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Entanglement in a one-dimensional critical state after measurements
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The entanglement entropy (EE) of the ground state of a one-dimensional Hamiltonian at criticality has a
universal logarithmic scaling with a prefactor given by the central charge c of the underlying (1 + 1)-dimensional
conformal field theory. When the system is probed by measurements, the entanglement in the critical ground state
is inevitably affected due to wave-function collapse. In this paper, we study the effect of weak measurements
on the entanglement scaling in the ground state of the one-dimensional critical transverse-field Ising model. For
the measurements of the spins along their transverse spin axis, we identify interesting postmeasurement states
associated with spatially uniform measurement outcomes. The EE in these states still satisfies the logarithmic
scaling but with an alternative prefactor given by the effective central charge ceff . We derive the analytical
expression of ceff as a function of the measurement strength. With both numerical simulations and analytical
studies, we show that for the EE averaged over all postmeasurement states based on their Born-rule probabilities,
the effective central charge is independent of the measurement strength, contrary to the usual expectation that
local and nonoverlapping measurements reduce the entanglement in the system. We also examine the behavior
of the average EE under (biased) forced measurements where the measurement outcomes are sampled with a
predetermined probability distribution without intersite correlations. In particular, we find an optimal probability
distribution that can serve as a mean-field approximation to the Born-rule probabilities and lead to the same ceff

behavior. The effects of the measurements along the longitudinal spin axis and the postmeasurement correlation
functions are also discussed.
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I. INTRODUCTION

For a quantum system, measurements can affect its state
in a highly nontrivial manner. Measurement is an intrinsically
nonunitary operation due to the wave-function collapse in the
process. Therefore, its effects on quantum states fundamen-
tally differ from any unitary operations. One can exploit the
peculiar effect of measurement to either generate or reduce the
entanglement in a quantum system. For example, the entangle-
ment between the Einstein-Podolsky-Rosen pair is eliminated
once one partner is measured. On the other hand, one can also
simultaneously perform a set of commuting measurements on
overlapping observables on an array of unentangled qubits
to create long-range-entangled states with topological order,
such as the toric code [1–3], which are states that cannot be
created by the local unitary circuit with a depth independent
of the system size [4]. Moreover, starting with many-body
quantum states with certain entanglement structures (such as
the cluster states), general quantum information processing
can be carried out by sequences of measurements, follow-
ing the scheme of measurement-based quantum computation
[5–8]. From a quantum matter perspective, the ground states
of quantum many-body systems (with local Hamiltonians)
provide a large class of states with rich entanglement proper-
ties [9–16]. Any form of probe or measurement will inevitably
alter the many-body wave functions and, hence, change the
entanglement structure in the original ground states. In gen-
eral, it is interesting to understand how measurements affect
the entanglement in quantum many-body systems.

Among the ground states of local quantum Hamiltonian
systems, critical ground states are among the most entangled.

In particular, for a one-dimensional critical system, the
ground-state von Neumann entanglement entropy (EE) on
a subsystem of length l has a universal logarithmic scaling
∼ c

3 ln l where c is the central charge of the conformal field
theory (CFT) that describes the low-energy physics of the
system [17]. Examples of nontrivial effects of measurements
on a one-dimensional critical ground state were presented in
interesting recent works [18,19]. For instance, the latter work
showed that the correlation functions in a (one-dimensional)
Tomonaga-Luttinger liquid can experience transitions when
the state is measured. More generally, the problem of a one-
dimensional critical ground state subject to measurements is
naturally mapped to the problem of boundary or defect CFTs
(or critical systems with impurities or defects) [9,20–22],
which is a subject that has been extensively studied. Similar
ideas generalize naturally to higher dimensions. In another
recent work [23], phase transitions have also been found in
two-dimensional critical states subject to weak measurements.

In this work, we are interested in the entanglement struc-
ture, the EE in particular, in the one-dimensional critical
system after measurements are performed on the ground state.
After the measurements, the critical system is no longer at
equilibrium. A general question is whether or not the postmea-
surement entanglement in the system still exhibits universal
properties. Using a system with its criticality described by
the (1 + 1)-dimensional [(1 + 1)D] Ising CFT as an exam-
ple, we show that various aspects of the postmeasurement
entanglement are directly related to the universal properties
of defects in the Ising CFT. Programmable quantum simu-
lators provide natural platforms to experimentally study the
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universal postmeasurement entanglement investigated in this
paper.

Concretely, we start with the ground state |�〉 of the critical
transverse-field Ising model (cTFIM) prepared on a one-
dimensional spin and qubit chain. We will focus on the effects
of independent weak measurements on each spin and qubit
along the x or z axis (corresponding to the transverse and lon-
gitudinal directions in the cTFIM). Such weak measurements
can be implemented in programmable quantum simulators
(whose capability of measuring different qubits independently
has been demonstrated [24–30]) with the help of ancilla qubits
[31]. The strength of the measurement is a tunable parame-
ter λ ∈ [0, 1], where λ = 1 indicates the standard projective
measurements, and the measurement is reduced to a trivial
action on the state in the limit λ = 0. After the measurement,
each set of measurement outcomes corresponds to a partic-
ular postmeasurement (pure) state due to the wave-function
collapse. The postmeasurement states for different sets of
measurement outcomes form an ensemble. It is interesting to
explore different ways to sample this ensemble and study the
universal behavior of the EE in the postmeasurement states.
Later, we will see that the measurements along the x or z
axis have different properties under the Ising Z2 symmetry
and lead to distinct classes of universal behaviors in the large
system limit. These universal behaviors reflect the properties
of the defects CFT at the renormalization group (RG) fixed
points, which are independent of the microscopic details of
the weak measurements.

When the spins are independently measured along their
x axis, we identify intriguing postmeasurement states with
spatially uniform measurement outcomes. The EEs in such
states still follow the logarithmic scaling ceff

3 ln(l ) but with
an effective central charge ceff that decreases continuously
and monotonically as the measurement strength λ increases.
Such behavior results from the fact that the measurement
along the x axis induces an exactly marginal perturbation
to cTFIM ground state |�〉 in the RG sense. We obtain the
exact analytical expression of ceff (λ) using a combination of
a field-theoretic treatment and a mapping to another cTFIM
with a defect. We also show analytically that a two-point
longitudinal-spin correlation function in these particular
postmeasurement states exhibits a scaling exponent that
varies continuously as the measurement strength changes.
Both the ceff (λ) and the varying exponents are directly
related to the universal properties of an exactly marginal
conformal defect in the Ising CFT (with λ parametrizing the
defect strength). When the spins are measured along the z
axis, the postmeasurement states with uniform measurement
outcomes have a vanishing central charge immediately when
the measurement strength λ is nonzero. As we show later, this
behavior results from a relevant perturbation to the cTFIM
ground state |�〉 induced by the z-axis measurements. The
obtained properties of the uniform postmeasurement states
can also be interpreted as results in quantum dynamics under
non-Hermitian Hamiltonians.

We also study the average behavior of the EE in the entire
ensemble of postmeasurement states. For the study of average
EE, we focus on the measurements with respect to the x axis
of the spins. When the measurements are performed, different
measurement outcomes and their associated postmeasurement

states naturally occur according to the classic Born-rule
probability. When physical quantities, including EE, are
averaged over the postmeasurement states according to
Born-rule probability, we refer to this type of measurement
as the Born-rule measurement. There is another commonly
discussed averaging scheme, associated with the so-called
forced measurement, where different measurement outcomes
are “forced” to be sampled with equal probability. One can
view the forced measurement as the Born-rule measurement
followed by a reweighting on the ensemble of outcomes
and their associated postmeasurement states. Although being
less natural compared to the Born-rule measurement, in the
different context of dynamical quantum systems monitored
by measurements, forced measurements were studied in many
examples due to their close relations to the physics of random
tensor network or disordered statistical mechanics models
[32–37]. For this work, we are interested in the behavior of
both the postmeasurement EE averaged in accordance with
Born-rule measurements and that with forced measurements.

In the case of Born-rule measurements, we show the av-
erage EE can be described by a (1 + 1)D R-replica field
theory with a measurement-induced perturbation on a one-
dimensional defect in the replica limit R → 1. Using the
numerical method based on matrix product states (MPS) (and
an alternative method based on a Majorana-fermion repre-
sentation of the system), we calculate the postmeasurement
EE averaged with respect to the Born-rule probability. We
find that the numerically extracted effective central charge
ceff , which is associated with the logarithmic scaling of the
average EE, turns out to be the same as that of the unmeasured
ground state. This interesting result is contrary to the naive
expectation that measurements on local and nonoverlapping
observables generally reduce the entanglement in the system.
We provide an analytical understanding of this behavior of the
effective central charge by studying the measurement-induced
perturbation in the CFT and showing that the defect associ-
ated with perturbation has a vanishing strength in the replica
limit R → 1.

In the case of forced measurements, we show the average
EE can be captured by the same (1 + 1)D R-replica field
theory with a measurement-induced perturbation on a one-
dimensional defect but in a different replica limit R → 0.
The effective central charge ceff extracted from the numer-
ically calculated average EE decreases continuously as the
measurement strength increases. Interestingly, one can deform
the probability distribution of the forced measurements to set
a bias towards one of the two measurement outcomes on
every spin. We find an optimal bias under which a mean-
field approximation to the Born-rule probability is achieved.
With this optimal bias, the numerically calculated effective
central charge restores the unmeasured value independent of
the measurement strength, a feature shared by the average EE
with Born-rule measurements. Analytical understandings of
such behaviors of the effective central charge under biased and
unbiased forced measurements are provided.

The remainder of the paper is organized as follows. In
Sec. II, we introduce cTFIM and the weak measurements on
its ground state that we consider in this work. In Sec. III,
we study the universal properties, especially the effective
central charges, of the postmeasurement states with uniform
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measurement outcomes. Both exact analytical results and
their numerical verification will be presented. In Sec. IV, we
discuss the average EE with Born-rule measurement using
both analytical and numerical methods. In Sec. V, we present
our results on the average EE with forced measurements and
biased forced measurements obtained from both analytical
and numerical approaches. In Sec. VI, we provide a summary
of the results of this paper and discuss several interesting
questions for future investigation.

II. MEASURING THE GROUND STATE OF THE CRITICAL
TRANSVERSE-FIELD ISING MODEL

We consider the ground state |�〉 of the cTFIM on a spin
chain whose Hamiltonian is given by

H = −
∑

j

(
σ z

j σ
z
j+1 + σ x

j

)
, (1)

where σ x,z
j are the Pauli operators on the jth site of the spin

chain. The Hamiltonian H and its ground state |�〉 preserve
the global Ising Z2 symmetry: σ z

j → −σ z
j .

Let us first introduce the types of measurements on the
ground state |�〉 we will study in this paper. We will primarily
focus on weak measurements of spins in the system along
their x axis. We will also discuss the effect of the z-axis weak
measurement as well. As explained below, these two types
of measurements have different properties under the Ising Z2

symmetry and generate perturbations to the underlying Ising
CFT through different primary operators.

The weak measurement we consider is a softened version
of the standard projective measurement (which can be imple-
mented by using ancilla qubits and projective measurement
[31]). For a given site j, the x-axis weak measurement is
defined using the Kraus-operator set {Kx

j,m j
}m j=± with

Kx
j,± = 1 ± λσ x

j√
2(1 + λ2)

, (2)

where λ ∈ [0, 1] is the parameter that controls the strength of
the measurement. For this x-axis weak measurement, there are
two possible measurement outcomes m j = ±. Depending on
the measurement outcome m j , an incoming state |ψ〉 evolves
or collapses into one of the two postmeasurement states ac-
cording to

|ψ〉 →
Kx

j,m j
|ψ〉∣∣∣∣Kx

j,m j
|ψ〉∣∣∣∣ . (3)

This evolution is commonly referred to as the quantum trajec-
tory associated with the measurement outcome m j .

