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Coupling of acoustic phonons to spin-orbit entangled pseudospins
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We consider coupling of acoustic phonons to pseudospins consisting of electronic spins locked to orbital
angular momentum states. We show that a Berry phase term arises from projection onto the time-dependent
lowest-energy manifold. We examine consequences on the phonon modes, particularly mode splitting, induced
chirality, and Berry curvatures under an external magnetic field which Zeeman couples to the pseudospin.
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I. INTRODUCTION

How phonons couple to a magnetic field has received a lot
of attention recently, with particular boost due to the interest in
thermal Hall effects and the question of possible phonon con-
tributions [1–10]. In this paper, we investigate a mechanism of
phonon–magnetic field coupling thereby an acoustic phonon
can acquire a Berry curvature, and the otherwise degenerate
phonon modes (in the absence of this coupling) would be
mixed, producing chiral modes with finite frequency split-
ting. The general mechanism of generating such a coupling
between the phonon and the magnetic field is by now well
appreciated, while in the case of optical phonons in strongly
ionic solids, the coupling can be directly comprehended as
due to motion of the charged ions [11]; in general, it must
be understood as a Berry phase effect [12–17]. Phonons are
associated with the motion of the atoms or ions in the solid.
The electrons, on the other hand, not only provide an effective
scalar potential between the ions given in the traditional Born-
Oppenheimer approximation but also carry a Berry phase
factor depending on the ionic coordinates. This phase factor,
after the electron degrees of freedom have been eliminated,
gives rise to an effective vector potential [12–18] and hence
Lorentz force for the motions of the ions or nuclei. Traditional
first-principles phonon calculations in solids based on density
functional theory [19] consider electron-phonon interactions
only via the interatomic force constant matrix and thus miss
the Berry phase contribution mentioned above, though authors
of more recent works (e.g., Ref. [17]) have allowed for this
contribution. The generation of gauge field on one subsystem
via projecting out the other has also been discussed in other
branches of physics (e.g., Refs. [20–22]).

Here, we shall consider phonons coupling to the magnetic
field via spins. We shall primarily consider localized spins
in the paramagnetic regime, where the spins are not ordered
or even noninteracting, with finite polarization only due to
the external applied magnetic field. The coupling mecha-
nism we consider is different from those investigated in the
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literature, such as magnetic anisotropy energy [23] in mag-
netically ordered systems or modifications of spin-spin
interaction energies due to bond length or angle changes in
the presence of phonons. The specific systems we shall exam-
ine are those where the spins are actually pseudospins, with
electronic spins entangled with orbital angular momentum
states, for example, Ru+3 ions in α-RuCl3 [3,4,6,10] or Ir+4 in
Sr2IrO4 [24–27] with (Kramers degenerate) ground states well
separated from excited states [28]. Systems with such strong
spin-orbit entangled pseudospins themselves have gained
strong recent attention due to interesting physics such as spin-
orbit assisted Mott transition, unusual interaction between
pseudospins, possible spin liquids, and multipolar order [29].
In the presence of the acoustic phonon, the local environment
becomes time dependent. If the pseudospin is not excited, then
this pseudospin must remain within the ground-state manifold
though defined according to this instantaneous environment.
This time dependence then generates an effective gauge field
for the ionic motion. Since the pseudospin Zeeman couples
to the magnetic field, direct phonon–magnetic field coupling
would result, providing the mechanism we desire in the first
paragraph. Explicitly, we shall be examining d-electron sys-
tems in cubic environment. However, the mechanism seems
to be quite general when both crystal field splitting and strong
spin-orbit coupling are present when the phonon frequencies
lie within suitable frequency ranges. Since a projection into a
subspace is necessary, our mechanism is only applicable for
such strongly spin-orbit entangled systems.

Our mechanism to be discussed here is distinct from the
one which has been investigated also for spin-orbit entan-
gled pseudospins particularly for f -electron systems (e.g.,
Refs. [30–33]) coupling to optical phonons. There, the cou-
pling, termed magnetoelastic interaction in Refs. [30–33] (but
to be distinguished from magnetoelastic couplings which has
been discussed in magnetostriction or for acoustic waves in,
e.g., Refs. [23,34]), arises from the modification of crystal
fields acting on the pseudospins in the presence of the optical
phonons. These phonon-pseudospin couplings are parameter-
ized by coupling constants which describe thus the extent
that the crystal fields are modified due to the displacements
of the ions surrounding the pseudospin under discussion. In
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this mechanism, the splitting of degenerate phonon modes by
the magnetic field is generated by virtual transitions between
different energy manifolds [30,31]. In contrast, our mecha-
nism arises from phase factors generated from projection onto
the time-dependent pseudospin ground state manifold. As we
shall see, the coupling constant depends on the information
entirely of the ground-state manifold and in fact a factor
related to the geometric information on the structure of the
pseudospin.

The structure of the rest of this paper is as follows. In
Sec. II, we introduce our specific model and then derive
the phonon-pseudospin coupling. The effect of this coupling
on the sound modes frequencies is evaluated in Sec. III. In
Sec. IV, we evaluate the Berry curvatures. We end with some
order-of-magnitude estimates and discussions in Sec. V.

