
nation of the spin wave velocity and a scaling of the ground
state energy. The former gives v = 6.445 [Fig. 5(c)] and the

latter gives cv = 10.166 [Fig. 5(b)], and together we have
c = 1.58, about 5% off from the proclaimed value.

The entanglement entropy and the central charge for vari-
ous system sizes are shown in Fig. 5(d), with a fitting of c(N )
against 1/(log N )3 in Fig. 5(e). We see that even for such small
system sizes the central charges are all rather close to 3/2,
with the thermodynamic limit value c(∞) = 1.51.

Finally, the wave-function overlap data are shown in
Fig. 5(f). Due to difficulties in identifying the microscopic
states with the CFT fields, we only consider the overlap
among ground states, which directly gives the central charge.
Once again the result is very close to 3/2.

Before concluding this Appendix, we wish to point out
that in more careful analysis there turns out to exist subtle
issues on numerical analyses and the identification of the TB
model with SU(2)2 ∼ SO(3)1 WZW CFT. We refer the reader
to Refs. [30,38] on this point.
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