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Non-Hermitian parent Hamiltonian from a generalized quantum covariance matrix
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Quantum inverse problem is defined as how to determine a local Hamiltonian from a single eigenstate. This
question is valid not only in Hermitian system but also in non-Hermitian system. So far, most attempts are
limited to Hermitian systems, while the possible non-Hermitian solution remains outstanding. In this work, we
generalize the quantum covariance matrix method to the cases that are applicable to non-Hermitian systems,
through which we are able to explicitly reconstruct the non-Hermitian parent Hamiltonian from an arbitrary pair
of biorthogonal eigenstates. As concrete examples, we successfully apply our approach in spin chain with Lee-
Yang singularity and a non-Hermitian interacting fermion model. Some generalization and further application of
our approach are also discussed. Our work provides a systematical and efficient way to construct non-Hermitian
Hamiltonian from a single pair of biorthogonal eigenstates and shed light on future exploration on non-Hermitian
physics.
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I. INTRODUCTION

Traditionally, to extract the physical properties of a pre-
scribed Hamiltonian, one has to solve its eigenstates or
wave functions. However, the solving process could be par-
ticularly difficult or computationally demanding. Then it is
natural to propose some ansatz trial wave functions to explore
the underlying physics for strongly correlated systems. This
wave-function-based approach has been widely used, with
famous examples including resonating-valence-bond (RVB)
states for spin liquids [1], projected BCS wave function
for high-temperature superconductivity [2], Gutzwiller wave
function for the Haldane-Shastry model [3,4], and Laughlin
states for fractional quantum Hall liquids [5]. Based on these
trial wave functions, one could proceed to construct their
model Hamiltonians inversely. This inverse problem (con-
structing parent Hamiltonians) is intriguing to explore a series
of models possessing identical physical properties (e.g., with
the same or equivalent ground-state wave function). More-
over, from the perspective of experiment, a crucial question is
how to effectively design an experimentally accessible model
Hamiltonian implementing desired exotic states [6–11]. All of
these questions inspire a systematical approach to search and
reconstruct parent Hamiltonians from given eigenstates.

Recently, great efforts have been put into quantum in-
verse problem for Hermitian local Hamiltonian and several
theoretical proposals have been presented based on quan-
tum covariance matrix (QCM) [12–16], local measurement
[17–25], and entanglement tools [26,27]. Subsequent research
tested these methods for Laughlin, Moore-Read Pfaffian and
Read-Rezayi states [28–30], Jastrow-Gutzwiller wave func-
tions [31], convolutional neural network (CNN) and restricted
Boltzmann machine (RBM) states [32]. These approaches
were further generalized to various scenarios [33–41] and

applied to resolve conserved quantities [13,42] and entangle-
ment structure [43–45]. Also see some relevant advancement
on Hamiltonian tomography in Refs. [46–58].

The Hermiticity of Hamiltonian is traced to the conser-
vation of probability within an isolated system and the real
valuedness of energy linked to a quantum state [59]. How-
ever, non-Hermitian Hamiltonians could be formulated to
model physical phenomena violating this principle, such as
open quantum systems [60–64], process of wave propaga-
tion with gain and loss [65–68], quasiparticles with finite
lifetimes [69–71], certain statistical mechanical models [72],
and nonunitary quantum field theory [73–77]. So far, the
quantum inverse problem has been rarely investigated for
non-Hermitian Hamiltonians. Very recently an algorithm to
reconstruct non-Hermitian parent Hamiltonian from left and
right ground state represented as matrix product state (MPS)
has been studied in Refs. [78,79].

In this work, we describe a numerical scheme to obtain
the non-Hermitian local parent Hamiltonians from a single
pair of biorthogonal left and right eigenstates through gen-
eralized quantum covariance matrix. We choose a set of local
operators basis {Ôi} and approximate the parent Hamiltonian
by Ĥ (ω) = ∑

i ωiÔi. Through the construction of general-
ized quantum covariance matrix C, the condition demanding
the given states to be a pair of biorthogonal eigenstates of
Ĥ (ω) is equivalent to demanding {ωi} to be the null space
of C. For Hermitian systems, our definition of generalized
quantum covariance matrix could be reduced to usual QCM,
which were studied extensively in existing literature [12–14].
To demonstrate the validity of our approach, we numerically
reconstruct the non-Hermitian Hamiltonian for Lee-Yang spin
chain and a fermion interacting model from a single pair of left
and right eigenstates (either ground state or any excited state)
obtained through exact diagonalization (ED). The numerical
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results match the expected Hamiltonian with high accuracy.
Then we discuss how to generalize our method to tackle three
relevant problems in non-Hermitian systems: (i) finding novel
model with given eigenstate in an enlarged Hilbert space; (ii)
constructing non-Hermitian parent Hamiltonian for several
degenerate/nondegenerate eigenstates; and (iii) discovering
local conserved quantities for a given non-Hermitian Hamil-
tonian. Our proposal is applicable to general non-Hermitian
local Hamiltonians and has potential application in various
area of non-Hermitian physics.

