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Unique properties of the optical activity in noncentrosymmetric superconductors:
Sum rule, missing area, and relation with the superconducting Edelstein effect
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We present general properties of the optical activity in noncentrosymmetric materials, including supercon-
ductors. We derive a sum rule of the optical activity in general electric states and show that the summation
of the spectrum is zero, which is independent of the details of electric states. The optical activity has a
δ-function singularity that vanishes in normal phases. However, the singularity emerges in superconducting
phases, corresponding to the Meissner effect in the optical conductivity. The spectrum decreases by the super-
conducting gap and has a missing area compared to the normal phase. This area is exactly equivalent to the
coefficient of the δ-function singularity due to the universal sum rule. Furthermore, the coefficient is exactly
equivalent to the superconducting Edelstein effect, which has not yet been observed in experiments. Thus this
measurement of the missing area offers an alternative way to observe the superconducting Edelstein effect.
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I. INTRODUCTION

Optical responses are one of the key research topics in
condensed matter physics because they offer valuable insights
into diverse material characteristics, such as momentum-
resolved electric spectral functions using angle-resolved
photoemission spectroscopy, symmetry breaking, and associ-
ated domains using the Kerr effect and the second harmonic
generation. The wide range of optical frequencies, span-
ning from microwaves to x rays, enables the investigation of
phenomena across an extensive spectrum of energy scales.
Recently, terahertz spectroscopy is also attracting attention
because important energy scales exist in this regime in con-
densed matter physics, such as the superconducting gap and
collective excitations of magnets [1].

Optical responses have also played an essential role in the
research of superconductors. It dates back to the observation
of the superconducting gap in thin films of Pb using the
far-infrared ray in 1956, which gave the first evidence of the
superconducting gap [2]. Furthermore, the optical conductiv-
ity has contributed to the identification of the gap symmetry of
superconductors and the exact measurement of the superfluid
density or the magnetic penetration length through the use
of a sum rule. This measurement has been mainly done in
high-temperature superconductors [3–7]. In recent times, the
research area of optical responses in superconductors has been
more diverse; the third harmonic generation observing the
Higgs mode [8] and the optical conductivity in noncentrosym-
metric superconductors [9–15] are energetically studied.

In this work, we will extend the study of optical responses
to the optical activity in superconductors. The optical activity
represents one of the optical responses and it originates from
the spatial dispersion of the optical conductivity, exhibiting

*shinada.koki.64w@st.kyoto-u.ac.jp

the optical rotation, the dichroism, and the birefringence de-
pending on material symmetries [16–21]. It comprises two
categories depending on the existence of the time-reversal
symmetry (T ). One is the natural optical activity with T
symmetry and the other is the spatially dispersive magneto-
optical effect or the optical magnetoelectric effect without T
symmetry. Spatial inversion symmetry breaking is necessary
for a finite optical activity and it is observed in various systems
including chiral molecules as well as the noncentrosymmetric
crystals. Despite the ubiquity of optical activity, theoretical
studies of optical activity have mainly been carried out in
molecular systems [22–26] and research in solids is not devel-
oped to the same level. The band theory of the optical activity
in solids is developed in some works [27–34] and it has been
applied to various systems including chiral crystals [35–38],
twisted bilayer graphenes [39–44], and a topological antifer-
romagnet [45]. Recently, the optical activity is formulated
through the multipole theory in solids, revealing the corre-
spondence with molecular systems [46], and the first-principle
calculation is carried out based on this formulation [47].

While there has been gradual progress in theoretical
studies about the optical activity in the normal phase, the
research in noncentrosymmetric superconductors remains
largely unexplored, except for a few works [29,48]. Recently,
noncentrosymmetric superconductors have attracted increas-
ing attention [49], because they cause novel superconducting
states, such as parity-mixing superconductors, topological
superconductors, and helical superconductors with finite mo-
mentum Cooper pairs. They, furthermore, display unique
magnetoelectric responses and nonreciprocal phenomena due
to inversion symmetry breaking, including the supercon-
ducting Edelstein effect [50], the magnetochiral anisotropy
[51–53], and the superconducting diode effect [54–57]. In ad-
dition, the optical activity will give valuable information about
these superconductors due to its uniqueness in inversion-
symmetry broken systems.
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In this paper, we show the general properties of the optical
activity in noncentrosymmetric systems, including supercon-
ductors. First, we discuss a sum rule of the optical activity
valid in all systems and reveal that the summation does not de-
pend on material details and electric states in Sec. II. Second,
we formulate the optical activity using Green’s functions and
discuss a no-go theorem stating the absence of a δ-function
singularity, meaning that optical activity does not appear in
equilibrium in Sec. III. Furthermore, we show a typical optical
spectrum calculated in a two-dimensional model, including
a Rashba spin-orbit coupling, and confirm this sum rule.
Third, we discuss the optical activity in noncentrosymmetric
superconductors in Sec. IV. In this section, we formulate
the optical activity for superconductors and demonstrate that
the no-go theorem is broken. For this reason, the singularity
appears and the optical spectrum of the optical activity is
reduced compared to the normal phase. This area is called
the missing area and is exactly equivalent to the coefficient
of the δ-function singularity because of the universal sum
rule. Furthermore, we reveal that the missing area is exactly
equivalent to the superconducting Edelstein effect, where a
magnetization is induced by supercurrents, which has not
been experimentally observed. The relation established here
by the missing area provides an alternative way to observe
this effect. Furthermore, we also calculate the optical activity
in a two-dimensional noncentrosymmetric superconductor to
verify the typical behavior of the missing area. Finally, we
conclude this paper in Sec. V.