II. MODEL

To be specific, consider Ir+4 ions in Sr2IrO4 or Ru+3 ions in
RuCl3, both with five d electrons (see, e.g., Refs. [24–27]). In
both cases, the ions are situated within an approximately cubic
environment formed by the O−2 and Cl−1 ions, respectively.
The d-electron energy levels are crystal-field split into t2g and
e2g manifolds. Only the t2g manifold consisting of the orbitals
usually labeled as xy, yz, and zx are relevant and, together
with the electronic spin ↑ and ↓ degree of freedom, form
six levels. The spin-orbit interaction further splits these six
levels into one quartet, usually labeled as jeff = 3

2 , which are
occupied, and another Kramer’s doublet, usually labeled as
jeff = 1

2 , which is singly occupied. We shall write the wave
functions for the two levels in this doublet as [35]

| ⇑〉 = −i√
3

[|xy ↑〉 + |yz ↓〉 + i|xz ↓〉],
| ⇓〉 = i√

3
[|xy ↓〉 − |yz ↑〉 + i|xz ↑〉], (1)

forming a time-reversal pair (we use the convention, under
time-reversal, | ↑〉 → | ↓〉, | ↓〉 → −| ↑〉, and similarly, | ⇑
〉 → | ⇓〉, | ⇓〉 → −| ⇑〉). In the absence of phonons, the or-
bital parts of the wave functions (xy, yz, zx) as well as the spin
parts (↑, ↓) are defined according to fixed axes with respect to
the crystal in equilibrium.

Before we consider phonons, let us first note a few relations
which we shall use. Denoting the electronic spin operator by
	s = 1

2 	σ , where 	σ are Pauli matrices operating on the ↑ and
↓ space, and 	L the orbital angular momentum operator, their
projections onto the subspace of Eq. (1) are [36]

	s = − 1
6 	τ , 	L = − 2

3 	τ , (2)

where 	τ are Pauli matrices within the ⇑, ⇓ space. The energy
change under a magnetic field 	B, μB(	L + 2	s) · 	B (with μB the
Bohr magneton), with the operators projected again onto this
subspace (i.e., ignoring thus other contributions), would then
be

EZ = μB

(
−2

3
− 1

3

)
	τ · 	B ≡ −gμB

	τ
2

· 	B, (3)

with an effective g factor of 2 [25,26]. In the first equality of
Eq. (3), − 2

3 arises from 	L, and − 1
3 = 2 × (− 1

6 ) arises from

2	s. Equation (2) implies

	L + 	s = − 5
6τ , (4)

a result which we shall use later.

A. Phonon-pseudospin coupling

Consider a long-wavelength acoustic phonon, with a spa-
tial and time-dependent displacement vector 	ξ (	x, t ). For
simplicity, we shall consider a cubic crystal and remark on
modifications for other symmetries later. As is well known,
we can decompose this into three components: 	∇ · 	ξ , 1

2
	∇ × 	ξ ,

and the tensor 1
2 ( ∂ξl

∂x j
+ ∂ξ j

∂xl
) − 1

3δ jl 	∇ · 	ξ , corresponding to an
isotropic expansion (compression), rotation, and anisotropic
deformation, respectively [37]. Under low-energy excitations
of the crystal [28], the electronic state |�〉 of our ion under
consideration should still be within the manifold described by
Eq. (1), though in a frame specified by the local environment.
Hence, at an instantaneous time t , we should have (up to small
terms describing the excitations to higher-energy levels)

|�(t )〉 = α′
⇑(t )| ⇑′ (t )〉 + α′

⇓(t )| ⇓′ (t )〉, (5)

where | ⇑′ (t )〉 [| ⇓′ (t )〉] are states given by Eq. (1) except
with x, y, z, | ↑〉, | ↓〉 replaced by x′, y′, z′, | ↑′〉, | ↓′〉 rotated
from the former by 		(t ) ≡ 1

2
	∇ × 	ξ (t ). (The isotropic com-

pression and anisotropic deformation would not affect what
we would be discussing below [38] and shall be ignored from
now on.) Suppose that our ion is under an external field 	B,
and let 	B′ be the value of this field in the abovementioned
rotating frame. The Schrödinger equation of motion for |�〉,
employing Eq. (5) and noting the time dependence of the basis
function | ⇑′ (t )〉, | ⇓′ (t )〉, implies

i
∂

∂t

(
α′

⇑
α′

⇓

)
= −gμB 	B′(t ) · 	τ

2

(
α′

⇑
α′

⇓

)

+
(

−i〈⇑′ | ∂
∂t | ⇑′〉 −i〈⇑′ | ∂

∂t | ⇓′〉
−i〈⇓′ | ∂

∂t | ⇑′〉 −i〈⇓′ | ∂
∂t | ⇓′〉

)(
α′

⇑
α′

⇓

)
.