II. METHOD

We begin this section with a review of the covariance
matrix method introduced in quantum inverse problem. Given
a single eigenstate |v〉, the quantum inverse problem seeks
to find a Hermitian Hamiltonian Ĥ = Ĥ† with |v〉 as its
eigenstate Ĥ |v〉 = λ|v〉 (unnecessarily to be its ground state).
However, without imposing any constraint, such as locality,
into the parent Hamiltonian, the solution space is infinite di-
mension, since any set of orthogonal and complete basis {|vi〉}
within the tangent space of |v〉 could be used to construct
Ĥ = λ|v〉〈v| + ∑

λi|vi〉〈vi| satisfying the above requirement,
while most results are unphysical. Interestingly, it has been
shown that the dimension of solution space is largely sup-
pressed for local Hamiltonians, and the parent Hamiltonian
could be uniquely identified for generic cases [13].

First, we need to clarify the meaning of locality here. A
general quantum systems is defined in the Hilbert space H =⊗

Hi, which has a tensor-product structure of Hilbert space
Hi associated with each site i. A range-k local operator is
defined as an operator acting within k contiguous sites. Then a
local Hamiltonian could be decomposed into a sum of several
range-k local operators Ĥ = ∑

i ĥi. Given this structure, we
could approximate our desired Hamiltonian Ĥ by Ĥ (ω) =∑

i ωiÔi, where {Oi} is a set of range-k local Hermitian op-
erator basis with {ωi} their coefficients. The Hermiticity of Ĥ
ensures {ωi} to be a set of real numbers. Generally speaking,
Ôi are chosen from physically meaningful operators among
all range-k local operators. Now the problem of reconstructing
the parent Hamiltonian is transformed into finding the corre-
sponding coefficient set {ωi} that fulfills Ĥ (ω)|v〉 = λ|v〉.

The pivotal tool to solve the coefficients {ωi} is the con-
struction of QCM [12–14] defined as

Cv
i j = 1

2 〈v|{Ôi, Ô j}|v〉 − 〈v|Ôi|v〉〈v|Ô j |v〉, (1)

where {Â, B̂} = ÂB̂ + B̂Â is anticommutator. Obviously, the
QCM C is a Hermitian and positive-semidefinite matrix and
it could be used to extract the energy variance σ 2

v of the
eigenstate |v〉 for the Hamiltonian Ĥ (ω)

σ 2
v = 〈Ĥ2(ω)〉v − 〈Ĥ (ω)〉2

v =
∑
i, j

ωiC
v
i jω j � 0. (2)

It has been verified that |v〉 is an eigenstate of Ĥ (ω̃) if and only
if

∑
j Ci jω̃ j = 0 for any i. In other words, the solution space

of the quantum inverse problem is the null space of QCM C.

There are three possibilities for the null space of the QCM.
(i) C has empty null space, which means none of operators
defined in this space spanned by {Ôi} has |vi〉 as its eigenstate.
(ii) C has a one-dimensional null space, then the vector ω̃ in
this space gives the unique reconstructed Hamiltonian Ĥ (ω̃).
Principally, Ĥ (ω̃) is just guaranted to be a function of Ĥ .
However, the locality of both ensures that they equal to each
other up to an overall prefactor in most cases [43]. (iii) C has
multidimensional null spaces. Then any linear combination
of vectors within these null spaces gives a Hamiltonian with
eigenstate |v〉. For example, if the original Hamiltonian has
some internal symmetry described by Ŝ, then any eigenstate
of Ĥ must be the eigenstate of operator Ŝ. Assuming Ŝ is also
a sum of local operators lying in the operator space spanned
by {Ôi}, then any operators of the form c1Ĥ + c2Ŝ could be
represented as

∑
i ωiÔi. In general cases, other eigenstates

besides |v〉 will be changed with different choice of fi, this
opens up an avenue to find novel Hamiltonian with identical
eigenstate.