II. SUM RULE OF THE OPTICAL ACTIVITY

In this section, we discuss a sum rule of the optical activity.
The optical activity is one of the responses to light and, partic-
ularly, is related to the optical rotation and the nonreciprocity
due to the inversion symmetry breaking. A similar effect is
the magneto-optical effect, which is not included in this paper
because inversion symmetry breaking is unnecessary. The op-
tical activity is theoretically described by a spatially dispersive
optical conductivity. When applying an electromagnetic wave,
electric current, orbital moments, and, also, spin moments
interact with the light. These responses are described by a
general current-current correlation function where the current
operator is conjugate to the electromagnetic vector potential
and includes spin moments.

First, as a preparation, we discuss an exact symmetry of
the current-current correlation function �μν (q, ω), where q
is the wave number and ω is the frequency. The following
relationship holds between this correlation function and its
complex conjugate as

�∗
μν (q, ω) = �μν (−q,−ω). (1)

This derivation requires only the hermicity of the current
operator (see the Appendix for a detailed derivation). Next,
we expand this correlation function by the wave number
q and discuss the symmetry of the zeroth order �μν (ω) =
�μν (0, ω) and the first order term �μνλ(ω) = ∂qλ

�μν (0, ω).
Separating the correlation function into real and imaginary

parts, we find that the following symmetry relations for the
frequency hold:

Re�μν (−ω) = +Re�μν (ω),

Im�μν (−ω) = −Im�μν (ω), (2a)

Re�μνλ(−ω) = −Re�μνλ(ω),

Im�μνλ(−ω) = +Im�μνλ(ω). (2b)

The zeroth order term is even for the real part and odd for
the imaginary part, and the opposite relation holds for the first
order term.

Next, we derive the sum rule. The spatially dispersive
optical conductivity is given by

σμν (q, ω) = �μν (q, ω) − Dμν

i(ω + iδ)
. (3)

Here, Dμν is the diamagnetic term, which is real. δ = +0 is
an adiabatic factor. Using the equation limδ→+0 1/(ω + iδ) =
P/ω − iπδ(ω), the optical conductivity is divided into the
real part and the imaginary part as

Reσμν (q, ω)

= P
Im�μν (q, ω)

ω
− πδ(ω)[Re�μν (q, ω) − Dμν],

(4a)

Imσμν (q, ω)

= −P
Re�μν (q, ω) − Dμν

ω
− πδ(ω)Im�μν (q, ω).

(4b)

Here, δ(ω) is the δ function and P is the principal value.
Similarly, expanding the optical conductivity by q, the real
part of the zeroth order term is an even function of ω and the
imaginary part is odd, which can be seen from Eq. (2a). The
opposite relation is satisfied for the first-order term shown in
Eq. (2b). The zeroth order term is the usual optical conductiv-
ity and the first order is called the optical activity finite only
in noncentrosymmetric systems and the main quantity in this
paper. For the even functions, we can find the following sum
rules. Using the Kramers-Kronig relation, the sum rule for
the usual optical conductivity (the zeroth order) is established
[58], ∫ ∞

0
dω Reσμν (ω) = π

2
Dμν. (5)

Next, the sum rule for the optical activity reads (see the
Appendix for a detailed derivation)∫ ∞

0
dω Imσμνλ(ω) = 0. (6)

This relation is the first main result of this paper. This equa-
tion means that the summation is zero and has universality
due to the independence of material details. This property
will be important in the following discussion. This sum rule is
partially derived in molecule systems [22,23], which are finite
systems, and it has been further extended to infinite systems,
crystals [27,28,46]. However, the derivation is limited to the
noninteracting band theory. On the other hand, Eq. (6) gener-
alizes the sum rule to systems without any assumption and is
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also valid for, e.g., interacting systems and superconducting
states.