The two quantum trajectories with m j = ± occur with the
classic Born-rule probability

px(m j ) = 〈ψ |(Kx
j,m j

)†
Kx

j,m j
|ψ〉

= 1

2(1 + λ2)

(
1 + λ2 + 2m jλ〈ψ |σ x

j |ψ〉). (4)

The Kraus operators {Kx
j,m j

}m j=± satisfy the condition for a
positive operator-valued measure (POVM):∑

m j=±

(
Kx

j,m j

)†
Kx

j,m j
= 1, (5)

which guarantees the normalization of total Born-rule prob-
ability given in Eq. (4), i.e.,

∑
m j=± px(m j ) = 1, for any

incoming state. (See, for example, Ref. [38] for a general
discussion of the Kraus-operator formalism and the POVM
condition).

When λ = 1, the weak measurement defined by the Kraus-
operator set {Kx

j,m j
}m j=± reduces to the standard projective

measurement with respect to observable σ x
j . And the Kraus

operators reduce to
1+m jσ

x
j

2 which are the projection operators
to the eigenstates of σ x

j . For 0 < λ < 1, the measurement
has a “lower resolution” in resolving the spin state along the
x axis and the Kraus operators in Eq. (2) become softened
versions of the projection operators. In the limit λ = 0, the
Kraus operators are reduced to the identity operators (up to a
multiplicative constant). The measurement does not provide
any information on the state of the system. Hence, there is
effectively no measurement performed.

Similarly, the z-axis weak measurement is defined by the
Kraus-operator set {Kz

j,m j
}m j=± with

Kz
j,± = 1 ± λσ z

j√
2(1 + λ2)

, (6)

which also satisfies the POVM condition∑
m j=±

(
Kz

j,m j

)†
Kz

j,m j
= 1. (7)

For this z-axis weak measurement, the definition of quantum
trajectories and the expressions of the Born-rule probabilities
for different measurement outcomes m j = ± parallel the case
of the x-axis weak measurement discussed above.

Consider performing a weak measurement along the spin
axis v on every spin in the ground state |�〉 of the cTFIM.
There are two cases given by v = x and v = z. On a spin
chain of length L, the set of measurement outcomes from
the measurements on every site is denoted as {m j} j=1,2,...,L.
In the quantum trajectory associated with {m j}, the postmea-
surement state is given by

∣∣�v
{m j}
〉 =

∏
j Kv

j,m j
|�〉∣∣∣∣∏

j Kv
j,m j

|�〉∣∣∣∣ . (8)

When the measurement axis is v = x, the postmeasurement
states in all quantum trajectories preserve the Ising Z2 sym-
metry. When v = z, the Ising Z2 symmetry is broken in the
postmeasurement states.

In this paper, we are interested in the entanglement proper-
ties, especially the EE, of the postmeasurement states |�v

{m j}〉.
Before any measurement, on a spin chain of length L, the
half-system EE follows the logarithmic scaling

S|�〉(L/2) = c

6
ln(L) + O(1), (9)

where c = 1
2 is the central charge of (1 + 1)D Ising conformal

field theory (CFT) that governs the low-energy physics of
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cTFIM. Note that Eq. (9) applies to a one-dimensional system
with an open boundary condition where the half-system refers
to an interval of length L/2 starting from the boundary of the
spin chain. This expression of EE, especially the prefactor
c/6, can be derived by introducing the twist fields in Ising
CFT [17]. The previously mentioned universal EE scaling
c
3 ln(l ), which concerns a subsystem of length l away from
the boundary of the system, has exactly the same origin as
Eq. (9). The factor of 2 difference between the two EE scal-
ing expressions is related to the difference in the number of
boundary points of the subsystems.

After the weak measurements on every site of the sys-
tem, the ensemble of different possible sets of measurement
outcomes gives rise to an ensemble of different postmea-
surement states {|�v

{m j}〉}. These postmeasurement states can
be viewed as the Ising CFT ground state perturbed by pri-
mary operators that depend on v, which we will elaborate in
the following sections. Depending on the way the postmea-
surement states are sampled, our study is divided into three
parts.

In the first part, we focus on the specific postmeasurement
states |�v

{m j=+}〉 and |�v
{m j=−}〉 associated with the spatially

uniform measurement outcomes, i.e., m j = + for all sites or
m j = − for all sites.

The second part concerns the case of Born-rule measure-
ment, where we study the average EE over all postmeasure-
ment states weighted by their associated Born-rule probability

p({m j}) = 〈�|
∏

j

Kv†
j,m j

Kv
j,m j

|�〉. (10)

In the third part, we consider the case of forced mea-
surements where all the postmeasurement states |�v

{m j}〉 are
“forced” to be sampled with equal probability. We will also
introduce a biased version of the forced measurement where
we can put in a tunable bias in the statistical weight for
m j = + and m j = − on each site.

III. EXACT RESULT FOR UNIFORM
MEASUREMENT OUTCOMES

In this section, we focus on the postmeasurement states
|�v

{m j=+}〉 and |�v
{m j=−}〉 with spatially uniform measurement

outcomes, i.e., m j = + for all sites or m j = − for all sites.
For simplicity, we denote them as |�v

±〉, respectively. Most
interestingly, we show that when the weak measurements
are performed with respect to the spin axis v = x, the half-
system EEs of the postmeasurement states |�x

±〉 follow a
similar logarithmic scaling as in Eq. (9). However, the central
charge c = 1

2 is replaced by an effective central charge ceff

that decreases monotonically as the measurement strength λ

increases. The analytical expression of ceff as a function of λ is
derived using a combination of a field-theoretic treatment and
a mapping to an Ising chain with a defect. We also show that
the scaling exponents associated with the correlation function
〈σ z

j σ
z
j′ 〉 in the postmeasurement states |�x

±〉 can be deformed
continuously as a function of λ. Exact expressions of these
exponents are obtained.

In contrast, when the weak measurements are performed
with respect to the spin axis v = z, we show that the EEs of

the postmeasurement states |�z
±〉 do not have any logarithmic

dependence on the system size L for any nonvanishing λ > 0.
In other words, the effective central charge ceff drops from
c = 1

2 at λ = 0 (where there is essentially no measurement) to
ceff = 0 for any nonzero λ.

We begin our analysis of the postmeasurement states |�v
±〉

by providing a field-theoretic interpretation of them. We
will use the state |�v

+〉 as an example and comment on
the difference between |�v

+〉 and |�v
−〉 when necessary. The

postmeasurement state |�v
+〉 can be rewritten, up to a normal-

ization factor, as

|�v
+〉 ∝ eβ

∑
j σ v

j |�〉, (11)

where β = arctanh(λ). In the continuum description of the
infinite-length chain (L → ∞), the cTFIM ground state |�〉
can be viewed as the result of the Euclidean path integral of
the (1 + 1)D Ising CFT on a half-space with the spatial co-
ordinate x ∈ (−∞,∞) and the imaginary time τ ∈ (−∞, 0].
|�〉 occurs at the τ = 0 time slice. Therefore, any observable
〈�v

+|O|�v
+〉 on the postmeasurement state |�v

+〉 can be cap-
tured by a path integral in a full Euclidean plane (x, τ ) ∈ R2

with an action

Sv
ps,+ = SIsing + δSv

ps,+, (12)

where SIsing is the action for the (1 + 1)D Ising CFT and the
measurement-induced perturbation δSv

ps,+ is given by

δSv
ps,+ ≡ −β̃

∫
dτ dx δ(τ )φv (x, τ ), (13)

which can be viewed as a one-dimensional defect in the
(1 + 1)D Ising CFT. When the measurement axis is v = x,
the field φv=x = ε is the energy field of the Ising CFT, while
φv=z = s is the spin field (or the order parameter) of the
Ising CFT when the measurement axis is v = z. The cou-
pling constant β̃ is related to the measurement strength λ.
The exact relation between β̃ and λ is unimportant and also
nonuniversal.

Equation (12) describes the Ising CFT perturbed by the
field φv turned on only along the τ = 0 slice. Replacing the

perturbation δSv
ps,+ by − ∫ β̃0/2

−β̃0/2 dτ
∫∞
−∞ dx φv (x, τ ) within a

finite time window τ ∈ [−β̃0/2, β̃0/2] does not change the
infrared behavior of the path-integral equation (12). We can
pictorially represent this path integral of the perturbed Ising
CFT as Fig. 1(a) where the green regions represent the unper-
turbed Ising CFT path integral and the brown region around
τ = 0 is the region where the perturbation is turned on. It
is interesting to point out that if we fold space-time along
the τ = 0 axis, we can view this path integral as that of a
boundary CFT where the bulk is given by a double-layer Ising
CFT. However, we will not directly use this picture of folded
space-time in the following discussion.

From the renormalization group (RG) perspective, the scal-
ing dimension of the coupling β̃ is given by

�β̃ = 1 − �φv , (14)

where �φv is the scaling dimension of the field φv . For the
measurement axis v = x, �φx = �ε = 1 is the scaling dimen-
sion of the energy field of the Ising CFT. Hence, �β̃ = 0
which implies that the perturbation is marginal in the sense
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(a) (b)

FIG. 1. (a) A pictorial representation of the path integral for the postmeasurement state |�v
+〉. The green region is described by the (1 + 1)D

Ising CFT. The brown region denotes the region where the perturbation induced by the measurements is turned on. To calculate the EE on the
interval A = [x1, x2] in the postmeasurement state |�v

+〉, one should consider the R-replica version of this path integral and the insertion of
the twist fields TR at end points of the interval (indicated by the red crosses). (b) R-replica path-integral representation of Tr(ρR

[x1,x2] ) for the
reduced density matrix ρ[x1,x2] of the state |�v

+〉 on the interval [x1, x2]. The insertion of the twist fields TR and T̃R introduces an R-fold branch
cut in the path integral.

of RG. For the measurement axis v = z, �φz = �s = 1
8 is

the scaling dimension of the spin field. In this case, �β̃ = 7
8

indicating a relevant perturbation.
Formally we can calculate the EE in the state |�v

+〉 by
introducing the twist fields in the path integral described
by Eq. (12). This calculation generalizes the well-known
derivation of Eq. (9) of the EE in the ground state of an
(unperturbed) (1 + 1)D CFT using the twist-field correlation
functions [17]. For the EE of an interval [x1, x2] in the state
|�v

+〉 [see Fig. 1(a)], we need to first introduce R replicas of
the path integral governed by Eq. (12). Then, we introduce
the twist field TR and its conjugate T̃R at (x1, τ = 0) and
(x2, τ = 0) that serve as the end points of an R-fold branch
cut along the interval [x1, x2] in this R-replica path integral
[see Fig. 1(b)]. The EE of the interval [x1, x2] in the postmea-
surement state |�v

+〉 can be expressed as

S|�v+〉([x1, x2]) = −Tr(ρ[x1,x2] ln ρ[x1,x2] )

= lim
R→1

1

1 − R
ln〈TR(x1, τ = 0) T̃R(x2, τ = 0)〉,

(15)

where the ρ[x1,x2] is the reduced density matrix on the interval
[x1, x2]. To be more explicit about the second line, 〈TR(x1, τ =
0) T̃R(x2, τ = 0)〉 is defined as the ratio of R-replica path
integral with and without the twist fields, that is, with and
without the R-fold branch cut. In terms of the reduced density
matrices ρ[x1,x2], the twist-field two-point function is equiva-
lent to Tr(ρR

[x1,x2] )/(Trρ[x1,x2] )R.
When the weak measurements are performed along the

spin axis v = z, the perturbation δSz
ps,+ is relevant under RG.

Such a perturbation effectively cuts the (x, τ ) plane along the
τ = 0 line (the brown region in Fig. 1) into two decoupled
halves with τ > 0 and τ < 0. In this case, the R-fold branch
cut associated with twist fields TR and T̃R, which are located
right in the middle of the cut, has no effect in IR behavior
of the path integral. Hence, we expect that the correlation
〈TR(x1, τ = 0) T̃R(x2, τ = 0)〉 saturates, in the limit of a large
separation between x1 and x2, to a finite value. Therefore, the

EE S|�z
+〉([x1, x2]) should saturate to an O(1) value for a large

interval [x1, x2]. In other words, in the case of the z-axis weak
measurements, the EE of the postmeasurement state |�z

+〉
has a vanishing effective central charge, i.e., ceff = 0, for any
nonvanishing value of the measurement strength, i.e., λ > 0.
This conclusion is confirmed by the numerical simulation
shown in Fig. 2. The EE of the postmeasurement state |�z

+〉
is calculated using the numerical method based on matrix
product states (MPS). We prepare |�z

+〉 by starting with an
infinite MPS that simulates the ground state of cTFIM and
applying an infinite product of eλσ z

j on each site. We then
calculate the EE between the interval [x1, x2] and the rest
of the chain. (See Appendix A for more details of the MPS
simulation.) The postmeasurement state |�z

−〉 shares exactly
the same behavior as |�z

+〉 as they are related to each other by
a global symmetry generated by

∏
j σ

x
j .