Now, we are ready to generalize the above methods into
non-Hermitian cases. Consider a generic diagonalizable non-
Hermitian Hamiltonian Ĥ = ∑

i εi|Ri〉〈Li|, with |Ri〉 (|Li〉)
its right (left) eigenstate such that Ĥ |Ri〉 = εi|Ri〉 (Ĥ†|Li〉 =
ε∗

i |Li〉). The biorthogonal eigenstates satisfy the following
orthogonal and complete relations [80]:

〈Li|Rj〉 = δi j∑
i

|Ri〉〈Li| = 1. (3)

The non-Hermitian quantum inverse problem aims to deter-
mine the non-Hermitian local parent Hamiltonian given a
single pair of biorthogonal eigenstates |R〉 and 〈L| such that
Ĥ |R〉 = ε|R〉 and Ĥ†|L〉 = ε∗|L〉. Additionally we normalize
these two given states as 〈L|R〉 = 1, which is always possible
through a redefinition |R〉 → |R〉/〈L|R〉.

Similar to the Hermitian case, we first choose a set of
range-k local opeartors as basis operators {Ôi} and construct
all ansatz Hamiltonians through Ĥ (ω) = ∑

i ωiÔi. Note that
although Ĥ is non-Hermitian, {Ôi} can still be chosen from
Hermitian operators since all non-Hermitian operator could
be decomposed into linear combination of Hermitian opera-
tors with complex coefficients [Ĥ = (Ĥ + Ĥ†)/2 − i · i(Ĥ −
Ĥ†)/2]. However, we will not restrict our basis operators into
Hermitian operators in the following discussion for later con-
venience. Next, we construct generalized quantum covariance
matrix as

CLR
i j = 〈R|Ô†

j (1 − |L〉〈R|)(1 − |R〉〈L|)Ôi|R〉
2〈R|R〉

+ 〈L|Ôi(1 − |R〉〈L|)(1 − |L〉〈R|)Ô†
j |L〉

2〈L|L〉 . (4)

Although Ô is non-Hermitian, the generalized quantum
covariance matrix CLR is still Hermitian and positive semidefi-
nite. The expectation value over a coefficient set {ωi} is always
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larger than or equal to 0, i.e.,

σ 2
LR = ωCLRω† =

∑
i, j

ωiC
LR
i j ω∗

j

= 〈R|Ĥ†(ω)(1 − |L〉〈R|)(1 − |R〉〈L|)Ĥ (ω)|R〉
2〈R|R〉

+ 〈L|Ĥ (ω)(1 − |R〉〈L|)(1 − |L〉〈R|)Ĥ†(ω)|L〉
2〈L|L〉

� 0. (5)

It could be shown that the eigenvectors ω̃ with zero eigen-
value of CLR ensures |R〉 and |L〉 to be a pair of biorthogonal
eigenstates of Ĥ (ω̃). Parallel to the Hermitian case, the solu-
tion space of required non-Hermitian parent Hamiltonian is
exactly the null space of the generalized quantum covariance
matrix, see Appendix A for further discussion.

For biorthogonal eigenstates of non-Hermitian Hamilto-
nian, the transformation |R〉 → es|R〉 and 〈L| → e−s〈L| leaves
the biorthogonal relation (3) and the generalized quantum
covariance matrix (4) invariant. For Hermitian case, the
biorthogonal eigenstates satisfy 〈L| = (|R〉)†, and we need to
restrict our attention on Hermitian operators basis Ôi = Ô†

i ,
then the generalized quantum covariance matrix (4) becomes
the usual QCM (1) associated with eigenstate |R〉.

Existence and multiplicity of null space. The dimension
of the solution space depends both on the input left and
right eigenstates and the selection of local operator set. If
the original non-Hermitian Hamiltonian could be expanded by
chosen operators as Ĥ = ∑

i ωiÔi, then it is easily verified the
vector {ωi} corresponds to an eigenstate of QCM (4) with null
eigenvalue. In other words, the established QCM has at least
one-dimensional null space. Under the same circumstance, the
uniqueness of solution could not be guaranteed. Within the
space spanned by all chosen operators, there might exist other
Hamiltonian or some underlying symmetry operators of the
original model that also have the input wave function as its
biorthogonal eigenstates, similar to the Hermitian case [12].
This case could happen even if the operator basis consists
only of terms appearing in the original Hamiltonian. We will
see an example in III B, where the U (1) particle number
conservation operator could also be expanded by the operator
basis, resulting in a two-dimensional null space. Nevertheless,
any eigenvector in the null space represents a non-Hermitian
parent Hamiltonian that possesses |L〉 and |R〉 as its biorthog-
onal eigenstates.