(6)

Here, 	τ , which rigorously should have been denoted as
	τ ′, are Pauli matrices in the ⇑′, ⇓′ subspace, but we
shall not make this distinction in notations for sim-
plicity. Since | ⇑′ (t )〉 = exp[−i 		 · (	L + 	s)]| ⇑〉 ≈ [1 − i 		 ·
(	L + 	s)]| ⇑〉, the time derivatives can be evaluated as, e.g.,
−i〈⇑′ | ∂

∂t | ⇑′〉 = −( ∂ 		
∂t ) · [〈⇑′ |(	L + 	s)| ⇑′〉]. Using Eq. (4)

(and ignoring terms ∝ 		 × ∂	
∂t , which arise due to the differ-

ence between the primed and unprimed ⇑ and ⇓ space), we
obtain

i
∂

∂t

(
α′

⇑
α′

⇓

)
=

[
−gμB 	B′(t ) · 	τ

2
+ 5

6

∂ 		
∂t

· 	τ
](

α′
⇑

α′
⇓

)
. (7)

It would be more convenient to have an equation of mo-
tion directly involving 	B instead. We observe that 	B′ = 	B −
		 × 	B, and hence, 	B′ · 	τ = exp(i 		

2 · τ ) 	B · 	τ exp(−i 		
2 · τ ).
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Introducing

(
α̃⇑
α̃⇓

)
= exp

(
−i

		
2

· τ

)(
α′

⇑
α′

⇓

)
, (8)

we finally obtain

i
∂

∂t

(
α̃⇑
α̃⇓

)
=

[
−gμB

2
	B + 4

3

∂ 		
∂t

]
· 	τ

(
α̃⇑
α̃⇓

)
, (9)

where we have again dropped a term involving second powers
in 	. Here, 4

3 arises from 1
2 − (− 5

6 ), thus is due to the differ-
ence between the rotational matrix for ordinary spin- 1

2 and our
pseudospin [Eq. (4)]. The direction of the pseudospin, defined
as the expectation value of 	τ with the spin wave function
(α̃⇑, α̃⇓), is given by

∂

∂t
τ̂ = τ̂ ×

[
	ω0 + r

∂ 		
∂t

]
= τ̂ ×

[
	ω0 + r

2

(
∇ × ∂	ξ

∂t

)]
,

(10)
with 	ω0 = gμB 	B and r = − 8

3 . The former is the standard pre-
cession due to the external field, and the second extra term is
due to the rotational properties of our basis functions derived
above.

B. Lagrangian

Now we construct the Lagrangian for the coupled phonon
and pseudospin system. To simplify the writing, when no con-
fusion arises, we shall often just write spin for the pseudospin.

First, the acoustic phonon alone can be described by the
Lagrangian density:

L0,ph = 1

2
ρM

(
∂ξ j

∂t

)2

− Uelastic, (11)

where Uelastic = 1
2 [λ1( ∂ξ j

∂xl

∂ξ j

∂xl
) + λ2

∂ξ j

∂x j

∂ξl

∂xl
] is the elastic energy

density. Here, ρM is the mass density (dimension mass times
inverse volume), and sums over repeated indices are implicit.
We have also ignored a term λ3( ∂ξ j

∂x j

∂ξ j

∂x j
), which is allowed in

cubic symmetry for simplicity. Its effects will be discussed
later. Under this simplification, for a system without coupling
to spin, sound velocities are independent of direction of prop-
agation q̂, with longitudinal and transverse sound velocities
given by vL = [(λ1 + λ2)/ρM]1/2 and vT = [λ1/ρM]1/2, re-
spectively.

For the spin, first, we recall that, for a spin S under a
magnetic field along ẑ, the Lagrangian can be written as [39]
Ls = gμBSB cos θ + S cos θ

∂φ

∂t , where θ and φ are the angles
for the spin direction in spherical coordinates, the first term
being from the Zeeman energy and the second a Berry phase
term. To produce the equation of motion, Eq. (10), we need

only to replace gμBSB cos θ by 	τ
2 · [gμB 	B + r

2 (∇ × ∂	ξ
∂t )] (now

specializing to pseudospin 1
2 ). The last term allows us to

identify the pseudospin-phonon coupling.
The Lagrangian L = Lph + Ls + Lph-s is a sum of the

phonon term in Eq. (11), the spin term, and the phonon-spin

coupling term. We then have, for a net effective spin density
ρs per unit volume,

Ls = ρs
1

2

[
gμB 	B · τ̂ + cosθ

∂φ

∂t

]
, (12)

Lph-s = rρs

4

[
τ̂ ·

(
∇ × ∂	ξ

∂t

)]
, (13)

with τ̂ the net (pseudo-)spin direction. The phonon-
pseudospin coupling is dictated by the factor r derived in
the last subsection. As is evident from our derivation above,
this coupling arises from the Berry phase due to the rotat-
ing frame of reference for the pseudospin in the presence of
the transverse acoustic phonon. We remind the readers here
that this coupling thus has an entirely different origin from
the magnetoelastic coupling discussed by, e.g., Ref. [23] for
magnetic materials, which describes the change in magnetic
energies in the presence of stress.