FIG. 2. For the postmeasurement state |�z
+〉 obtained from mea-

suring the cTFIM ground state |�〉 along the spin axis v = z, the
EE S|�z

+〉([x1, x2]) on an interval [x1, x2] is plotted as a function
of |x1 − x2| for different measurement strength λ = 0.1, 0.05, 0.01.
S|�z

+〉([x1, x2]) saturates as the interval |x1 − x2| grows big.

165120-5



ZHOU YANG, DAN MAO, AND CHAO-MING JIAN PHYSICAL REVIEW B 108, 165120 (2023)

FIG. 3. Connected σ z correlators after Z-basis measurement for
uniform measurement outcome. λ is the strength of the weak
measurement. r is the separation between the two operators. The
exponents are extrapolated using the correlators at large separation.
When λ = 0, there is no measurement, and we expect the exponent
to be − 1

4 (based on the scaling dimension of the spin field in the
Ising CFT). For λ > 0, the exponents become ∼ − 4, consistent with
the extraordinary boundary of the Ising CFT. The simulation is done
with bond dimension 65 for a chain with 1000 sites. Increasing bond
dimension and system size gives convergent results.

Note that even though δSz
ps,+ is a relevant perturbation

that results in a vanishing effective central charge. The post-
measurement state |�z

+〉 still exhibits nontrivial power-law
correlation functions such as 〈�z

+|σ z
j σ

z
i |�z

+〉c ∼ 1
|i− j|4 , which

is expected from the boundary Ising CFT (with the extraor-
dinary boundary) [39]. Here, the subscript c indicates the
connected correlation. We confirm this expectation using the
numerical calculation of 〈�z

+|σ z
j σ

z
i |�z

+〉c in the MPS repre-
sentation, which is shown in Fig. 3.

Now, we consider the weak measurements performed
along the spin axis v = x. For small λ, it is easy to show that
the two states |�x

+〉 and |�x
−〉 correspond to the most and the

least probable amongst all possible measurement outcomes
{m j}. For |�x

+〉, the one-dimensional defect caused by the
perturbation δSx

ps,+ is marginal as explained under Eq. (14). λ

can be viewed as the parameter that controls the strength of the
defect. In fact, this defect is exactly marginal, which is evident
when we reformulate the (1 + 1)D Ising CFT as the (1 + 1)D
free massless Majorana-fermion CFT. The perturbation δSx

ps,+
can be rewritten as the Majorana-fermion mass term localized
along the τ = 0 time slice. The perturbed theory of Majorana
fermions remains noninteracting, and there is no RG flow for
the localized mass term. Therefore, δSx

ps,+ is exactly marginal.
As a consequence, on a chain of length L, the half-system
EE of the postmeasurement state |�x

+〉 follows a logarithmic
scaling

S|�x+〉(L/2) = ceff

6
ln(L) + O(1), (16)

which is similar to Eq. (9) for the unmeasured cTFIM ground
state |�〉 but with an effective central charge

ceff = −3

π2
{[(1 + s) ln(1 + s) + (1 − s) ln(1 − s)] ln(s)

+ (1 + s)Li2(−s) + (1 − s)Li2(s)} (17)

FIG. 4. Analytic (solid line) and numerical (circles) results for
ceff of postmeasurement state |�x

+〉.

with

s = 1

cosh 4β
= (1 − λ2)2

λ4 + 6λ2 + 1
. (18)

Here, Li2(z) ≡ ∫ 0
z

ln(1−t )dt
t denotes the dilogarithm function.

ceff gradually decreases from c = 1
2 as we increase the mea-

surement strength λ from 0. Based on the connection between
the EE and the twist fields explained above, ceff (λ) is directly
related to scaling dimension of the twist fields in the limit
R → 1, which is a function of the strength of the defect
parametrized by λ.

Before we explain the derivation of ceff , we compare
Eqs. (16) and (17) with the numerical simulations. For dif-
ferent values of β = arctanhλ, the effective central charge
associated with the logarithmic scaling of the EE of |�x

+〉
can be numerically extracted using the MPS-based method.
The details of the numerical procedure based on MPS are
provided in Appendix A. As shown in Fig. 4, the analytical
expression (17) matches perfectly with the effective central
charge ceff extracted from numerical calculations. There is an
alternative numerical method for the study of |�x

+〉. We can
map the cTFIM of length L to a one-dimensional Majorana-
fermion chain with 2L sites. We numerically calculate the EE
of the postmeasurement state |�x

+〉 in the Majorana-fermion
representation using the covariance matrix formulation. More
details of this mapping and the covariance matrix formulation
are provided in Appendix C. The numerical simulation using
the Majorana-fermion representation for L = 512 also yields
the same result as shown in Fig. 4.

Now, we discuss how to obtain the analytical expression
(17). In the R-replica field-theoretic treatment, the half-system
EE in the state |�x

+〉 is associated with the one-point function
of the twist field TR inserted in the middle of the system and
at τ = 0 (as indicated by the red cross in the left panel of
Fig. 5) whose associated branch cut follows the constant-time
slice at τ = 0. We can perform a 90◦ space-time rotation of
the path integral (see the right panel of Fig. 5). The rotated
path integral effectively describes a different one-dimensional
spin chain with a static Hamiltonian tuned to the critical point
of the TFIM everywhere along the chain except at a defect
located in the middle point of the chain. Let us call this
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FIG. 5. Path-integral representation of half-system reduced den-
sity matrix ρA for postmeasurement state |�x

+〉 (left panel) and the
cTFIM with a bond defect (right panel). A = (−∞, 0) represents half
of the infinite spin chain. The two systems (on two panels) are related
by a space-time rotation.

spin chain the “Ising chain with a defect.” We argue that the
half-system EE in the state |�x

+〉 shares the same universal
behavior as the half-system EE of the Ising chain with a
defect. Note that in the latter system, an end point of the “half-
system” is exactly located at the defect. The twist-field-based
field-theoretic description of the half-system EE of the state
|�x

+〉 can be mapped, under a 90◦ space-time rotation and
a rearrangement of the branch cut (red wavy line in Fig. 5),
to the field-theoretic description of the half-system EE of the
Ising chain with a defect (see Fig. 5). The universal behavior
of the half-system EE in both cases is governed by the scaling
dimension of the twist field TR located within the perturbed
region (brown region of Fig. 5) of the space-time. The orien-
tation of the branch cut does not matter. From the perspective
of the R-replica path integral which is effectively conducted
on a R-sheeted surface (see Fig. 1), different choices of the
orientation of the branch cut do not affect the geometry of
the surface. Hence, the EE in the postmeasurement state |�x

+〉
shares the same universal behavior as that of the Ising chain
with a defect.

A careful treatment of the space-time rotation can be per-
formed by using a two-dimensional classical Ising model on
a square lattice with a one-dimensional defect as a proxy to
the continuum field theory. The technical details are provided
in Appendix B. Using this proxy two-dimensional classical
Ising model, the space-time rotation maps the problem of the
half-system EE of the postmeasurement state |�x

+〉 to that of
an Ising chain with a defect whose Hamiltonian is given by
taking the Hamiltonian (1) and modifying only the coupling
σ z

j σ
z
j+1 for one neighboring pair of sites in the middle of the

chain to tσ z
j σ

z
j+1. The parameter t of the Ising chain with a

defect is related to the measurement strength λ via

t = e−4β =
(

1 − λ

1 + λ

)2

. (19)

The half-system EE of such an Ising chain with a defect has
been studied in Ref. [40] and shown to have a logarithmic
scaling of the same form as Eq. (16) with a t-dependent
effective central charge. The proxy classical Ising model also
played an important role in obtaining the EE in the Ising chain
with a defect. We remark that the mapping that relates the
EE of the postmeasurement state |�x

+〉 and that in the Ising

FIG. 6. �z,± extracted from the numerical calculation of
〈�x

±|σ z
j σ

z
j′ |�x

±〉 are plotted as blues circles and brown triangles for
different values of measurement strength λ. The analytical results in
Eq. (20) are plotted as solid lines.

chain with a defect should be viewed as a mapping between
the infrared (IR) physics of the two systems. It should not be
interpreted as an exact mapping at the lattice scale.

Using the proxy classical Ising model, we obtain Eq. (19)
and, more importantly, the analytical expression (17) of the ef-
fective central charge ceff for the postmeasurement state |�x

+〉
which results from the weak measurements along the spin axis
v = x on the cTFIM ground state |�〉. By the same method,
we can show that the effective central charge ceff defined
via the half-system EE in the postmeasurement state |�x

−〉
follows exactly the same expression as Eq. (17). However,
the fact that |�x

−〉 and |�x
+〉 share the same effective central

charge ceff can be explained by the observation that the two
postmeasurement states are related by a Kramers-Wannier du-
ality (see Appendix B for details). However, this observation
does not imply that |�x

−〉 and |�x
+〉 have completely identical

IR properties. In fact, they exhibit different behaviors in the
correlation function 〈σ z

j σ
z
j′ 〉 as we explain below.

Again, using the same proxy two-dimensional classical
Ising model, one can show that the correlation func-
tions 〈�x

±|σ z
j σ

z
j′ |�x

±〉 ∼ | j − j′|−2�z,± in the postmeasurement
states |�x

±〉 follow power-law behavior with exponents �z,±
that vary continuously as we change the measurement strength
λ:

�z,± = 2

π2
arctan2

((
1 ± λ

1 ∓ λ

)2
)

. (20)

Note that the expression differs for the two postmeasurement
states |�x

+〉 and |�x
−〉.

Numerics confirms this analytical result. In Fig. 6, we
plot the exponents �z,± (blue circles and brown triangles)
extracted from the numerically calculated correlation func-
tions 〈�x

±|σ z
j σ

z
j′ |�x

±〉 ∼ | j − j′|−2�z,± . They exactly match the
analytical expression (20) which is plotted as the blue and
brown lines in Fig. 6. The numerical simulation is performed
on a spin chain of length L = 256 represented as a Majorana-
fermion chain with 512 sites.

Note that, even though the effective central charge ceff and
the exponents �z,± vary continuously as λ changes, we should
view them as the universal properties of the one-dimensional
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exactly marginal defects in the (1 + 1)D Ising CFT, which are
parametrized by only one parameter, i.e., the defect strength.
In settings with more general measurement protocols, as long
as the measurements perturbed the Ising CFT ground state
through the primary field φx, the uniform postmeasurement
states are expected to exhibit the same ceff and �z,± upon the
correct identification of the defect strength. This universal be-
havior is analogous to Luttinger liquid, where the low-energy
properties are solely determined by the Luttinger parameter,
regardless the details of the specific lattice realization.

We close this section with some comments on the post-
measurement states |�v

±〉. To prepare the states |�v
±〉 from

measurements, postselections on the measurement outcomes
{m j} are required. While there is no scalable implementation
of the required postselection in the thermodynamical limit,
it is still interesting to investigate if the universal behavior
found in this section can be observed in a finite-size near-term
quantum device [41]. We defer this investigation for future
study. Instead of being viewed as the results of measurements,
|�v

±〉 can also be thought of as the result of the finite-time evo-
lution with respect to a non-Hermitian Hamiltonian

∑
j iσ v

j ,
starting from the cTFIM ground state |�〉. The time duration
of the evolution β is given by the measurement strength via
β = arctanh(λ). Hence, the results in this section can also be
viewed as the consequences of nonunitary quantum dynamics
with the initial state |�〉. At a finite time β, the acquired state
|�v

+〉 has an interesting entanglement structure indicated by its
effective central charge ceff . In the long-time limit β → ∞,
the state |�v

+〉 becomes trivial. We remark that there are
also one-dimensional spin chains with different nonunitary
dynamics that exhibit interesting entanglement structures in
the long-time limit [42–46].