III. OPTICAL ACTIVITY IN NONCENTROSYMMETRIC
CRYSTALS

In this section, we discuss general properties, such as sym-
metry constraints and a no-go theorem, and typical behaviors
of the optical activity in noninteracting crystals.

A. Symmetry classification for the optical activity:
Natural optical activity and optical magnetoelectric effect

Response functions are, in general, constrained by time-
reversal symmetry and this constraint is given by the Onsager
reciprocal theorem. The optical conductivity satisfies the re-
ciprocal relation [18]

σμν (q, ω, M) = σνμ(−q, ω,−M ). (7)

Here, M is a time-reversal symmetry-breaking term such as
an external magnetic field or a magnetization. Thus the sym-
metric and antisymmetric parts of the optical activity behave
differently for the interchange of the indices μ ↔ ν as [30,46]

σ
(S)
μνλ(ω, M) = −σ

(S)
μνλ(ω,−M), (8a)

σ
(A)
μνλ(ω, M) = +σ

(A)
μνλ(ω,−M). (8b)

These equations show that the symmetric part σ
(S)
μνλ is odd and

the antisymmetric part σ
(A)
μνλ is even under the time-reversal

operation T . Thus the symmetric part needs time-reversal
breaking (M �= 0), but the antisymmetric part does not. The
optical activity is further restricted by the spatial inversion
symmetry. The optical activity tensors are odd under the
spatial-inversion operation P; therefore, the antisymmetric
part vanishes if systems have PT symmetry. Because of the
different symmetry constraints of these parts, they are named
differently. The antisymmetric part is called the natural optical
activity (NOA) and the symmetric part is called the optical
magnetoelectric effect.

The NOA is mainly composed of the optical rotation and
the circular dichroism and has been studied for a long time. It
dates back to the first observation in 1811 by Arago, showing
that a quartz displayed an optical rotation. The NOA is often
used to distinguish chiral molecules because the enantiomers,
which are the mirrored states, exhibit the NOA with oppo-
site signs to the original molecules. Furthermore, the NOA
is also active in chiral solids, such as Te and Se [59], and
twisted bilayer graphene, as we have noted in the Introduc-
tion. In the aspect of symmetry, the NOA can appear even
in T -symmetric systems and, then, purely reflects the crystal
symmetry. The antisymmetric optical activity behaves as a
rank-2 axial tensor αξλ = εμνξσ

(A)
μνλ (εμνξ is a totally antisym-

metric tensor) and this tensor is active in gyrotropic point
groups (GPGs) [60,61]. GPGs are divided into strong and
weak GPGs, and weak GPGs are composed of C3v, C4v, C6v.
These two GPGs generate different types of the NOA. The
optical rotation is active in strong GPGs; however, it does
not appear in weak GPGs. On the other hand, weak GPGs
display the Voigt-Fedorov dichroism or a specific reflection
phenomenon [62–64]. This phenomenon was observed, for

example, in CdS with C6v [65,66]. Furthermore, in spin-orbit
coupled systems, the NOA includes the optical Edelstein ef-
fect, where the ac current induces a dynamical magnetization
[67,68].

The symmetric part can be decomposed into a rank-2
axial tensor βμξ = ενλξσ

(S)
μνλ and a rank-3 totally symmetric

tensor γμνλ = σ
(S)
μνλ + σ

(S)
νλμ + σ

(S)
λμν . βμξ corresponds to the op-

tical magnetoelectric response [20] and it induces, e.g., the
directional dichroism and the directional birefringence. The
response is observed in the typical magnetoelectric material
Cr2O3 [69,70] and now the magnetoelectric optics allows
domain imaging of antiferromagnets [71–73]. Furthermore,
the optical magnetoelectric response is now widely observed
[21] and the response caused by magnons in multiferroic
magnets is also reported [74,75]. γμνλ is known to be an
electric quadrupole response [30,46], which also induces the
directional dichroism [33].

B. Green’s function formula of the optical activity
for noninteracting systems

We derive the Green’s function formula of the optical
activity for the noninteracting systems. The noninteracting
Hamiltonian without electromagnetic wave is

H0 = p2

2m
+ V (x) + 1

4m2

(
∂V (x)

∂x
× p

)
· σ. (9)

Here, p and x are the momentum and position operators,
respectively, m is the mass of an electron, V (x) = V (x + a)
is a periodic potential, and σ is the Pauli matrix representing
the spin degrees of freedom. This Hamiltonian is diagonal-
ized by the Bloch wave function |ψnk〉 (k is the Bloch wave
number and n is the band index) as H0 |ψnk〉 = εnk |ψnk〉. For
the following discussion, we define the Bloch Hamiltonian
Hk = e−ik·xH0eik·x and the periodic part of the Bloch function
|unk〉 = e−ik·x |ψnk〉. Then, introducing electromagnetic waves
by the vector potential A(x, t ), the momentum changes as
p → p + eA(x, t ) (−e < 0 is the charge of the electron) and
the Zeeman term is added. The first-order perturbed Hamilto-
nian is given by