C. Effective equation of motion

The equation of motion for τ̂ was already obtained in
Eq. (10), which reads, after Fourier transform and linearizing
about the equilibrium, where τ̂ = ẑ,

−iωτ̂ (ω, 	q) = ω0(τ̂ × ẑ) + rω

2
[ẑ × (	q × 	ξ )], (14)

where 	q is the wave vector and ω the angular frequency.
The equation of motion for the displacement is

ρMω2ξ j − rω

4
ρs(	q × τ̂ ) j = λ1q2ξ j + λ2ql (q jξl ). (15)

We now study the consequences of Eqs. (14) and (15).
Equation (14) implies that τ̂z is just a constant. The compo-
nents orthogonal to the field direction ( j = x, y) obey

τ j = rω/2

ω2
0 − ω2

{ω0(	q × 	ξ ) j − iω[ẑ × (	q × 	ξ )] j}. (16)

Putting this into Eq. (15) gives us the equation of motion
entirely expressed in terms of ξ j :

0 = ρMω2ξ j−[λ1q2ξ j+λ2ql (q jξl )]

− r2ρs

8

ω0ω
2

ω2
0−ω2

{−q2
z ξ j+qzq jξz+[qz(qlξl )−q2ξz]δ jz}

− i
r2ρs

8

ω3

ω2
0−ω2

qz
(
	q×	ξ)

j . (17)

Coupling of the pseudospin to the phonon results in the last
two new terms. Here, the factor δ jz = 1 if j = z and vanishes
otherwise. We note the factor qz in the last term, which is
generated from the last term in Eq. (16). This factor reflects
the fact that the time-dependent parts of τ only have x and y
components.

We now analyze Eq. (17) in two different limits.
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(a) (b)

FIG. 1. Schematic dispersions for the transverse phonon modes
for qz > 0. + (−) labels right (left) circularly or elliptically polar-
ized. For qz < 0, the ± labels in the above figures have to be reversed.
(a) Antiadiabatic regime and (b) adiabatic.

III. SOUND MODES

A. Small magnetic field: Antiadiabatic regime

For small fields, ω0 is much smaller than the phonon fre-
quencies, and Eq. (17) approximately reads

0 = ρMω2ξ j − [λ1q2ξ j + λ2ql (q jξl )]

+ i
r2ρs

8
ωqz(	q × 	ξ ) j . (18)

Longitudinal sound, with ξ parallel to 	q, is not affected.
Physically, there is no rotation of the environment surround-
ing the pseudospin in this case. The two polarizations of the
transverse sound are coupled via the spins, turning them into
circular polarized ones. Writing 	ξ = ξθ θ̂ + ξφφ̂, we get(

ω2 − q2v2
T −i ρsr2

8ρM
ωq2 cos θq

+i ρsr2

8ρM
ωq2 cos θq ω2 − q2v2

T

)(
ξθ

ξφ

)
= 0. (19)

Here, θq is the angle between q̂ and ẑ. To the lowest order in
the phonon-pseudospin coupling, the frequencies are given by

ω± = qvT [1 ± Zcosθq], (20)

for the modes with right [(ξθ , ξφ ) ∝ (1, i)] and left [(ξθ , ξφ ) ∝
(1,−i)] circular polarization, with Z a q-dependent

dimensionless parameter:

Z ≡ ρsr2q

16ρMvT
. (21)

Thus, the fractional splitting increases with q, reflecting that
a shorter wavelength implies a larger rotation motion of the
lattice 	q × 	ξ and hence a stronger coupling to our pseudospin.
This is different from a naïve picture of hybridization between
the phonon modes with the Larmor precession of the spins,
where the induced splitting would decrease with increasing
frequencies away from ω0. From Eq. (20), we see that, for
qz > 0, the lower (higher) frequency mode is left (right)-
circularly polarized. The reverse is the case if qz < 0. See
Fig. 1(a).

B. Low frequency: Adiabatic regime

For very small q, the phonon frequency ∼qvT is much
smaller than ω0. In this case, the effective equation of motion
for the phonon coordinate can be written as

0 = ρMω2ξ j − [
λ1q2ξ j + λ2ql (q jξl )

]
− r2ρsω

2

8ω0

{ − q2
z ξ j + qzq jξz + [qz(qlξl ) − q2ξz]δ jz

}

− i
r2ρs

8

ω3

ω2
0

qz(	q × 	ξ ) j . (22)

Note the sign differences between the last terms of
Eqs. (18) and (22) in two different frequency regimes, like the
case of, e.g., a driven harmonic oscillator for the above versus
below resonance. Formally, the last term is one higher order
in ω−1

0 than the second last, but we shall explain shortly why
we keep this term. Longitudinal sound is again unaffected.
The eigenvector has 	ξ parallel to 	q, as can be checked by
multiplying Eq. (22) by q j and the sum over j (there is no
contribution from either the last or second-last terms). The
transverse sounds obey

⎛
⎝ω2 − q2v2

T + ρsr2

8ρMω0
q2ω2 i ρsr2

8ρMω2
0
ω3q2 cos θq

−i ρsr2

8ρMω2
0
ω3q2 cos θq ω2 − q2v2

T + ρsr2

8ρMω0
q2ω2 cos2 θq

⎞
⎠(

ξθ

ξφ

)
= 0. (23)