IV. BORN-RULE MEASUREMENTS

In this section, we focus on weak Born-rule measurement
along the spin-x axis. That means we study the EEs of the
postmeasurement states |�x

{m j}〉 averaged over all possible
measurement outcomes {m j = ±} with respect to their Born-
rule probability (10).

In the following, we discuss the field-theory representation
of the Born-rule averaged EE and present our numerical re-
sults for effective central charge extracted from the average
EE.

Consider the spin chain of length L which lies along the
interval [−L/2, L/2]. This chain is divided into two halves
A = (−L/2, 0] and B = (0, L/2). For each given measure-
ment outcome {m j}, an un-normalized version of the reduced
density matrix on the half-system A is given by

ρ{m j},A = TrB

⎛
⎝∏

j

Kx
j,m j

|�〉〈�|
∏

j′
Kx†

j′,m j′

⎞
⎠

∝ TrB
(∣∣�x

{m j}
〉〈
�x

{m j}|
)
. (21)

“TrA/B” represent the trace over the degrees of freedom in the
subsystem A and B, respectively. In the following, We will
suppress the subscripts of ρ{m j},A and write it as ρ to simplify
the notation without causing confusion.

The average half-system EE under the Born-rule measure-
ments, denoted as Eb S(A), can be written as

Eb S(A) =
∑

{m j=±}
p({m j})S|�x

{m j }〉(A)

= −
∑

{m j=±}
p({m j})TrA

[
ρ

TrA(ρ)
ln

(
ρ

TrA(ρ)

)]
,

(22)

where Eb represents the averaging with respect to the Born-
rule probability p({m j}) given in Eq. (10) which can be
rewritten as

p({m j}) = TrA(ρ)

= Tr

⎛
⎝∏

j

Kx
j,m j

|�〉〈�|
∏

j′
Kx†

j′,m j′

⎞
⎠. (23)

Here, “Tr” without any subscript indicates the trace over the
degrees of freedom in the entire chain.

Now, we discuss the formal field-theory representation of
this problem. We assume an infinite system size, i.e., L →
∞, for this discussion. Using the replica trick, we can rewrite
Eq. (22) as

Eb S(A)

= lim
n→1

lim
l→0

1

l (1 − n)

∑
{m j}

{TrA(ρ) TrA(ρn)l − TrA(ρ)nl+1}.

(24)

Both
∑

{m j} TrA(ρ)TrA(ρn)l and
∑

{m j} TrA(ρ)nl+1 can be ex-
pressed in the continuum in terms of an R-replica path integral
with the replica number R = nl + 1.

Let us first describe the path integral for∑
{m j} TrA(ρ)nl+1 =∑{m j} 〈�|∏ j Kx†

j,m j
Kx

j,m j
|�〉R. The

action of this path integral contains R copies of SIsing, the
action of (1 + 1)D Ising CFT, one for each replica. The
measurements (and the averaging over different measurement
outcomes) induce the coupling δSM between the replicas:

e−δSM =
∑

{m(x)=±}
exp

(
β̃

∫
dx m(x)

R∑
α=1

φx
α (x, τ ) + hx )

)
,

(25)

where φx
α is the field φx, namely, the ε field of the

(1 + 1)D Ising CFT in the αth replica. The perturbation
δSM can be viewed as introducing a one-dimensional def-
fect in the R-replica Ising CFT. Note that in the limit
limn→1 liml→0 in Eq. (24), the number of replicas has a
limit R → 1.

The coupling constant hx, independent of the measurement
strength λ, is introduced to account for an important differ-
ence between the operator σ x

j of the spin chain and the field
φx = ε of the Ising CFT. The former has a finite expectation
value 〈�|σ x

j |�〉 = 2/π on the cTFIM ground state while the
expectation value of the field φx = ε vanishes on the ground
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state.1 Therefore, in a field-theory representation, we should
substitute σ x

j with φx + hx with hx > 0. This finite coupling hx

results in an asymmetry between the measurement outcomes
m(x) = ±1.

We remark that a finite hx does not affect our previous field-
theoretic analysis for the postmeasurement states |�x

±〉. That
is because the measurement outcomes m j are fixed for |�x

±〉,
and the effect of a finite hx is removed once we normalize
these postmeasurement states.

The path-integral description of
∑

{m j} TrA(ρ)TrA(ρn)l ap-
pearing in Eq. (24) is given by almost the same R-replica
field theory as that of

∑
{m j} TrA(ρ)nl+1 except that a branch

cut needs to be introduced at τ = 0 along the line (−∞, 0)
on the spatial axis (where the subsystem A is located).
Crossing the branch cut implements a permutation T of
the replica index: α → T (α). T is an element of the per-
mutation group SR whose cycle representation is given
by (1, 2, . . . , n)(n + 1, n + 2, . . . , 2n) . . . ((l − 1)n + 1, (l −
1)n + 2, . . . , ln) where the last cycle is of length one and
hence suppressed in the notation. We can view the branch
cut as the consequence of the insertion of a twist field TR at
(x = 0, τ = 0).

From the path integral, one can readily argue that the
coupling e−δSM in Eq. (25) does not contain any relevant
perturbation to the replicated Ising CFT. In the replica limit
R → 1, we can show analytically that even the marginal
perturbation is absent, rendering the measurement-induced
perturbation e−δSM irrelevant under RG. The details of this RG
analysis are provided in Appendix E. A direct consequence is
that, for Born-rule measurements, the effective central charge
should remain at ceff = 1

2 regardless of the measurement
strength. As shown below, this conclusion is verified by our
MPS-based numerical simulations.

Using the MPS method, we calculate the average half-
system EE for an infinite spin chain. The bond dimension of
the MPS serves as a cutoff for the EE. The effective central
charge can be extracted from the dependence of the EE on
the bond dimension. Ideally, the measurement outcome (and
the associated Kraus operator) on each site of the infinite
chain should be independent. In the numerical simulation,
we cannot perform independent measurements on an infinite
number of sites. Instead, we take an approximation by as-
suming a periodicity in the measurement outcomes with a
unit cell L, namely, m j = m j+L. The ideal case can then be
approached by taking L → ∞. In the following simulations,
we take L = 120.

Instead of measuring all the spins at once, we measure
the spins one by one. For each spin, we follow the Born-rule
probability (4) to choose a measurement outcome, obtain the
resulting postmeasurement state following Eq. (3), and then
move on to the measurement of the next spin. One can show
straightforwardly that the measurement outcomes {m j} gener-
ated in this one-by-one measurement procedure follow exactly
the (joint) Born-rule probability (10). Once all the spins are

1The expectation value 〈�|σ x
j |�〉 = 2/π can be straightforwardly

calculated using the Majorana-fermion representation of cTFIM.

FIG. 7. For the Born-rule measurement along the spin-x axis, the
average EE follows a logarithmic scaling. The numerically extracted
effective central charge is plotted as a function of λ.

measured starting from the cTFIM ground state |�〉, we obtain
a postmeasurement state |�{m j}〉 whose half-system EE can be
directly numerically calculated.

To obtain the average half-system EE, one can, in principle,
repeat the one-by-one measurement procedure starting from
|�〉 over and over. To speed up the convergence, we use the
following trick. When we finish one round of measurements
of all the spins starting from |�〉, we obtain a specific set of
measurement outcomes {m j}. We can simultaneously calcu-
late the half-system EE for postmeasurement states |�{m′

j}〉
with {m′

j = m j+k} which are obtained from {m j} by shifting
the site index by k = 0, 1, . . . , L − 1. We then average the
half-system EE of all postmeasurement states |�{m′

j}〉 with dif-
ferent k’s. That is, we average half-system EE over L different
measurement outcomes {|�{m j}〉, |�{m j+1}〉}, . . . , |�{m j+L−1}〉}.
In other words, we trade the statistical average over dif-
ferent {m j} by a spatial average. Without changing L, the
MPS method allows us to extract the effective central charge
ceff from the dependence of the EE on the correlation
length, both of which are cut off by the MPS bond dimen-
sion. By varying the bond dimension, their dependence can
be extracted. More details can be found in Appendix A.
Conceptually, our approach for the average EE is similar
to calculating the half-system EE for a finite spin chain,
whose length is given by the correlation length of the MPS
representation.

In Fig. 7, we present the extracted ceff for various mea-
surement strengths λ. The error bars represent the fluctuation
of the extracted ceff from 10 different sets of {m j} (not re-
lated by shifting) with each set generated by the one-by-one
measurement procedure starting from |�〉. We find that, with
the Born-rule measurement along the spin-x axis, the ef-
fective central charge ceff appears to be independent of the
measurement strength λ and takes the value 0.5, which is
in strong in contrast to the postmeasurement states |�x

±〉.
The fluctuations between different sets of {m j} are very
small, indicating that the spatial average on the infinite spin
chain with a L = 120 unit cell for the measurement out-
comes provides a good approximation to the behavior of
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averaged postmeasurement EE in the true infinite system limit
(with L → ∞).

The alternative numerical method using the Majorana-
fermion representation of a length-512 spin chain produces
consistent results as those shown in Fig. 7. In this method,
we calculate the average EE for different interval sizes l and
extract ceff by fitting the average EE to ln l .

The independence of ceff on λ is somewhat surprising given
that the usual (and possibly naive) expectation is such that
measurements of nonoverlapping (and, hence, commuting)
observables generally reduce the entanglement in the system.
This expectation is correct for the postmeasurement states
|�v

±〉 but at odds with our findings for the average EE with
Born-rule measurements. In terms of the field theory, the inde-
pendence of ceff on the measurement strength λ substantiates
our analytical result (detailed in Appendix E) that the coupling
δSM in Eq. (25) is irrelevant in the replica limit R → 1 and,
hence, does not affect the scaling behavior of the twist fields
TR in this replica limit.

The Born-rule probability p({m j}) contains nontrivial cor-
relations between the measurement outcome m j at different
sites j. In the following section, we show that one can approx-
imate the Born-rule probability p({m j}) by an uncorrelated
probability distribution p′({m j}). Under this uncorrelated
probability distribution for the postmeasurement-state ensem-
ble, the feature that ceff is independent of the measurement
strength λ is retained.

V. FORCED MEASUREMENTS

In this section, we consider the average behavior of the
EE after the forced measurement on the cTFIM ground state
|�〉. That is, we average the EE over all possible measure-
ment outcomes {m j = ±} with equal probability. For this
section, the weak measurement on each spin is still along
the spin-x axis. We show that under the forced measure-
ment, the average half-system EE still exhibits the logarithmic
scaling ∼ ceff

6 ln(L/2) where the effective central charge ceff

depends nontrivially on the measurement strength. Moreover,
we introduce a biased version of the forced measurement
where an uncorrelated bias towards one of the two measure-
ment outcomes m j = ± on every site is introduced. With a
proper choice of the bias, we can recover a feature of the
Born-rule averaged EE, that is, the independence of ceff on
the measurement strength λ. We show that the probability
distribution of measurement outcomes {mj} with this biased
forced measurement serves as a mean-field approximation to
the Born-rule probability distribution as far as the average
EE goes.

For the chain of length L divided into two halves
A = (−L/2, 0] and B = (0, L/2), the average EE Ef S(A)
of the half-system A under the forced measurement can be
expressed as

Ef S(A) = − 1

2L

∑
{m j=±}

TrA

[
ρ

TrA(ρ)
ln

(
ρ

TrA(ρ)

)]
, (26)

where ρ follows the definition in Eq. (21) and Ef represents
the average over all measurement outcomes with equal
probability.

FIG. 8. The numerically extracted effective central charges ceff

from the forced measurement (p+ = 1
2 ) and from the biased forced

measurement with p+ = px
b are plotted as functions of λ.