HA = e

2
(v · A(x, t ) + A(x, t ) · v), (10a)

HB = gSμB

2
[∂x × A(x, t )] · σ. (10b)

Here, v = i[H0, x] is the velocity operator, gS = 2.002 . . .

is the spin g factor, and μB = e/2m is the Bohr magneton.
The generalized current operator J(r), conjugate to the vector
potential A(r, t ) (r is just the position coordinate, not the
operator), is defined as

J(r) ≡ −δ(HA + HB)

δA(r, t )

= − e

2
{v, δ(r − x)} + gSμB

2
(σ × ∂r)δ(r − x). (11)

This current operator is the quantity induced by the inter-
action with electromagnetic waves. Following the dynamical
linear response theory given by the Kubo formula, the current-
current correlation function using the Green’s functions is
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FIG. 1. (Left) Energy dispersion of the Rashba spin-orbit coupling model [Eq. (14)]. (Right) Numerical results of the optical activity σzxx

for the model Hamiltonian [Eq. (14)]. We set t = 1.0, α = 0.3, μ = −0.1, and � = 0.1. The mesh of the wave numbers in the BZ is 800 × 800.
We set energy and � in units of t , and σzxx in units of e2a/h̄. In this unit, we assume the electron mass m ≈ 1 · h̄2/ta2.

given by

�μν (q,�)

=
∫

[d4k] f (ω)Tr
[
GRA(k−, ω) jμk,qGR(k+, ω + �) jνk,−q

+ GA(k−, ω − �) jμk,qGRA(k+, ω) jνk,−q

]
. (12)

Here, GR/A(k, ω) = 1/(ω − Hk + μ ± i�) is the
retarded/advanced Green’s function and we define
GRA = GR − GA, k± = k ± q/2, and jμk,q = −evμ

k −
gSμB

2 (iq × σ )μ. v
μ

k = ∂Hk/∂kμ is the velocity operator of
the Bloch Hamiltonian, μ is a chemical potential, and
f (ω) = 1/(eβω + 1) is the Fermi distribution function at

temperature 1/β. The integral symbol is abbreviated as∫
[d4k] = ∫ ∞

−∞ dω/(2π i)
∫

BZ d3k/(2π )3. We phenomenolog-
ically introduce the dissipation effect by assuming a finite
�. In this calculation, we neglect the diamagnetic term Dμν

because it does not contribute to the optical activity due to
the independence of q. The optical activity is attributed to
the first-order term of this correlation function by q; thus two
different contributions appear. One is coming from the spin
part in the current operator jμk,q and the other is the orbital
contribution given by the expansion of the Green’s function
by q. In the following, we focus on the spin contribution
for simplicity and only consider crystal symmetries and
dimensions where the orbital contribution is absent. The spin
term is given by

�μνλ(�) = iegSμB

2

∫
[d4k] f (ω)Tr

[
εμλθ

{
GRA(k, ω)σθ GR(k, ω + �)vν

k + GA(k, ω − �)σθGRA(k, ω)vν
k

}
− ενλθ

{
GRA(k, ω)vμ

k GR(k, ω + �)σθ + GA(k, ω − �)vμ

k GRA(k, ω)σθ

}]
. (13)

Then we obtain the formula of the optical activity σμνλ(�) =
�μνλ(�)/i(� + iδ).

C. No-go theorem and typical behaviors of the optical activity

We discuss a general property, namely a no-go theorem,
using the obtained formula [Eq. (13)]. The optical activity
appears to have a singularity at ω = 0 due to the δ function in
Eqs. (4a) and (4b). However, we can prove that this singularity
vanishes in the normal phase. In fact, taking the limit � → 0,
the integrand in Eq. (13) can be rewritten as a total differential
form with respect to the wave number k using the fact that
GR/Avλ

k GR/A = ∂λGR/A and thus �μνλ(� = 0) = 0 resulting in
the singularity vanishing. This result shows that the optical
activity vanishes in equilibrium. However, this is not the case
in superconductors as we will discuss later.