For θq not too close to 0 or π , we can ignore the off-
diagonal terms in this matrix equation, as they are second
order in ω−1

0 . We obtain two nondegenerate modes with
frequencies ω = qvT (1 + X )−1/2 (for 	ξ along θ̂ ) and ω =
qvT /(1 + X cos2 θq)−1/2 (for 	ξ along φ̂). Here, X ≡ ρsr2q2

8ρMω0

is a q-dependent dimensionless parameter. Thus, the mode
with 	ξ along θ̂ has a lower frequency than the one with
φ̂ due to the coupling to the pseudospin. For θq = 0 or π ,
these two modes are degenerate up to ω−1

0 . The off-diagonal
term then turns these transverse modes to circularly polarized.
For θq = 0, the modes with (ξθ , ξφ ) ∝ (1,±i) have frequen-
cies roughly given by ω ≈ qvT (1 + X )−1/2[1 ∓ X2], with the
dimensionless parameter X2 ≡ ρsr2q2

16ρMω0

qvT

ω0
. Note that both X

and X2 are increasing functions of q. Like the case in

Sec. III A, the sign in front of X2 in this expression for ω needs
to be reversed for θq = π . Note that X2 � X since we are now
considering qvT � ω0 and also that the circular polarization
for the higher-frequency mode is opposite to the antiadiabatic
case for a given q̂. For general θ , the modes are elliptically
polarized. See Fig. 1(b).

IV. BERRY CURVATURE

We here discuss the Berry curvature for the phonon modes.
Our methodology here closely follows Ref. [40] and the
supplemental materials of Ref. [41]. In the Appendix, we
collect some of the relevant formulas. We shall again first
investigate the small magnetic field regime (Sec. IV A) and
then the high magnetic one (Sec. IV B). The second regime is
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included here for completeness, but the information therein is
not essential for our final Discussion section, so readers can
choose to skip to Sec. IV B.

A. Antiabiabatic

The Lagrangian density that reproduces the equation of
motion, Eq. (18), can easily be found:

L = L0,ph + r2ρs

16
ε jkl

(
∂2ξ j

∂z∂xk

)(
∂ξl

∂t

)
. (24)

The last term, in the form of an effective Lorentz force, might
have been expected from phenomenological grounds. An ini-

tial guess might be a term proportional to ẑ · (	ξ × 	∂ξ

∂t ): this
term does arise in the case of optical phonons [32,33,42], but
here, this is not acceptable since the appearance of 	ξ violates
translational invariance. Instead, in Eq. (24), a second-order
spatial derivative appears, like what has been discussed in
Refs. [13,41], though in our case, the precise form, as derived
in Sec II, is different here.

The conjugate momentum � j is given by

� j ≡ ∂L

∂ξ̇ j
= ρM

(
∂ξ j

∂t

)
− r2ρs

16
ε jkl

(
∂2ξl

∂z∂xk

)
, (25)

with the equation of motion, Eq. (18), just the same as ∂� j

∂t =
∂L
∂ξ j

. After Fourier transforming the spatial coordinates, these

two equations can be written in matrix form:

∂

∂t

(
ρM 1̂ 0
ρM� 1̂

)(
ξ

�

)
=

(−ρM� 1̂
−Q 0

)(
ξ

�

)
, (26)

where �, Q, and 1̂ are 3 × 3 matrices: � ≡ Z (qvT ) cos θq�̂,
with Z defined in Eq. (21), �̂ jk ≡ −ε jkl q̂l , Q jk ≡ λ1q2δ jk +
λ2q jqk , and 1̂ jk = δ jk .

Equation (26) can be rewritten as

∂

∂t

(
ξ

�

)
= −iS

(
ξ

�

)
, (27)

with ξ , � column matrices consisting of elements ξx,y,z and
�x,y,z, and S a 6 × 6 matrix given by

S =
(−i� i/ρM

−iQ −i�

)
, (28)

where rigorously speaking, the lower left element should have
been −iQ + iρM�2, and we have taken the simpler form since
�2 is second order in 1/ω0 and hence higher order than the
other terms we kept.

Following Ref. [41], we search for the row vectors (	u, 	v)
which satisfy, for positive frequencies ω,

ω(	u, 	v) = (	u, 	v)S. (29)

Once (	u, 	v)’s are found, the Berry curvatures 	�B can then be
evaluated via the formulas collected in Appendix B. For the
longitudinal mode, (	u, 	v) = (uqq̂, vqq̂). The transverse modes
can be more easily written in terms of uθ,φ and vθ,φ defined
via 	u = uθ θ̂ + uφφ̂ and similarly for 	v. They obey (observe
that θ̂ �̂ = −φ̂ and φ̂�̂ = θ̂ )

ω

⎛
⎜⎜⎝

uθ

uφ

vθ

vφ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−iZqvT cos θq −iλ1q2

+iZqvT cos θq −iλ1q2

iρM −iZqvT cos θq

iρM iZqvT cos θq

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uθ

uφ

vθ

vφ

⎞
⎟⎟⎠. (30)

The right (left)-circularly polarized mode has eigenvector [normalized according to Eq. (A8)]:[
(ρMqvT )1/2

2
,± i(ρMqvT )1/2

2
,

i

2(ρMqvT )1/2
,∓ 1

2(ρMqvT )1/2

]
, (31)

with frequencies ω = qvT (1 ± Z cos θq) [c.f. Eq. (20)] and curvature 	�B = ±q̂/q2.