Again, by applying the replica trick, we can write

Ef S(A)

= 1

2L
lim
n→1

lim
l→0

1

l (1 − n)

∑
{m j}

{TrA(ρn)l − TrA(ρ)nl}. (27)

Both
∑

{m j} TrA(ρn)l and
∑

{m j} TrA(ρ)nl can be formally
expressed in terms of an R-replica path integral where the
replica number is given by R = nl . In the limit limn→1 liml→0,
the number of replicas R → 0 (as opposed to R → 1 in the
case of Born-rule measurement). The path-integral formu-
lation of

∑
{m j} TrA(ρ)nl is identical to the R-replica path

integral formulated in Sec. IV except that R = nl . Hence,
the path-integral action is given by R = nl copies of (1 +
1)D Ising CFT coupled to each other via Eq. (25). For∑

{m j} TrA(ρn)l , a branch cut at τ = 0 along the interval
(−∞, 0] is needed (assuming the system size L is infi-
nite). Crossing the branch cut results in a permutation T ′
of the replica index α → T ′(α). T ′ is an element of the
permutation group SR whose cycle representation is given
by (1, 2, . . . , n)(n + 1, n + 2, . . . , 2n) . . . ((l − 1)n + 1, (l −
1)n + 2, . . . , ln) (without any additional trivial cycles).

The numerical calculation of the average EE is similar to
the case with Born-rule measurements. This numerical cal-
culation is also performed using the MPS-based method on
an infinite spin chain with periodic measurement outcomes
with a unit cell L = 120. The measurement outcomes {m j} are
also sampled using the one-by-one measurement procedure.
Unlike the Born-rule case, for the forced measurement of
every spin, we sample the measurement outcome m j = +
with probability p+ = 1

2 and m j = − with probability p− =
1 − p+ = 1

2 . Once all the spins are measured once starting
from the cTFIM ground state |�〉, we can calculate the av-
erage half-system EE. It is found to follow the logarithmic
scaling still. We extract the effective central charge ceff in the
same way as we did in the Born-rule case. ceff for various mea-
surement strength λ is plotted as the blue circles in Fig. 8. The
error bars represent the fluctuation of the extracted ceff from
10 different sets of measurement outcomes {m j} with each set
independently generated using the one-by-one measurement
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procedure starting from |�〉. We find that ceff has a nontrivial
dependence on the measurement strength λ.

The analytical approach to study the dependence of ceff on
the forced measurement strength λ is explained in detail in
Appendix E. The analytical approach begins with the observa-
tion that the perturbation induced by the forced measurements
also takes the form (25), and it does not contain any RG-
relevant terms. The next step is to extract the exactly marginal
terms contained in the perturbation in the replica limit R → 0.
The effective central charge depends on the exactly marginal
terms in a similar way as it does in the case of the post-
measurement states |�x

±〉 discussed in Sec. III. As shown in
Appendix E, this analytical approach provides an analytical
expression of the effective central charge that matches the
numerical simulations.

We can generalize the one-by-one forced measurement
procedure to a biased version with a general value of p+ and
p− = 1 − p+. When p+ deviates from 1

2 , the forced mea-
surement imposes a bias towards one of the measurement
outcomes m = ±. For a general p+, we have a biased forced
measurement where different sets of measurement outcomes
{m j} are sampled based on the probability distribution

p′({m j}) = pN+
+ (1 − p+)N−, (28)

where N± is the number of sites where the measurement
outcome m j is ±. For this probability distribution p′({m j}),
there is no correlation between the measurement outcomes at
different sites. We can use p′({m j}) as a “mean-field” approx-
imation to the Born-rule probability p({m j}) in Eq. (10). By
minimizing the Kullback-Leibler divergence [47] between the
two probability distributions p and p′, we find that the optimal
mean-field approximation is achieved at

p+ = px
b ≡ 1

2
+ 2λ

π (1 + λ2)
. (29)

Note that px
b is exactly the probability of finding the mea-

surement outcome m = + when we perform only a single-site
measurement along the spin-x axis on the cTFIM ground state
|�〉. The expression of px

b can be obtained from Eq. (4) and
the fact that 〈�|σ x

j |�〉 = 2/π . More details of the Kullback-
Leibler divergence and its minimization are provided in
Appendix D. Note that with p+ = px

b, the probability distri-
bution p′({mj}) and the Born-rule counterpart p({mj}) yield
the same distribution when we reduce them to a single site
(by summing over all possible values of m j = ± on other
sites). Hence, p′ provides a mean-field approximation to p. For
the biased forced measurement with p+ = px

b, the numerically
extracted effective central charge is plotted in Fig. 8 as the
brown triangles and is found to be independent of the mea-
surement strength λ, which is a feature shared by the case of
the Born-rule measurement. The numerical method to extract
the effective central charge for the case with biased forced
measurements parallels that of the forced measurements.

To further demonstrate that p+ = px
b produces the opti-

mal mean-field approximation of the Born-rule probability
p({m j}) at the level of EE, we plot the numerically extracted
effective central charge for various choices of p+ = px

b ± δp
with δp = 0,±0.1,±0.2 in Fig. 9. Any deviation from p+ =
px

b results in some nontrivial dependence on the measurement
strength of the effective central charge ceff .

FIG. 9. The numerically extracted effective central charges ceff

from the biased forced measurement with p+ = px
b, px

b ± 0.1, px
b ±

0.2 are plotted as functions of λ.

The fact that the bias forced measurement p′({m j}) with
p+ = px

b procedures the same feature, namely, the indepen-
dence of ceff on λ, as the Born-rule measurement suggests
that the nontrivial correlation contained in the Born-rule prob-
ability p({m j}) between the measurement outcomes m j’s on
different sites is unimportant for the effective central charge
ceff . The numerical results in Fig. 9 show that the field theory
that described the cTFIM ground state |�〉 under biased forced
measurements contains a nontrivial marginal perturbation (to
the replicated Ising CFT) for a generic value p+ in the replica
limit R → 0. In other words, a marginal one-dimensional
defect with finite strength is present for generic p+. The
defect strength is turned off when p+ = px

b. Our analytical
study of the measurement-induced perturbation (detailed in
Appendix E) can be generalized to the case with biased forced
measurements. The dependence of the effective central charge
on both p+ and the measurement strength λ are calculated
in Appendix E and are shown to agree with our numerical
results.

VI. SUMMARY AND OUTLOOK

In this paper, we study the effect of weak measurements
on the universal properties of the ground state |�〉 of the
one-dimensional cTFIM with a focus on the behavior of the
postmeasurement EE in the system. Starting from the cTFIM
ground state |�〉, we consider the situation where weak mea-
surements are performed on every spin in the system along
their spin axis v = x, z. For each set of measurement out-
comes {m j}, there is a postmeasurement state |�v

{m j}〉 in the
corresponding quantum trajectory. Based on how the ensem-
ble of postmeasurement states is sampled, our work contains
three parts: (1) postmeasurement states with spatially uni-
form measurement outcomes, (2) Born-rule measurement, and
(3) forced measurements. In each part, the postmeasurement
properties are related to certain one-dimensional defects in the
(1 + 1)D Ising CFT or its multireplica counterpart.

In the first part, we identify the interesting postmeasure-
ment states |�v

±〉 associated with the uniform measurement
outcomes {m j = +} and {m j = −}, respectively. We show
that the properties of |�v

±〉 can be studied using a (1 + 1)D
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Ising CFT with a measurement-induced perturbation along a
one-dimensional defect. When the measurement is performed
with respect to the spin axis v = x, the perturbation is ex-
actly marginal. Consequently, the effective central charge ceff

of |�x
±〉, defined via the logarithmic scaling of the EE, can

be continuously deformed as a function of the measurement
strength λ. We obtain the analytical expression (17) of ceff

using a combination of field-theoretic analysis and a mapping
between the postmeasurement state |�x

±〉 and the ground state
of an Ising chain with a defect studied in Ref. [40]. Moreover,
we show that the correlation function 〈σ z

j σ
z
j′ 〉 ∼ | j − j′|−2�z,±

in the postmeasurement states |�x
±〉 exhibits continuously tun-

able exponents �z,± whose exact expressions are given in
Eq. (20). The effective central charge ceff and the exponents
�z,± in the uniform postmeasurement states are directly re-
lated to universal properties of the one-parameter family of
exactly marginal defects in the Ising CFT. In contrast, when
the measurements are conducted with respect to the spin axis
v = z, we use an RG argument to show that the effective cen-
tral charge ceff immediately vanishes when the measurement
strength λ is nonzero. All the analytical results of the effec-
tive central charge ceff and the exponents �z,± are compared
with those extracted from numerical simulations. There are
two independent methods for this numerical simulation, one
based on MPS and the other based on the Majorana-fermion
representation of the spin chain. They both yield consistent
results exactly matching the analytical expressions of ceff and
�z,± in Eqs. (17) and (20).

We comment on the postmeasurement states |�v
±〉. In addi-

tion to thinking of them as the consequence of measurements
followed by postselecting the measurement outcomes, they
can also be thought of as being generated from the cTFIM
ground state |�〉 via an evolution with respect to a non-
Hermitian Hamiltonian

∑
j iσ v

j for time λ. Hence, our results
in this part can also be viewed as the consequence of nonuni-
tary quantum dynamics with the cTFIM ground state |�〉 as
the initial state.

In the second part, we study the Born-rule measurement
where we sample different measurement outcomes {m j} and
their corresponding postmeasurement states |�x

{m j}〉 following
the naturally occurring Born-rule probability p({m j}) given
in Eq. (10). For this part, we focus on the measurements
with respect to the spin-x axis. We show that the Born-rule
averaged EE can be formulated as a problem of a (1 + 1)D
R-replica Ising CFT coupled to each other by a measurement-
induced perturbation along a one-dimensional defect at the
limit R → 1. Using numerical simulations based on MPS
and the alternative method based on the Majorana-fermion
representation of the spin chain, we find that the EE averaged
over different postmeasurement states |�x

{m j}〉 with respect
to the Born-rule probability still follows the logarithmic
scaling. Our numerical result shows that effective central
charge ceff is independent of the measurement strength λ.
This behavior can be explained using our analytical study of
the measurement-induced defect in the replica limit R → 1.
This discovery is surprising because one usually expects
the mutually commuting measurements on nonoverlapping
observables, such as the measurements considered in this
work, to reduce the entanglement entropy of the system.

This result also suggests that postmeasurement states |�x
±〉

are atypical states, as far as the EE scaling goes, among the
ensemble of postmeasurement states |�x

{m j}〉 weighted by
their corresponding Born-rule probability p({m j}).

Lastly, we study the case of forced measurements (with
respect to the spin-x axis) where we sample different mea-
surement outcomes {m j} with equal probability and, more
generally, the case of biased force measurements where {m j}
are sampled according to a predetermined probability distri-
bution p′({m j}) given in Eq. (28) with a tunable bias p+. Like
the case with Born-rule measurements, the average EE with
forced measurements can also be formulated as a (1 + 1)D
R-replica Ising CFT coupled to each other by a measurement-
induced perturbation along a one-dimensional defect. The
difference is that the replica limit is R → 0 (as opposed to
R → 1 in the Born-rule case). Based on our numerical simu-
lations, the average EE with forced measurements (which is
equivalent to choosing p+ = 1

2 ) retains its logarithmic scaling
but exhibits an effective central charge ceff that decreases con-
tinuously as the measurement strength λ grows. In the case of
biased force measurements with a generic choice of p+, a sim-
ilar dependence of ceff on λ is found. Interestingly, for the p+
value given in Eq. (29), the biased-forced-measurement prob-
ability distribution p′({m j}) for the measurement outcomes
{m j} provides a mean-field approximation of the Born-rule
probability distribution p({m j}). In this case, the average EE
with respect to the probability distribution p′({m j}) exhibits
an effective central charge ceff independent of the measure-
ment strength λ, a feature shared by the average EE with
Born-rule measurements. The dependence of the effective
central charge on the bias p+ and the forced measurement
strength λ can be analytically calculated by studying the as-
sociated measurement-induced defect in the corresponding
replica limit.

Our investigation into the measurement of cTFIM not only
provides valuable insights, but also paves the way for several
intriguing avenues of future research. To highlight a few of
these promising directions: 1. Expanding our approach to
encompass other (1 + 1)D CFTs and critical states in higher
dimensions or those following volume-law EE. 2. Exploring
the possibility of measurement-induced transitions in other
entanglement-related quantities. 3. Gaining a deeper under-
standing of the efficiency and effectiveness of the measure-
ment process itself by considering other metrics aside from
EE. 4. Extending our study to address quantum dynamics sce-
narios that involve continuous monitoring and measurement.