Next, we calculate the optical activity in a simple model
and discuss the typical behaviors. We use a two-dimensional
noncentrosymmetric system including the Rashba spin-orbit
coupling; however, we note that the optical activity is also
expected in other three-dimensional systems with other types

of spin-orbit coupling. This Hamiltonian reads

Hk =
∑
kσ

εkc†
σkcσk + α

∑
kσσ ′

gk · σσσ ′c†
σkcσ ′k. (14)

Here, we define εk = −2t (cos kx + cos ky) and gk =
(sin ky,− sin kx, 0). In this paper, we set the lattice constant
a = 1. This model is T symmetric and belongs to the weak
gyrotropic point group C4v. Thus the symmetric part of the
optical activity vanishes; however, the antisymmetric part
is not forbidden. For this symmetry, there is only one finite
component σyzy = −σzyy = −σzxx = σxzx.

Figure 1 (left) shows the energy dispersion and there is a
band splitting due to the spin-orbit coupling. Figure 1 (right)
shows the frequency dependence of the optical activity σzxx at
zero temperature. In the numerical calculation, we set t = 1.0,
α = 0.3, μ = −0.1, and � = 0.1. There is a gap of about
0.1–0.3 magnitude around the chemical potential μ = −0.1
for direct transitions, not changing the wave numbers k, as
seen in Fig. 1 (left). At the frequency � equivalent to the
gap, the imaginary part of the optical activity changes its
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sign. The frequency dependence, including the sign change,
can be explained by the concept of intraband and interband
transitions. The formula of the imaginary part of the optical
activity in the band representation is given by

Imσ intra(A)
zxx (�) = −egSμB

2

τ

(�τ )2 + 1

∑
nk

∂ f (ε̃nk)

∂kx
σ y

nn,

Imσ inter(A)
zxx (�) = egSμB

2

∑
n �=m,k

fmnk

εmnk

τ

τ 2(εmnk − �)2 + 1

× Re
[
vx

kmnσ
y
nm

]
. (15)

This equation is composed of two parts—the intraband effect
and the interband effect. Here, we define the matrix element
Mmn = 〈umk| M |unk〉, fmnk = f (ε̃mk) − f (ε̃nk), εmnk = εmk −
εnk, and ε̃nk = εnk − μ. The intraband effect is attributed to
the Fermi surface and behaves like the Drude form ∼τ/[1 +
(�τ )2] as seen in Eq. (15). This behavior can be seen at low
frequencies in Fig. 1. On the other hand, the interband effect is
enhanced at the frequency resonant with the band gap (∼0.2
in the current model) as seen in Eq. (15), and Fig. 1 shows
that the sign of the spectrum changes at the corresponding
frequency � ∼ 0.2. We can confirm that the interband term
provides this sign change due to the universal sum rule. The
low-frequency peak originating from the intraband effect has
a constant sign because of the Drude form. On the other hand,
the interband effect needs to show a spectrum with an opposite
sign so as to cancel the spectrum of the intraband effect
and fulfill the universal sum rule [the summation is zero in
Eq. (6)]. Thus the interband term generates the high-frequency
peak with the opposite sign. Furthermore, in the numerical

result in Fig. 1 (right), we can confirm the sum rule and, in
fact, the summation of the area is zero (∼ −0.0001917 . . .).

IV. OPTICAL ACTIVITY IN NONCENTROSYMMETRIC
SUPERCONDUCTORS

As discussed in previous studies [29,48], a superconduct-
ing gyrotropic current changes the frequency dependence of
the optical rotation. In this section, we derive the optical ac-
tivity in superconductors using Green’s functions and discuss
general properties, including the sum rule and the missing
area. In addition, we confirm these properties by a model
calculation.

A. Green’s function formula of the optical
activity for superconductors

We formulate the optical activity for superconductors with
Green’s functions. In this paper, the superconducting state is
treated in the mean-field approximation and it is described by
the BdG Hamiltonian in the band representation

HBdG = 1

2

∑
knm

ψ
†
nkHBdG

knm ψmk, (16a)

HBdG
k =

(
Hk − μ −�k

−�
†
k −HT

−k + μ

)
. (16b)

Here, ψ†
k = (c†

1k, . . . , c†
Nk, c1−k, . . . , cN−k) is the Nambu

spinor and �k is the pair potential, which is the order param-
eter of superconductors. We define the transpose of a matrix
M as MT and the Hermitian conjugate of a matrix M as M†.
The current-current correlation function for the generalized
current operator [Eq. (11)] is given by

�μν (q,�) = 1

2

∫
[d4k] f (ω)Tr

[
GRA

BdG(k−, ω) j̃μk,qGR
BdG(k+, ω + �) j̃νk,−q + GA

BdG(k−, ω − �) j̃μk,qGRA
BdG(k+, ω) j̃νk,−q

]
. (17)