B. Adiabatic

In this regime, Eq. (22) indicates that the equation for the frequency is cubic. This creates complications if we want to treat
the problem in the same way as in the last subsection. However, since we are treating the pseudospin-phonon coupling as small,
we can simplify the problem by noting the fact that, since the last term in Eq. (22) is thus already small, we can replace ω2 there
by the unperturbed transverse sound frequency (qvT )2 (transverse since the last term affects only the transverse modes). Thus,
we now consider the effective equation of motion:

0 = ρMω2ξ j − [λ1q2ξ j + λ2ql (q jξl )] − r2ρsω
2

8ω0

{ − q2
z ξ j + qzq jξz + [qz(qlξl ) − q2ξz]δ jz

} − i
r2ρs

8

ω(qvT )2

ω2
0

qz(	q × 	ξ ) j . (32)

This equation reproduces the sound velocities discussed near the end of Sec. III B, and we can check that the displacement
eigenvectors found below are proportional to those found there.

The Lagrangian density that reproduces this equation of motion can easily be found:

L = L0,ph + r2ρs

8ω0

[
1

2

(
∂2ξl

∂z∂t

)2

−
(

∂2ξz

∂z∂t

)(
∂2ξl

∂xl∂t

)
+ 1

2

(
∂2ξz

∂xl∂t

)2
]

+ r2ρsv
2
T

16ω2
0

∇2	ξ · 	∇ ×
(

∂2	ξ
∂z∂t

)
. (33)
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Carrying out the same procedure as in the last subsection, we obtain

∂

∂t

[
ρM (1 + X �̂) 0

−ρM�̃ 1

](
ξ

�

)
=

(
ρM�̃ 1
−Q 0

)(
ξ

�

)
, (34)

where �̃ ≡ X2qvT cos θq�̂ (dimension frequency), with X, X2 defined in Sec. III B and �̂ jkQ jk already defined in Sec. IV A:

�̂ ≡

⎛
⎜⎝

q̂2
z 0 −q̂xq̂z

0 q̂2
z −q̂yq̂z

−q̂zq̂x −q̂zq̂y q2
x + q2

y

⎞
⎟⎠. (35)

We have again Eq. (27), now with

S =
(

i[1 + X �̂]−1�̃ i/ρM[1 + X �̂]−1

−iQ + iρM�̃[1 + X �̂]−1�̃ i�̃[1 + X �̂]−1

)
, (36)

which in accordance with our approximations, the second term in the lower left element can be dropped.
We can solve for the eigenvectors (	u, 	v) as before. It is useful to note the vector relations q̂�̂ = 0, θ̂ �̂ = θ̂ , and φ̂�̂ =

cos2 θqφ̂. Once more, for longitudinal modes, (	u, 	v) = (uqq̂, vqq̂) is unaffected by the pseudospin. If θq is not too close to 0 or π ,
in the first approximation, we can ignore the effects of �̃. The modes are thus linearly polarized with either 	u, 	v entirely along θ̂

or φ̂ with frequencies already given in Sec. III B. The normalized eigenvectors are, respectively,

(uθ , vθ )0 =
[

(ρMqvT )1/2(1 + X )1/4

√
2

,
i√

2(ρMqvT )1/2(1 + X )1/4

]
, (37)

and

(uφ, vφ )0 =
[

(ρMqvT )1/2(1 + X cos2 θq)1/4

√
2

,
i√

2(ρMqvT )1/2(1 + X cos2 θq)1/4

]
, (38)

for the lower- and higher-frequency modes. Here, the subscript 0 reminds us that we have ignored �̃. The effect of finite �̃ can be
included by perturbation theory, using Eqs. (37) and (38) as the unperturbed solutions. For the lower-frequency mode, the wave
vector can be written as (	u, 	v) = (uθ,0θ̂ , vθ,0θ̂ ) + β(uφ,0φ̂, vφ,0φ̂), where β is a small coefficient. We find that β is imaginary,
with

Imβ = X2

2X

cos θq

sin2 θq
(1 + X )1/4(1 + X cos2 θq)1/4[(1 + X cos2 θq)1/2 + (1 + X cos2 θq)1/2]. (39)

Hence, Imβ has the same sign as cos θq. For qz > 0, the lower-frequency mode is right elliptically polarized (vice versa for
qz < 0). Similarly, the higher-frequency mode (the φ mode before perturbation) becomes left elliptically polarized, with the
degree of ellipticity characterized by the same coefficient Imβ.

For θq = 0, the modes are circularly polarized, with normalized eigenvectors:

(uθ , uφ, vθ , vφ ) =
[

(ρMqvT )1/2(1 + X )1/4

2
,∓ i(ρMqvT )1/2(1 + X )1/4

2
,

i

2(ρMqvT )1/2(1 + X )1/4
,

±1

2(ρMqvT )1/2(1 + X )1/4

]
,

(40)

for the higher-frequency (left-circularly polarized) and lower-
frequency (right-circularly polarized) modes, respectively.
The opposite signs are to be taken if θq = π .