In the microscopic model, we can consider a general
measurement that is defined by a Kraus-operator set satisfying
the POVM condition. From a continuum perspective,
as mentioned earlier, the effect of measurement on a
one-dimensional critical ground state can be captured by
a (1 + 1)D CFT or its multireplica counterpart with a
measurement-induced perturbation on a one-dimensional
defect. Different measurements can lead to different types of
defects. An interesting case is given by measuring observables
with scaling dimension 1 in the CFT. An example is the
current operator in a one-dimensional critical system with a
conserved charge. When considering the postmeasurement
states with spatially uniform measurement outcomes, the
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measurement-induced perturbation to the (1 + 1)D CFT is
marginal in the RG sense. A possible consequence of such
measurement is that the effective central charge associated
with the logarithmic scaling of postmeasurement EE changes
continuously as a function of the measurement strength, just
like the cases studied in Sec. III. For analyzing the average
properties in the postmeasurement states, in particular the
effective central charge, our work has demonstrated the
effectiveness of the method that combines field-theoretic and
replica-trick-based techniques. It is worthwhile to generalize
this method to understand the behavior of the average
postmeasurement EE for more general critical systems.

In a (1 + 1)D CFT, one can extract the central charge,
which is an intrinsic quantity associated with the CFT, from
the logarithmic scaling of the EE in the ground state. In a
(2 + 1)D critical state with an emergent Lorentz symmetry,
the EE on a circular region of radius L follows the universal
scaling S(L) ∼ αL − γ where subleading term γ is an intrin-
sic quantity to the (2 + 1)D CFT that governs the low-energy
physics of the system [11–14]. A natural generalization of
the study presented in this paper is to understand if the same
S(L) ∼ αL − γ scaling holds for the (average) EE in the
postmeasurement states obtained from measuring (2 + 1)D
critical ground states. If yes, it is interesting to study how γ

depends on the measurement strength. More generally, critical
ground states are less entangled compared to highly excited
states, which generally exhibit volume-law entanglement en-
tropy scaling. It would be interesting to find cases where the
effect of measurements on the highly excited states can be
captured by continuum field theories.

In our study of the cTFIM, the effective central charge ceff

is either a continuous function of the measurement strength
λ or vanishes immediately when the measurement strength
is nonzero. As exemplified by recent studies [23,48,49],
entanglement-related quantities can experience phase tran-
sitions induced by finite-strength measurements and related
decoherence processes acting on higher-dimensional corre-
lated ground states (at criticality or with topological orders).
It is interesting to search for a one-dimensional critical sys-
tem where the average EE and other entanglement-related
quantities experience similar phase transitions at a finite mea-
surement strength.

In the cases where the postmeasurement EE still retains
the logarithmic scaling with a finite ceff , the measurements
are “ineffective” in removing entanglement from the sys-
tem. It is interesting to understand this phenomenon from
the quantum information perspective. An analogous situation
occurs in the study of monitored quantum dynamics where
the dynamical phase with a volume-law entanglement entropy
is stable in the presence of repeated measurements [50,51].
The robustness of the volume-law phase is attributed to the
error-correction properties of states with volume-law entan-
glement [52]. Whether a similar interpretation can be given to
a CFT ground state to explain the ineffectiveness of certain
measurements is a curious question to explore in the future.
From a broader perspective, it is interesting to understand
the sensitivity of a critical system to measurements. In this
paper, we have been focusing on the dependence of EE on
the measurement strength. One can also study the sensitivity
of the postmeasurement states on the measurement strength

either within a certain quantum trajectory or average over all
quantum trajectories using other metrics. For example, the
quantum Fisher information or, equivalently, the fidelity sus-
ceptibility [53,54] with respect to the measurement strength,
is a helpful tool to characterize the sensitivity. It is worth
noting that the quantum Fisher information has been used
to probe quantum criticalities in various equilibrium and dy-
namical settings, for example, in the transverse-field Ising
model at equilibrium [55], monitored quantum circuits [34],
and decohered quantum critical points [23]. It is interesting to
explore the application of the quantum Fisher information in
the postmeasurement critical states studied in this work.

So far, we have been focusing on the effect of measure-
ments acting on the critical ground state in a single time
step. Therefore, we only needed to study the correlation and
entanglement at a fixed time slice. Successive measurement
over an extended period of time can lead to highly nontrivial
monitored quantum dynamics [56,57], which has attracted
a lot of attention in recent years. The study of monitored
quantum dynamics has primarily focused on the long-time
limit of the dynamics where the details of the initial state be-
come unimportant. An interesting future direction is to search
for monitored quantum dynamics strongly influenced by the
critical ground state as the initial state and investigate how
the space-time correlation, including the space-time entangle-
ment [58], depends on the initial state. An interesting example
would be measuring an exactly marginal operator on a critical
initial state, where we expect the logarithmic scaling of EE
can last for an extended period of time.

Recently, we became aware of an independent and related
work [59], which will appear on arXiv on the same day. We
thank the authors for informing us of their work in advance.

Notes added. We also noticed another related independent
work [60].
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APPENDIX A: DETAILS OF THE MPS SIMULATION

We first prepare the matrix product state representation of
the cTFIM ground state on an infinite chain with different
bond dimensions χ using iDMRG algorithm provided by the
TENPY package [61]. We use the method in Ref. [62] for
extracting the central charge. Namely, for each χ , we obtain
the correlation length ξ from the second largest eigenvalue of
the transfer matrix and the half-chain entanglement entropy
S from the Schmidt decomposition. The central charge c can
be obtained by fitting S = c

6 ln ξ [17]. The maximum bond
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FIG. 10. Fitting central charge of TFIM. Blue dots correspond to
the bond dimension used in the main text, where χmax = 29. Red dots
correspond to another set of bond dimensions, where the maximum
is 67. They both give a fit with central charge c = 0.50 (black line).

dimension we use is χmax = 29, which is similar to the max-
imum bond dimension used in Ref. [62] for cTFIM. We also
check the fitting of central charge with larger bond dimensions
and the fits converge. (See Fig. 10 for the fits of cTFIM.)

For the postmeasurement state |�x
±〉 in Sec. III, we apply

the same Kraus operator on each site to the infinite chain and
fit S to ln ξ to obtain the effective central charge ceff. The
so-obtained effective central charge is presented in Fig. 4 and
is in perfect agreement with the results obtained using the
alternative numerical method based on the Majorana-fermion
representation of the spin chain discussed in Appendix C.

For the Born-rule measurements and forced measurements,
the Kraus operators are applied to the chain according to
the corresponding probabilities in a periodic fashion whose
unit cell is of a fixed length L. For each bond within the
unit cell, we calculate the half-chain entanglement entropy.
The effective central charge is obtained by fitting the average
EE over the bonds to ln ξ . We then perform the one-by-one
measurement procedure 10 times to get the standard deviation
of the effective central charge.

APPENDIX B: ANALYTIC CALCULATION OF THE EE
OF POSTMEASUREMENT STATES |�x

±〉 AND MAPPING
TO THE SINGLE-BOND DEFECT TFIM

We calculate the half-system EE of the postmeasurement
states |�x

±〉 with spatially uniform measurement outcomes
{m j = +} and {m j = −}. This calculation is a generalization
of Ref. [40]. We take half-system EE of |�x

+〉 as an example.
The analysis for |�x

−〉 is completely parallel.
The postmeasurement state |�x

+〉 is given by

|�x
+〉 =

∏
j Kx

j,+|�〉∣∣∣∣∏
j Kx

j,+|�〉∣∣∣∣ ∝ eβ
∑

j σ x
j |�〉, (B1)

In the continuum limit and L → ∞, the state is described by a
path integral on a half Euclidean plane with Ising Lagrangian
and a perturbation at τ = 0. Operator expectations and cor-
relations are calculated by path integral on a full plane with
operator insertions on τ = 0 slice. The unnormalized half-

(a) (b)

FIG. 11. Half-system reduced density matrix ρA of |�x
+〉 repre-

sented as a path integral in (a) infinite plane geometry, (b) rectangular
geometry after a conformal map. The green patches are described
by the Ising CFT. The brown patches are where the measurement-
induced perturbation locates.

system [for interval A = (−∞, 0)] density matrix ρA is ob-
tained by taking two copies of such path integrals (upper half
plane 〈�x

+| and lower half plane |�x
+〉) and gluing along the

half-line B = (0,∞) [Fig. 11(a)]. Our goal is to calculate ρA.
First, we apply a conformal transformation,

w = ln(z), (B2)

where z = x + iτ .
The geometry in w is shown in Fig. 11(b). This geometry

consists of two identical pieces stacked together. It suffices to
calculate half of it ρ

1/2
A [Fig. 12(a)]. We now map the quantum

cTFIM to a classical Ising model in 2D. In doing so, we
effectively discretize both space and time [Fig. 12(b)].

In operator language, the path integral on the full plane
[Fig. 11(a)] is

Zq = lim
T →∞

Tr(e−T Ĥ e2β
∑

j σ x
j e−T Ĥ ). (B3)

We now map this to a classical Ising model in 2D with a line
defect (for a review, see Ref. [63]). Generically, the classical
Hamiltonian is

Hcl = −
∑

r
(K1σrσr+x̂ + K2σrσr+ŷ)

−
∑

x

(K0 − K2)σ(x,y=0)σ(x,y=1), (B4)

where σr = ±1 is the classical Ising spin at site r = (x, y).
We put the Hamiltonian on an L × L lattice so that −L/2 <

x, y � L/2. The bulk horizontal and vertical couplings are K1

and K2, while on the line defect the vertical bond is modified

(a) (b)

FIG. 12. ρ
1/2
A as (a) Ising CFT path integral with perturbation

on the edges, (b) isotropic critical classical Ising model with line
defects. The green bonds are Kc. The brown bonds are K ′

0.
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to K0. The classical partition function is

Zcl = e−Hcl = Tr
(
uL/2e(K∗

0 −K∗
2 )
∑

j σ x
j uL/2

)
(B5)

with a transfer matrix u defined by

u = eK∗
2

∑
j σ x

j eK1
∑

j σ z
j σ

z
j+1 . (B6)

Here, we define the dual couplings K∗
0 and K∗

2 via

K∗ ≡ − 1
2 ln[tanh(K )]. (B7)

To match the classical and quantum partition functions, we
need to take the Hamiltonian limit K1 → 0, K∗

2 → 0 and make
the identifications

K1 = K∗
2 ,

K1
L

2
= T,

2β = K∗
0 − K∗

2 . (B8)

Since we want to harness conformal symmetries shortly,
we can further substitute this classical Ising model in the
Hamiltonian limit with another critical isotropic Ising model
(deformed by a defect), where the horizontal and vertical
bonds are of the same and finite strength. These two classical
models share the same IR behavior, as explained below. The
classical Hamiltonian of the latter model is given by

Hiso = −
∑

r
(Kcσrσr+x̂ + Kcσrσr+ŷ)

−
∑

x

(K ′
0 − Kc)σ(x,y=0)σ(x,y=1), (B9)

where Kc = K∗
c = arctanh(

√
2 − 1), which ensures the criti-

cality in the bulk, and the defect strength K ′
0 �= K0 is to be

determined shortly. Without defects, the IR properties of all
classical Ising models K1 = K∗

2 are the same at criticality.
With the defect line, we need to match the critical exponent
[64,65]

�z,ladder = 2

π2
arctan2 (e2(K∗

0 −K∗
2 )). (B10)

Here, �z,ladder is defined by

〈σrσr+r‖ 〉 ∼ |r‖|−2�z,ladder (B11)

for |r‖| � 1 and r‖ parallel to the defect line (which is the
x direction in the cases above). The defect bonds form the
shape of a ladder, thus the name. Equivalently, �z,ladder can be
defined on a quantum state as in Sec. III. Matching �z,ladder

for Hcl and Hiso, we obtain

K∗
0 − K∗

2 = 2β = K ′∗
0 − K∗

c . (B12)

Combining this identification with Eq. (B10), we obtain the
expression of �z,+ in Eq. (20). �z,− can be obtained by simply
substituting β → −β.