There are some differences from the formula for the normal state [Eq. (12)]. First, GR/A
BdG(k, ω) = 1/[ω − HBdG

k + �R/A(ω)] is
the Green’s function for the BdG Hamiltonian and �R/A(ω) represents the self-energy of the dissipation effect. A specific form
will be introduced later. Second, the current operator is expanded to the particle-hole Hilbert space as

j̃μk,q =
⎛
⎝ jμk,q 0

0 −(
jμ−k,q

)T

⎞
⎠. (18)

Third, the prefactor 1/2 is introduced to prevent a double counting of the particle and hole degrees of freedom. After a Taylor
expansion by q, the first-order coefficient is decomposed into a spin contribution and an orbital contribution. In this paper, we
focus on the spin contribution, which is given by

�μνλ(�) = iegSμB

4

∫
[d4k] f (ω)Tr

[
εμλθ

{
GRA

BdG(k, ω)σ̃θ GR
BdG(k, ω + �)ṽν

k + GA
BdG(k, ω − �)σ̃θGRA

BdG(k, ω)ṽν
k

}
− ενλθ

{
GRA

BdG(k, ω)ṽμ

k GR
BdG(k, ω + �)σ̃θ + GA

BdG(k, ω − �)ṽμ

k GRA
BdG(k, ω)σ̃θ

}]
. (19)

Here, the spin operator σ̃θ and the velocity operator in the
Bloch basis ṽ

μ

k are different from the normal states. They are
defined as

σ̃θ =
(

σθ 0
0 −σ T

θ

)
, ṽ

μ

k =
(

v
μ

k 0

0 −(
v

μ

−k

)T

)
. (20)

Then, we obtain the formula of the optical activity σμνλ(�) =
�μνλ(�)/i(� + iδ).

In this section, we mainly focus on the spin contribution.
Of course, the orbital part, in general, contributes to the
optical activity, and this part is studied in previous works
investigating the superconducting orbital Edelstein effect and
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the superconducting gyrotropic current resulting in an addi-
tional correction to the optical rotation [29,48,76].

B. Relation between the singularity
and the superconducting Edelstein effect

As discussed in Sec. III C, the singularity due to the δ

function vanishes in the normal state. This result is guaranteed
by the identity GR/Avλ

k GR/A = ∂λGR/A. However, we will see
that a similar identity is not valid in superconducting states.
The Bloch velocity operator in superconducting states is de-
scribed by ṽ

μ

k [Eq. (20)] and this operator does not satisfy
GR/A

BdGṽλ
k GR/A

BdG = ∂λGR/A
BdG, even if the pair potential �k is inde-

pendent of the wave number k. Thus the integrand in Eq. (20)
cannot be transformed to a total differential form of k in the
limit of � → 0. This means that the singularity can generally
exist in superconducting states.

A similar singularity appears in the optical conductivity
and the coefficient corresponds to the superfluid density [77].
The singularity corresponds to an equilibrium current, which
is known to be the Meissner effect. Recently, a similar sin-
gularity also appears in the nonlinear conductivity resulting
in anomalous divergences in the low-frequency regime [11]
and the origin is the nonreciprocal Meissner effect [78]. The
coefficient of the singularity in the optical activity can also be
interpreted by a physical effect. The coefficient of the optical
activity can be rewritten as

Im�μνλ(0) = εμλθKνθ − (μ ↔ ν). (21)

Kνθ is the superconducting Edelstein response coefficient,
where the supercurrent induces a magnetization in noncen-
trosymmetric superconductors (Sν = Kνθ Aθ or Jν = KνθBθ ).
This response is first derived by Edelstein in polar supercon-
ductors with Rashba spin-orbit coupling [50] and subsequent
works [79–82] study it in more detail. Although the supercon-
ducting Edelstein effect is an important response originating
in the uniqueness of noncentrosymmetric superconductors, it
has not yet been observed in experiments.

C. Missing area

The singularity due to the δ function is difficult to be
directly observed in optical responses. However, it can be
exactly measured with the help of the sum rules [Eqs. (5)
and (6)]. These sum rules state that the summation of the
spectrum of the optical responses is independent of material
details and does not change before and after superconduct-
ing transitions. Thus the regular part in the superconducting
state, accessible in optical measurements, appears to have a
reduced area. This is called the missing area and is absorbed
in the contribution to the δ function. This exact relation is
used to measure the superfluid density and the penetration
length by the optical conductivity. This sum rule is called the
Ferrell-Glover-Tinkham (FGT) sum rule [3,4] and the exact
measurement using this sum rule is mainly discussed in high-
temperature superconductors [5–7].

The discussion of the missing area can be extended to
the optical activity. The optical activity also satisfies the sum
rule [Eq. (6)], which does not change before and after phase

transitions. Thus the following equation is established:∫ ∞

+0
d�

(
Imσ

(n)
μνλ(�) − Imσ

(s)
μνλ(�)

) = −π

2
Im�

(s)
μνλ(0).