Equation (39) together with Eqs. (37) and (38) allows us
to obtain the Berry curvature. Here, 	�B has no φ component.
For θq not too close to 0 or π , for the lower-frequency mode,

	�B · θ̂ = 2vT

qω0

cos2 θq

sin3 θq
, (41)

	�B · q̂ = 4vT

qω0

cos θq

sin4 θq
. (42)

Here, we have only kept the lowest-order finite terms and have
used 1

q2
X2
X = vT

2qω0
. For the higher-frequency mode, there is an

extra negative sign for these formulas.

For θq = 0, we obtain 	�B = ∓1/q2 for the two modes in
Eq. (40) [43].

V. DISCUSSIONS

We begin with a rough estimate for the factor Z in Eq. (21),
which gives the fractional splitting in Sec. III A. Consider the
case of one ion per unit cell, and let ρ0 (dimension inverse
volume) be the number of ions per unit volume, and M is
the mass per unit cell. Then Z ≈ ρs

ρ0

h̄q
MvT

. (From here on, we
restore the Boltzmann constant kB and Planck constant h̄.)
Suppose that vT ≈ 1 km/s, M ∼ 100 proton mass, and if the
spins are polarized (ρs = ρ0), we get Z ∼ 10−3 for a 1 meV
phonon, a very large value compared with those predicted in
the literature [11,17] for other systems. For a paramagnet with
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small fields, ρs/ρ0 ∼ μBB/kBT , this number will be reduced,
but still not necessarily small for not-too-small fields and
not-too-high temperatures.

For the parameter X in Sec. III B (note that X ∼ qvT

ω0
Z),

we obtain X ≈ 10−2 ρs

ρ0

(h̄qvT /meV)2

(B/Tesla) . For a 100 Tesla field and

1 meV phonon, we have a 10−4 splitting if we take ρs = ρ0.
Phonons with finite Berry curvature will have an intrinsic

contribution to the thermal Hall effect. Though this contri-
bution is seemingly small and unlikely to be at least the
sole mechanism for the observed thermal Hall effect for
any systems, with thus extrinsic effects also called for (e.g.,
Refs. [41,44]), here, we provide an estimate since it is of-
ten also evaluated in the theoretical literature. Considering
small external magnetic field and the simplified situation in
Sec. III A, where we have two opposite circularly polarized
modes, from the formulas in Refs. [13,40], we estimate [45]
κxy/T ∼ δω

vT

k2
B
h̄ , where δω is the typical splitting between the

two oppositely polarized phonons at a given temperature, i.e.,
δω ∼ Z (qvT ), with h̄qvT ∼ kBT ; thus,

κxy

T
∼ ρs

ρ0

(kBT )2

h̄Mv3
T

k2
B

h̄
.

We obtain that κxy > 0 (see remark below Eq. (21) and foot-
note [45]), independent of the sign of r. Inserting the numbers
and taking again ρs/ρ0 ∼ μBB/kBT , we get

κxy ∼ 10−8(T/K)2(B/Tesla)W/Km. (43)

Here, κxy is proportional to T 2 instead of T 3 in Refs. [13,41]
due to the temperature dependence of ρs just mentioned
above. Equation (43) gives, for B ∼ 10 Tesla and T ∼ 100 K,
κxy ∼ mW/Km, a value comparable with those in, e.g.,
Ref. [41], and for T ∼ 30 K, κxy ∼ 0.1 mW/Km, about an
order of magnitude smaller than the peak value found ex-
perimentally for the nonmonotonic temperature-dependent κxy

reported in Ref. [6]. Our number here, however, is likely to
be an overestimate. The Berry curvature in our model relies
on mixing between transverse modes. If we consider that
rotational symmetries in crystals are discrete rather than con-
tinuous, transverse phonon modes are already split for most
propagating directions. For these directions, the sound modes
are only elliptically polarized rather than circularly, and the
Berry curvature will be reduced. A calculation would be like
what we had in Sec. IV B. Since the mixing term between
the two transverse modes is ∼ZqvT , if the transverse mode
velocities differ by �vT , the curvature would be reduced by a
factor ∼Z/(�vT /vT ).

The mechanism discussed in this paper should be quite
general, applicable to other systems so long as the pseudospin
has spin and orbital degrees of freedom entangled [29] with
the lowest multiplets not fully filled and not an orbital sin-
glet, with energy well separated from the higher-energy ones,
when the phonon frequencies lie within the suitable interval
between these gaps. Details will differ according to the precise
symmetry, and the simple vector relation Eq. (4) between the
rotational matrix and the pseudospin Pauli matrices may not
hold for lower symmetries. The proportionality factor r will
differ from our value given, etc.; but otherwise, the induced
phase factors, mixing between phonon branches, and effective
Lorentz forces will remain.