We can now calculate the half-system EE in the isotropic
model (B9). Put this model on an M × N lattice [Fig. 12(b)],
where each of the top and bottom ladders (brown) includes
half of the defect bond K ′

0. Viewing this as a matrix that rotates
the states on the bottom row to the states on the top row, we

can immediately read out

ρ
1/2
A = u0uMu0 (B13)

with

u = e
1
2 Kc

∑
j σ x

j eKc
∑

j σ z
j σ

z
j+1 e

1
2 Kc

∑
j σ x

j , (B14)

u0 = e
1
2 (K ′∗

0 −Kc )
∑

j σ x
j = eβ

∑
j σ x

j , (B15)

where the transfer matrix u is analogous to Eq. (B6), albeit
symmetrized, and in the last equality, we have used Eq. (B12).
Now, we perform Jordan-Wigner transformation

σ x
j = 2c†

j c j − 1, (B16)

σ z
j σ

z
j+1 = (c†

j − c j )(c
†
j+1 + c j+1), (B17)

where c j are fermionic operators. It remains to bring the
density matrix to the factorized form

ρA = e−Heff (B18)

with

Heff =
∑

l

εl c̃
†
l c̃l , (B19)

where the effective Hamiltonian is a sum of single fermion
modes c̃l which are related to the real-space fermion modes
c j by some unitary transformations. Once in this form, we can
calculate EE:

S|�v+〉(L/2) = −TrA

[
ρA

TrA(ρA)
ln

(
ρA

TrA(ρA)

)]

=
∑

l

ln(1 + e−εl ) +
∑

l

εl

eεl + 1
. (B20)

These last two technical steps are carried out in Ref. [40]
which deals with the half-system EE of a cTFIM with a bond
defect in the middle. We expect that the two systems share
the same universal behavior of EE because they are related
by a 90◦ space-time rotation (see Fig. 5). More precisely, the
cTFIM Hamiltonian with the bond defect is

Ĥdef = −
∑

j

(
σ z

j σ
z
j+1 + σ x

j

)− (t − 1)σ z
0σ z

1 , (B21)

where −L/2 < j � L/2. The corresponding classical theory
is

Hdef,cl = −
∑

r
(K1σrσr+x̂ + K2σrσr+ŷ)

−
∑

y

(t − 1)K1σ(x=0,y)σ(x=1,y). (B22)

Comparing Eqs. (B4) and (B22), we see that the two ge-
ometries are related by a 90◦ rotation. To relate the defect
couplings K0 and tK1, we rescale Hdef,cl to the (rotated)
isotropic theory (B9) by matching the critical exponent
�z,ladder,

tanh(K1)

tanh(tK1)
= tan

(√
π2�z,ladder

2

)
= e2(K ′∗

0 −Kc ), (B23)
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where in the first equality we have used Eq. (B10) with K1 and
K2 exchanged and the identity

e−2K∗ ≡ tanh(K ). (B24)

In the Hamiltonian limit K1 → 0, thus we identify

t = e−2(K ′∗
0 −Kc ) = e−4β, (B25)

where in the last equality we have used Eq. (B12).
Comparing Fig. 12(b) with Fig. 4 in Ref. [40], we see that

the two expressions of ρ
1/2
A have the same form, up to a cyclic

rotation of the matrices. The cyclic rotation does not change
Tr(ρn

A) for any n, thus it also preserves EE. We then get the
final formulas of EE [Eqs. (16) and (17)] using Eqs. (22)
and (26) of Ref. [40] and identifying s = 2

t+ 1
t

= 1
cosh(4β ) using

Eq. (B25).
Finally, let us point out that the two cases |�x

+〉 and |�x
−〉

are related by Kramers-Wannier (KW) duality. To see this, let
us first look at the quantum duality transformation UD:

U †
Dσ x

j UD = σ z
j−1σ

z
j ,

U †
Dσ z

j σ
z
j+1UD = σ x

j . (B26)

The critical ground state |�〉 is invariant under UD since it is
a symmetry of the critical Hamiltonian (1). Apply this to the
state |�x

−〉,
U †

D|�x
−〉 ∝ U †

De−β
∑

j σ x
j |�〉

= e−β
∑

j σ z
j−1σ

z
j |�〉

= e−β
∑

j σ z
j−1σ

z
j e−βĤ eβĤ |�〉

≈ eβE0 eβ
∑

j σ x
j |�〉 ∝ |�x

+〉, (B27)

where Ĥ is the critical Hamiltonian (1) and the last equality
holds only if β � 1. For finite β, we can relate the two cases
by classical KW duality as follows. Start with the classical
representation of |�x

+〉, Eq. (B4). This is a critical 2D classical
Ising model with a ladder defect along the line y = 0 and de-
fect coupling K0. The classical KW transforms the lattice onto
its dual lattice, which for square lattice is again a square. The
coupling K on every link of the original lattices is dualized to
K∗ according to Eq. (B7) and put on the corresponding link
of the dual lattice. For a square lattice, a horizontal link in
the original lattice is mapped to a vertical link in the dual
lattice and vice versa. Thus, the bulk horizontal and vertical
couplings of the dual theory K̃1 and K̃2 read as

K̃1 = K∗
2 = K1, (B28)

K̃2 = K∗
1 = K2. (B29)

We see the bulk coupling is invariant at criticality. The ladder
defect becomes a chain defect (horizontal defect bonds along
y = 0) in the dual theory with couplings,

K̃0 = K∗
0 . (B30)

Both the chain and ladder defects look the same in the IR.
So by matching the critical exponents, we can substitute the

chain defect with a ladder defect with a different coupling K∨
0 .

The critical exponent for the chain defect reads as [64,65]

�z,chain = 2

π2
arctan2

(
e−2(K̃0−K̃1 )

)
= 2

π2
arctan2

(
e−2(K∗

0 −K∗
2 )
)

(B31)

while applying Eq. (B10) to the new ladder defect K∨
0 ,

�z,ladder = 2

π2
arctan2

(
e2(K∨∗

0 −K∗
2 )
)
. (B32)

Equating the two critical exponents and using Eq. (B8), we
finally get

K∨∗
0 − K∗

2 = −(K∗
0 − K∗

2 ) = −2β. (B33)

Mapping back to the quantum theory [cf. Eqs. (B3) and (B5)],
we see that the new ladder theory simply replaces β with
−β and indeed corresponds to |�x

−〉. Since the KW duality
preserves the partition function, we expect that the entangle-
ment entropy is also preserved, being a replicated and twisted
generalization of the partition function. This explains why ceff ,
which depends only on cosh(4β ), is insensitive to the sign
of β.

APPENDIX C: NUMERICAL SIMULATION IN A
NONINTERACTING MAJORANA-FERMION

REPRESENTATION

The cTFIM Hamiltonian can be mapped, under the
Jordan-Wigner transformation, to a noninteracting fermion
Hamiltonian on a one-dimensional Majorana-fermion chain:

Hmaj = −
∑

j

iγ̂ j γ̂ j+1, (C1)

where γ̂ j’s are the Majorana-fermion operators. The spin op-
erators in the cTFIM can be identified as follows:

σ x
j = iγ̂2 j−1γ̂2 j, σ z

j σ
z
j+1 = iγ̂2 j γ̂2 j+1. (C2)

The ground state |�〉 of the cTFIM can be viewed as the
ground state of a noninteracting-fermion Hamiltonian (C1).

Any noninteracting fermion state, including |�〉, can be
fully described by its covariance matrix

� j j′ = i
2
〈[γ̂ j, γ̂ j′ ]〉 (C3)

which encodes all the Majorana-fermion two-point correlation
functions in the state. All the multipoint Majorana-fermion
correlation functions can be calculated from the two-point
functions using Wick’s theorem.

In the fermion language, a weak measurement of σ x
j is

equivalent to a weak measurement of the observable iγ̂2 j−1γ̂2 j .
For any noninteracting fermion state |ψ〉 whose covariance
matrix is given by �, the postmeasurement state

|ψ ′〉 =
Kx

j,m j
|ψ〉∣∣∣∣Kx

j,m j
|ψ〉∣∣∣∣ (C4)

is still a noninteracting fermion state, which can be captured
by its covariance matrix �′:
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�′ =

⎛
⎜⎝ �[1,2 j−2],[1,2 j−2] 0 �[1,2 j−2],[2 j+1,2L]

0 −in1σ
y 0

�[2 j+1,2L],[1,2 j−2] 0 �[2 j+1,2L],[2 j+1,2L]

⎞
⎟⎠−

⎛
⎜⎝ �[1,2 j−2],[2 j−1,2 j] 0

0 −n21

�[2 j+1,2L],[2 j−1,2 j] 0

⎞
⎟⎠

×
(

�[2 j−1,2 j],[2 j−1,2 j] 1

−1 in1σ
y

)−1

.

(
�[2 j−1,2 j],[1,2 j−2] 0 �[2 j−1,2 j],[2 j+1,2L]

0 n21 0

)
,

where �[ j1, j2],[ j′1, j′2] denotes the block of the covariance ma-
trix � with the rows ranging from j1 to j2 and the columns
ranging from j′1 to j′2. Here, we have assumed that there are
2L Majorana modes γ̂ j=1,...,2L in the one-dimensional chain.
The parameters n1 and n2 are determined by the measurement
strength λ and the outcome m j :

n1 = −2m jλ

1 + λ2
, n2 = 1 − λ2

1 + λ2
. (C5)

The Born-rule probability (4) can also be expressed using the
noninteracting fermion representation

px(m j ) = 〈ψ |(Kx
j,m j

)†
Kx

j,m j
|ψ〉 = 1 + λ2 + 2m jλ�2 j−1,2 j

2(1 + λ2)
.

(C6)

Using the covariance matrix formulation, we can per-
form efficient numerical calculations of the postmeasurement
non-interacting fermion states resulting from the weak mea-
surements along the spin-x axis on the cTFIM ground
state |�〉.

Given the covariance matrix � of a noninteracting fermion
state, one can directly calculate the subsystem von Neumann
EE. For example, for a subsystem that is an interval starting
from the jth Majorana-fermion site and ending on the j′th
site, the subsystem EE, is given by

S[ j, j′]

= −1

2

∑
s=±1

Tr

(
1 + si �[ j, j′],[ j, j′]

2
ln

1 + si �[ j, j′],[ j, j′]

2

)
.

(C7)

The connected spin-x correlation function 〈σ x
j σ

x
j′ 〉 − 〈σ x

j 〉〈σ x
j′ 〉

can be written as〈
σ x

j σ
x
j′
〉− 〈σ x

j

〉〈
σ x

j′
〉

= −�[2 j−1,2 j′−1]�[2 j,2 j′] + �[2 j−1,2 j′]�[2 j,2 j′−1]. (C8)

The absolute value of the spin-z correlation function |〈σ z
j σ

z
j′ 〉|

can also be calculated in the covariance matrix formalism.
Assuming j′ > j, we can write

σ z
j σ

z
j′ = (i) j′− j

∏
2 j�k�2 j′−1

γ̂k . (C9)

For a noninteracting fermion state |ψ〉 with covariance matrix
�, the state |ψ ′〉 = σ z

j σ
z
j′ |ψ〉 is also a noninteracting fermion

state. Its covariance matrix is given by

�′ = �[2 j,2 j′−1]��[2 j,2 j′−1], (C10)

where �[2 j,2 j′−1] is a diagonal matrix with −1 between (and
including) the (2 j)th and the (2 j′ − 1)th entries, and 1 for
all other entries. The absolute value of the spin-z correlation
function can be written as

∣∣〈σ z
j σ

z
j′
〉∣∣ = |〈ψ ′|ψ〉| =

∣∣∣∣∣ 1

22L
Pf

(
i� 1
−1 i�′

)∣∣∣∣∣
1
2

, (C11)

where 2L is the number of sites in the Majorana-fermion chain
(and L is the number of sites in the corresponding spin chain).
Here, in the second equality, we have applied the result from
Ref. [66].