(22)

Here, we label (n) and (s) for the normal state and the su-
perconducting state, respectively. The left-hand side of this
equation represents the missing area, i.e., the difference be-
tween the spectral summations of the normal state and the
superconducting state at finite frequencies, which is accessi-
ble in optical measurements. The right-hand side represents
the coefficient of the δ-function singularity. As discussed in
the no-go theorems, the singularity is finite only in the su-
perconducting state. Thus the right-hand side includes only
the coefficient of the superconducting state. As discussed in
Sec. IV B, the coefficient of the δ function is equivalent to
the superconducting Edelstein response that has not yet been
observed in experiments. Thus the missing area measurement
gives an alternative way to experimentally determine the su-
perconducting Edelstein effect.

Furthermore, we can directly determine the superconduct-
ing Edelstein effect only using the optical spectrum in the
superconducting phase. The sum rule states that the summa-
tion is zero. Thus the following equation is established:∫ ∞

+0
d� Imσ

(s)
μνλ(�) = π

2
Im�

(s)
μνλ(0). (23)

D. Model calculation for the optical activity
in a noncentrosymmetric superconductor

We analyze an optical spectrum of the optical activity in
superconductors to verify the above discussion and the miss-
ing area. We consider the same model used in Sec. III C as
the normal Hamiltonian Hk and the superconducting pairing
is uniform singlet. Thus we set �k = i�σy, where � is real.
This model is one of the noncentrosymmetric superconductors
including the Rashba spin-orbit coupling. Such superconduc-
tors are discussed in the surface atomic-layer superconductors
on substrates [83], such as the monolayer of FeSe [84,85] and
noncentrosymmetric bulk superconductors including heavy
fermion superconductors with large spin-orbit coupling [49].

We plot the optical spectrum of the optical activity at
various magnitudes of the pair potential � in Fig. 2. In this
calculation, we phenomenologically introduce the dissipation
effect by multiplying a factor ηω obtained by the first Born
approximation [86] in the retarded Green’s function as

GR
BdG(k, ω) = 1

ηωω − H (n)
k − ηω�ρyσy

, (24)

ηω = 1 + �

(
θ (|�| − |ω|)√

�2 − ω2
+ i sgn(ω)θ (|ω| − |�|)√

ω2 − �2

)
. (25)

Here, H (n)
k is the normal part of HBdG

k . ρ is the Pauli matrix
representing the particle-hole Hilbert space, θ (x) is the step
function, and sgn(x) is the sign function returning +1 if x > 0
and −1 if x < 0. This dissipation effect is consistent with the
normal phase introduced in Sec. III B in the limit � → 0.
Figure 2 (left) shows the optical spectrum and the weight
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FIG. 2. (Left) Numerical results of the optical activity in the superconducting phase for several different pair potentials �. We set t =
1, α = 0.3, μ = −0.1, and � = 0.1. (Right) Missing area. We plot the difference between the optical activity in the normal phase Imσ (n)

zxx and
in the superconducting phase Imσ (s)

zxx . The integration mesh of the wave number in the BZ is 800 × 800. We use � and � in units of t , and σzxx

in units of e2a/h̄.

vanishes for ω < 2�. The curve asymptotically approaches
the curve of the normal phase at the high-frequency regime
because the superconducting hybridization becomes small.
Figure 2 (right) shows the difference between the spectra of
the normal state and the superconducting state for visibility.
Figure 2 demonstrates that the origin of the missing area
comes from the superconducting gap and the area disappears
in the high-frequency regime. Therefore, when measuring this
area, it is sufficient to observe it for small frequencies corre-
sponding to the energy scale of the superconducting gap.

As discussed in Sec. IV C, the missing area offers the exact
measurement of the superconducting Edelstein effect. In this
numerical calculation, we can confirm that the relation is valid
as seen in Fig. 3, where we plot both the missing area and the
direct calculation of the superconducting Edelstein effect, and
we can see that the superconducting Edelstein effect and the
missing area coincide.