Our mechanism would also be relevant for magnetically
ordered systems. In this case, the coupling between the pseu-
dospins that have been ignored so far must be considered, and
our phonon-pseudospin coupling would appear as a phonon-
magnon coupling. There are already quite a number of papers
dealing with phonon-magnon couplings [46,47] with interest-
ing predictions. Furthermore, mechanisms of inducing Berry
curvature and chirality in the coupled phonon-magnon modes
have also been proposed (e.g., Ref. [46]). However, our mech-
anism is of a qualitatively different nature, as it arises from
the Berry phase generated from a time-dependent frame of
reference of the pseudospin due to the sound mode. Instead,
the mechanisms in Refs. [46,47] ultimately are both based
on the modifications of the spin-spin interactions due to
the phonons, with spin-orbital coupling arising from dipole-
dipole interactions or magnetic anisotropy energies (see also
other theoretical works [48,49] for α-RuCl3). To what extent
our present mechanism will be important for magnetically
ordered systems remains to be investigated.

ACKNOWLEDGMENTS

This paper is supported by the National Science and
Technology Council, Taiwan, under Grant No. MOST 110-
2112-M-001-051-MY3.

APPENDIX

Here, we summarize some of the equations from Ref. [40]
(hereafter MSM) and the supplemental materials of Ref. [41]
(CKS-SM) that we have used in text. To simplify our nota-
tions, we shall drop labels corresponding to the components,
different eigenvalues, etc.

APPENDIX A: EIGENVECTORS

After Fourier transform into wave vector 	q space, ξ	q and
�

†
	q = �−	q satisfy the commutation relation:

[
ξ	q,�

†
	q
]

= ih̄. (A1)

Hence,

β	q = 1√
2

(
ξ	q + i�	q

)
,

β
†
−	q = 1√

2

(
ξ	q − i�	q

)
(A2)

define a set of annihilation and creation operators. Let γ	q, γ
†
−	q

be instead the operators that actually diagonalize the bosonic
Hamiltonian, and define the transformation matrix between γ	q
and β	q as T −1 [c.f. MSM (6)], i.e.,(

γ	q
γ

†
−	q

)
= T −1

(
β	q
β

†
−	q

)
, (A3)

which can also be rewritten as [c.f. CKS-SM (11)](
γ	q
γ

†
−	q

)
= M

(
ξ	q
�	q

)
, (A4)
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with, thus,

T −1 = M√
2

(
1 1
−i i

)
. (A5)

Here, T satisfies [MSM (10)]:

T
(

1 0
0 −1

)
T † =

(
1 0
0 −1

)
, (A6)

and hence also the same equation with T replaced by T −1.
Equation (A5) then shows that

iM
(

0 1
−1 0

)
M† =

(
1 0
0 −1

)
, (A7)

thus equivalently CKS-SM (7).
Since we write the equation of motion for the operators

ξ	q,�	q in the form Eq. (27) and we have defined (u, v) via
Eq. (29), comparison with CKS-SM (4) and (5) shows that
(u, v) are just the rows of the matrix M. The normalization
condition:

i(	u · 	v∗ − 	v · 	u∗) = 1, (A8)

follows from Eq. (A7).

APPENDIX B: BERRY CURVATURE

The Berry curvature for a given band n is given in MSM
Eq. (34):

�B, j = iε jkl

[(
1 0
0 −1

)
∂T †

∂qk

(
1 0
0 −1

)
∂T
∂ql

]
nn

. (B1)

Equation (A7) implies that(
1 0
0 −1

)
T †

(
1 0
0 −1

)
= M√

2

(
1 1
−i i

)
. (B2)

Substituting this into Eq. (B1), we get

�B, j = ε jkl

[
∂M
∂qk

(
0 −1
1 0

)
∂M†

∂ql

(
1 0
0 −1

)]
nn

. (B3)

Using that the rows of M are (	u, 	v), we obtain the Berry
curvature:

�B, j = −ε jkl

(
∂ 	u
∂qk

· ∂	v∗

∂ql
− ∂	v

∂qk
· ∂ 	u∗

∂ql

)
. (B4)

Note that the right-hand side of this equation is real [50].
The Berry curvature can easily be evaluated using Eq. (B4).

We display some formulas for the transverse modes, where
	u = uθ θ̂ + uφφ̂, 	v = vθ θ̂ + vφφ̂, with uθ ,.. vφ depending only
on q, θ but not φ:

	�B · q̂ = − 2

q2
Re

{(
uθv

∗
φ − uφv∗

θ

)

+ cos θ

sin θ

[
− ∂

∂θ

(
uθv

∗
φ

) + ∂

∂θ

(
uφv∗

θ

)]}
,

(B5)

	�B · θ̂ = −2 cos θ

q sin θ
Re

[
∂

∂q

(
uθv

∗
φ − uφv∗

θ

)]
, (B6)

	�B · φ̂ = −2

q
Re

[
∂uθ

∂q

∂v∗
θ

∂θ
+ ∂uφ

∂q

∂v∗
φ

∂θ

− ∂uθ

∂θ

∂v∗
θ

∂q
+ ∂uφ

∂θ

∂v∗
φ

∂q

]
. (B7)

In Eqs. (B5)–(B7), we have dropped the subscripts q of θq to
simplify the notation.
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