APPENDIX D: OPTIMAL BIASED FORCED
MEASUREMENT AS A MEAN-FIELD APPROXIMATION

OF THE BORN-RULE MEASUREMENT

In the biased forced measurements, the measurement out-
comes on each site are weighted by probability p±. If
we view the Born-rule measurement and the biased forced
measurement as different probability distributions over the
measurement outcomes {m j = ±}, we would like to ask what
is the “closest” biased forced measurement compared to the
Born-rule one. To address this question, we calculate the
Kullback-Leibler (KL) divergence (relative entropy) [47] of
the force measurement with respect to the Born-rule one,

DKL(p||p′) ≡
∑
{m j}

p({m j}) ln

[
p({m j})

p′({m j})

]
, (D1)

where p({m j}) is the Born-rule probability given in Eq. (10)
and the p′({m j}) is the probability distribution (28) for the
biased forced measurement. Plugging in Eq. (28), we can
write

DKL(p||p′)

=
∑
{m j}

p({m j}) ln p({m j})

−
L∑

m=0

Pm[m ln p+ + (L − m) ln(1 − p+)], (D2)

where Pm is the sum of p({m j}) with m = N+({m j}).
As a function of p+, DKL(p||p′) is minimized by p∗

+ =
P(1)/N and

P(1) ≡
N∑

m=0

m Pm. (D3)
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We evaluate P(1) by considering a generating function �(t )
defined by

�(t ) ≡
〈

N∏
i=1

[(
1 + t

2

)
K2

i,+ +
(

1 − t

2

)
K2

i,−

]〉

=
N∑

m=0

(
1 + t

2

)m(
1 − t

2

)N−m

Pm. (D4)

Using this generating function, we can write

P(1)

N
= 1

2
+ 1

N
�′(t = 0) (D5)

On the other hand, by plugging in the definition of Ki,±’s, we
have

�(t ) = (cosh β ′)−N
〈
eβ ′∑

i σ
x
i
〉
, (D6)

where tanh β ′ = λt
1+λ2 .

It is readily seen that p∗
+ = 1

2 + λ
1+λ2 Mx, where Mx =

1
N

∑
i〈σ x

i 〉 = 2
π

is the total magnetization density along x di-
rection in the cTFIM ground state |�〉.

APPENDIX E: ANALYTIC STUDY OF THE EFFECTIVE
CENTRAL CHARGE FOR BORN-RULE AND FORCED

MEASUREMENT

In this Appendix, we analytically study the behavior of the
effective central charge ceff in the three cases with Born-rule
measurements, unbiased forced measurements, and biased
forced measurements. The key to our analysis is finding
the approximations of the measurement-induced perturbations
that capture their most dominant effects under RG. In all three
cases, the approximated version of the measurement-induced
perturbations turns out to be of the same type as the per-
turbation occurring in the postmeasurement states |�x

{m j=±}〉
which we have carefully studied in Sec. III. Using this ap-
proximation, we obtain the expression of the effective central
charge ceff in the three cases with the Born-rule measure-
ments, the unbiased forced measurements, and biased forced
measurements.

1. Born-rule and unbiased forced measurements

In the cases with the Born-rule and the unbiased forced
measurements, the effect of the measurements is captured
by the perturbation (25) in the continuum. The two types of
measurements correspond to different replica limits: R → 1
for Born-rule measurements and R → 0 for unbiased forced
measurements.

At the microscopic level, this measurement-induced per-
turbation (25) is given by the operator

MR =
∑

{m j=±}
exp

⎛
⎝2β

∑
j

m j

R∑
α=1

σ x
j,α

⎞
⎠

=
∏

j

2 cosh

(
2β

R∑
α=1

σ x
j,α

)
(E1)

acting on R replicas of the Ising spin chain. λ = tanh β is
measurement strength. σ x

j,α is the Pauli operator that acts on
the jth site in the αth replica of the Ising spin chain. For each
j, we can write

cosh

(
2β

R∑
α=1

σ x
α

)

=
� R

2 �∑
r=0

cR−2rs2r
∑

α1<α2<···<α2r

σ x
α1

σ x
α2

. . . σ x
α2r

, (E2)

where we have used the shorthand notations c ≡ cosh(2β ),
s ≡ sinh(2β ), and t ≡ tanh(2β ). The site index j has been
suppressed. When we consider the action of each σ x op-
erator on the cTFIM ground state |�〉, we can decompose
each σ x as

σ x = 〈σ x〉 + φx, (E3)

where 〈σ x〉 ≡ 〈�|σ x
j |�〉 = 2/π and φx corresponds to the

energy field of the Ising CFT (with scaling dimension 1). We
expand the product

∏
i σ

x
αi

appearing in Eq. (E2) as

2r∏
i=1

σ x
αi

= 〈σ x〉2r + 〈σ x〉2r−1
2r∑

i=1

φx
αi

+ O[(φx )2] (E4)

to the first order of φx
αi

’s. Recall that, from the space-time
perspective, the measurement-induced perturbation occurs on
a one-dimensional defect at imaginary time τ = 0. We keep
the first-order terms in φx

αi
’s because they give rise to marginal

perturbations to the (R-replica) Ising CFT, while the higher-
order terms are irrelevant under RG. Using the expansion
above, we can write

cosh

(
2β
∑

α

σ x
α

)
= cR (1 + x)R + (1 − x)R

2

+ cRt
(1 + x)R−1 − (1 − x)R−1

2

×
R∑

α=1

φx
α + O[(φx )2], (E5)

where x ≡ t〈σ x〉. To the linear order of φx, we can approxi-
mate cosh(2β

∑
α σ x

α ) by

cosh

(
2β
∑

α

σ x
α

)
= Ã

R∏
α=1

(
1 + g̃σ x

α

)+ O[(φx )2]. (E6)

Here, the coefficients Ã and g̃, which depend on both the
measurement strength λ = tanh β and the replica number R,
are given by

g̃ = g

1 + (R − 1)〈σ x〉g, (E7)

Ã = A
[1 + (R − 1)〈σ x〉g]R

[1 + R〈σ x〉g]R−1
, (E8)
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where

g =
t
[
1 − ( 1−x

1+x

)R−1
]

[1 − (R − 1)x] + [1 + (R − 1)x]
(

1−x
1+x

)R−1 , (E9)

A = cR (1 − x)R−1[(R − 1)x + 1]−(1 + x)R−1[(R − 1)x−1]

2
.

(E10)

Now, we can write an approximated version of the
measurement-induced perturbation MR in Eq. (E1) with the
Born-rule and the unbiased forced measurements:

MR =
R∏

α=1

∏
j

2Ã
(
1 + g̃σ x

j,α

)+ O[(φx )2]. (E11)

Notice that the first term on the right-hand side of this
equation is exactly the same type of measurement-induced
perturbation in the postmeasurement states |�x

{m j=±}〉 dis-
cussed Sec. III but with a modified measurement strength
captured by g̃. Recall that the measurement-induced perturba-
tions in the postselected states |�x

{m j=±}〉 are exactly marginal
under RG. The approximation (E11) includes all the marginal
perturbation and neglects the terms of the order O[(φx )2],
which are irrelevant under RG. MR does not include any RG-
relevant terms. Hence, we expect this approximation (E11) to
capture the behavior of the measurement-induced perturba-
tions (E1) and (25) accurately (at least) for small measurement
strength.

For the case with Born-rule measurements, we should con-
sider the replica limit R → 1. We find that

g̃
R→1−−→ 0, (E12)

which implies that the measurement-induced perturbation is
irrelevant under RG. The effective central charge defined
through the subsystem EE should remain the same as the
“unmeasured” cTFIM ground state |�〉. In other words, we
conclude that, under Born-rule measurements, ceff = 1

2 , which
is independent of the measurement strength λ. This result is
consistent with our numerical study presented in Fig. 7 in
Sec. IV.

For the case with unbiased forced measurements, we
should consider the replica limit R → 0. We find that

g̃
R→0−−→ −t2〈σ x〉. (E13)

The measurement-induced perturbation of the form∏
α

∏
j 2Ã(1 + g̃σ x

j,α ) with g̃ = −t2〈σ x〉 is exactly the
perturbation associated with the postmeasurement state
|�x

{m j=−}〉 with a measurement strength

λ̃ = tanh

(
1

2
arctanh(t2〈σ x〉)

)

= tanh

[
1

2
arctanh

(
4λ2

(1 + λ2)2
〈σ x〉

)]
. (E14)

Consequently, the effective central charge cf
eff in the case of

unbiased forced measurements as a function of the measure-
ment strength λ is given by

cf
eff(λ) = cp.m.

eff (λ̃), (E15)

FIG. 13. The effective central charge cf
eff of unbiased forced mea-

surement. The orange curve is given by Eq. (E15). The blue dots are
the effective central charge obtained from the MPS simulations. The
same numerical results are also presented in Fig. 8.

where cp.m.

eff (λ̃) denotes the effective central charge in the
postmeasurement state |�x

{m j=−}〉 with measurement strength

λ̃. The exact expression of cp.m.

eff is given by Eq. (17).
The superscripts “f” and “p.m.” are introduced to distin-
guish the effective central charges appearing in different
scenarios.

As shown in Fig. 13, Eq. (E15) agrees well with the ef-
fective central charge numerically obtained from the MPS
simulation of the unbiased forced measurement for mea-
surement strength λ � 0.7. As the measurement strength λ

approaches 1, we caution that Eq. (E15) must receive correc-
tions from the neglected terms in our approximation (E11).
We anticipate such corrections because Eq. (E15) does not
capture the expected limit cf

eff(λ → 1) → 0. Nevertheless, our
method successfully captures the behavior of the effective
central charge for a large arrange of measurement strength λ.

2. Biased forced measurements

As introduced in Sec. V, with biased forced measurements,
we sample each measurement outcome m j = + with proba-
bility p+ and m j = − with probability 1 − p+.

Under this sampling scheme, the microscopic form of the
measurement-induced perturbation reads as

M′
R =

∑
{m j=±}

pN+
+ (1 − p+)N− exp

⎛
⎝2β

∑
j

m j

R∑
α=1

σ x
j,α

⎞
⎠

∝
∑

{m j=±}
exp

⎧⎨
⎩
∑

j

m j

[
1

2
ln

(
p+

1 − p+

)
+2β

∑
α

σ x
j,α

]⎫⎬
⎭,

(E16)

with the proportionality constant [p+(1 − p+)]
L
2 . Here, N±

is the number of sites where the measurement outcome m j

is ±. L is the total length of the Ising spin chain. The
replica limit of the biased forced measurements is given
by R → 0.
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(a) (b)

(c) (d)

FIG. 14. The effective central charge cbf
eff for the biased forced measurements with p+ = px

b + δp. The orange curves are given by Eq. (E19).
The blue circles are the effective central charge obtained from MPS simulations.

Similar to Appendix E 1, we can approximate the
measurement-induced perturbation M′

R by

M′
R ∝

R∏
α=1

∏
j

(
1 + g̃′σ x

j,α

)+ O[(φx )2] (E17)

to the first order of φx. In the replica limit R → 0, we have

g̃′ R→0−−→ 2tδp

(1 − x2) − 2xδp
, (E18)

where δp = p+ − pb
x is defined as the difference between p+

and pb
x = 1+x

2 = 1
2 + λ

1+λ2 〈σ x〉. The latter is the probability of
measuring m = +1 when we only perform the σ x measure-
ment on a single site in the cTFIM ground state |�〉.

When δp = 0, we have g̃′|R→0 = 0. Therefore, the cor-
responding effective central charge cbf

eff with biased forced
measurements should remain the same as the un-measured
cTFIM ground state |�〉, i.e., ceff = 1

2 , independent on the
measurement strength λ. This conclusion is consistent with

our numerical simulation shown in Fig. 8. Note that, when
p+ = pb

x, namely δp = 0, the biased forced measurement
provides a mean-field approximation to the case with the
Born-rule measurement. The independence of the effective
central charge on the measurement strength is found analyt-
ically and numerically in both types of measurements.

For a generic value of δp, the effective central charge cbf
eff

is given by

cbf
eff(λ) = cp.m.

eff (λ̃′) (E19)

with

λ̃′(δp, λ) = tanh
[

1
2 arctanh(|g̃′||R→0)

]
. (E20)

Again, this result is obtained by comparing the approximated
version of the measurement-induced perturbation M′

R with
the exactly marginal perturbation appearing in the postmea-
surement states |�x

{m j=±}〉.
In Fig. 14, we compare our analytical result (E19) with

the numerical simulations and find good agreements between
them (especially at small measurement strength λ).
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