V. CONCLUSION

We have investigated general properties of the op-
tical activity in noncentrosymmetric systems, including

FIG. 3. Superconducting Edelstein effect (SEE) π Im�zxx (0)/2
and the missing area (MA)

∫ �c

0 d� Imσ (s)
zxx (�). �c is the cutoff of the

integration and we set �c = 2.0. We set � in units of t and SEE in
units of e2a/h̄t .

superconductors. We have derived the sum rule of the optical
activity as the property of a two-body correlation function,
applicable to general electric states such as interacting sys-
tems and superconductors. We have found that the summation
is zero, independent of material details in Sec. II. We have
discussed the typical behaviors of the optical activity in the
normal phase in Sec. III. We have formulated the optical
activity using Green’s functions and discussed a no-go the-
orem using the obtained formula. The no-go theorem states
that the singularity from the δ function at the zero frequency
� = 0 is absent, which means that the equilibrium current is
forbidden in normal states. In addition, we have calculated
the spectrum of the optical activity using a model, including
the spin-orbit coupling, and seen that there were two peaks
with opposite signs in the spectrum. One peak appears around
the zero frequency � = 0, corresponding to the Drude peak
(∼τ/[1 + (�τ )2]) with finite relaxation time τ . This peak
originates at the Fermi surface. Another peak appears at high
frequencies and is enhanced around the band gap because its
origin is the interband effect. The reason why the two peaks
have the opposite sign is that the low-frequency peak from the
intraband effect has the constant sign and the high-frequency
peak from the interband effect should show a spectrum with
an opposite sign so as to cancel it out due to the sum rule (the
summation is zero).

Next, we have discussed the optical activity in noncen-
trosymmetric superconductors in Sec. IV. We have formulated
the optical activity in the superconducting state using Green’s
functions and discussed some properties using this formula.
First, we have discussed a no-go theorem. In superconductors,
the theorem no longer holds and the singularity from the δ

function can appear. Second, we have found a characteristic
sum rule similar to the FGT sum rule. Due to the existence
of the singularity and the universal sum rule [Eq. (6)], the
spectrum of the optical activity in the finite frequency regime
is reduced and this missing area is equivalent to the coefficient
of the singularity [Eq. (22)]. Furthermore, we have shown
the coefficient is equivalent to the superconducting Edelstein
effect, which has not been observed in experiments since the
first proposal by Edelstein. Our result has shown that the exact
measurement of the missing area gives the alternative way
of the observation of the superconducting Edelstein effect.
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We have also calculated the optical activity using a specific
model of an s-wave noncentrosymmetric superconductor with
a spin-orbit coupling to investigate its typical spectrum. We
have found that the missing area originates from the super-
conducting gap and that, in the frequency region beyond the
superconducting gap, the spectrum asymptotically approaches
the normal phase case. Thus it is sufficient to measure the
missing area in the low frequency range about the supercon-
ducting gap.

Finally, we comment on the orbital contribution of the
optical activity. In this paper, we have focused on the spin
contribution. However, the orbital part exists in more general
cases as seen in Refs. [29,48,76]. The discussion on the no-
go theorem and the missing area involving the orbital part
remains as future works.
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APPENDIX: DERIVATION OF THE SUM RULE

In this Appendix, we derive the sum rule of the optical
activity. At first, we show the symmetry relations [Eqs. (2a)
and (2b)]. The current-current correlation function, in general,
can be written in the Lehmann representation as

�μν (q, ω) =
∑
lm

e−βEl − e−βEm

Z (ω + iδ − Elm)
〈l| Jμ

q |m〉 〈m| Jν
−q |l〉 .

(A1)

Here, Z = Tr[e−βH ] is the partition function. We use exact
eigenstates |n〉 and eigenvalues En of a given system Hamil-
tonian H and the current operator Jq = ∫

dr J(r)e−iq·r. The
current operator is Hermitian J†(r) = J(r); thus J†

q = J−q.
The complex conjugate of this correlation function is

�∗
μν (q, ω) =

∑
lm

e−βEl − e−βEm

Z (ω − iδ − Elm)
〈m| Jμ

−q |l〉 〈l| Jν
q |m〉

=
∑
lm

e−βEm − e−βEl

Z (ω − iδ + Elm)
〈l| Jμ

−q |m〉 〈m| Jν
q |l〉

= �μν (−q,−ω). (A2)

Then, we can derive Eqs. (2a) and (2b) by expanding this
equation in q.

Next, we move on to the derivation of the sum rule. The
imaginary part of the optical activity is

Imσμνλ(ω) = −P
Re�μνλ(ω)

ω
− πδ(ω)Im�μνλ(ω).

(A3)
The imaginary part is an even function of ω, while the real
part is odd as we can see in Eq. (2b). Therefore, integrating
the imaginary part along the real-ω axis is given by∫ ∞

−∞
dω Imσμνλ(ω) = 2

∫ ∞

0
dω Imσμνλ(ω)

= −P

∫ ∞

−∞
dω

Re�μνλ(ω)

ω

−π Im�μνλ(0)

= 0. (A4)

Here, we use the Kramers-Kroning relation, which is valid for
retarded functions including �μν (q, ω) due to the analyticity
in the upper half plane of the ω-complex plane, at the third
equality. Then, we obtain the sum rule [Eq. (6)].
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