III. EXAMPLES

In this section, we use two non-Hermitian models to val-
idate our approach. In both cases, we use ED to diagonalize
the original Hamiltonian under different parameters obtaining
their eigenstates. Then we randomly choose a pair of biorthog-
onal eigenstates as input wave functions. The operator bases
are selected based on the consideration of locality. Next, the
generalized quantum covariance matrix is constructed from
the given states and the operator set. Finally, we compute its
null space and compare the Hamiltonian reconstructed with
the original model.

A. Spin chain with Lee-Yang edge singularity

The first example is the non-Hermitian spin chain with
Lee-Yang edge singularity [73,81,82],

HLY = −
N∑

i=1

(
σ x

i + λσ z
i σ z

i+1 + ihzσ
z
i

)
, (6)

where σ x
i and σ z

i are ordinary Pauli matrices on site i. The non-
Hermiticity is introduced through an imaginary longitudinal
field with strength hz added into transverse Ising spin chain. At
the critical point, this microscopic model realizes M2,5 min-
imal model with central charge c = −22/5, which is a typical
nonunitary conformal field theory sharing the same universal-
ity class with Lee-Yang edge singularity [83,84]. This model,
despite non-Hermitian, has a generalized PT symmetry, and
thus the eigenvalues of Hamiltonian Eq. (6) must either be
real, or come in complex conjugate pairs [85]. Next we will
show for both cases our scheme works quite well.

We impose periodic boundary condition into this model
and exact diagonalize the spin chain ĤLY with N = 10 to get
its eigenvalue spectrum and all biorthogonal eigenstates. Then
we randomly choose a pair of the later as input wave function
|R〉 and |L〉.

Since this model consists of interaction between nearest-
neighbor spin − 1

2 degrees of freedom, we could choose our
operator basis among all range-two local spin operators.

{Ô} = {
σ

p
i , σ

p
i σ

q
i+1

∣∣i = 1, 2, · · · N and p, q = x, y, z
}
, (7)

which consists of 3N on-site spin operators and 9N
nearest-neighbor spin-spin interaction operators. Then we nu-
merically compute the (12N × 12N )-dimensional covariance
matrix C from |R〉, |L〉 and {Ô} and diagonalize it subse-
quently.

Under different Hamiltonian parameters and different
choices of eigenstates, the eigenvalue spectrum of C has only
one eigenvalue extremely close to 0 (<10−13) with the second
smallest one much larger (at the order of 10−3), see Fig. 1.
Then the eigenvector associated with this eigenvalue {ω̃i}
predicts a unique parent Hamiltonian as Ĥ (ω̃) = ∑

i ω̃iÔi. In
Fig. 1, we plot the real and imaginary parts of the coefficients
for the original input Hamiltonian {ωi} and for the numerical
results ω1

ω̃1
· {ω̃i} (we multiply the numerical results with an

extra prefactor to ensure both the analytical and numerical
coefficients before σ x

1 are exactly the same). The numerical
coefficients match analytical one in all cases and it is evident
we could faithfully reconstruct the Hamiltonian of Lee-Yang
spin chain from any pair of biorthogonal eigenstates.

In this example, the model is translational invariant. In
fact, we could further simplify the reconstruction process by
restricting the operator basis into translational invariant range-
rwo local operators with preknowledge of this symmetry [12].

{Ô} =
{∑

i

σ
p

i ,
∑

i

σ
p

i σ
q
i+1

∣∣p, q = x, y, z

}
. (8)

With this selection, C is reduced to a (12 × 12)-dimensional
matrix, while the numerical result remains unchanged. In
the next example, we add terms that explicitly break the
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FIG. 1. Numerical result for spin chain with Lee-Yang edge singularity. From top to bottom, we choose λ = 0.5 and hz = 0.3, 0.5, 0.7.
Left: The eigenvalue spectrum of the generalized quantum covariance matrix (we present their absolute values since the lowest one might be
negative due to numerical error). A unique null eigenvalue could be identified in both critical and off-critical regions. Middle and right: The
real and imaginary part of the null eigenvector compared with the coefficients for original Hamiltonian parameters. Note that we multiply the
numerical result with a constant in each case.

translational invariance, and all local operators must be in-
cluded into the operator basis set individually.

In Ref. [13], the author performs the Hamiltonian recon-
struction from a single eigenstate of a random Hermitian spin
chains from the same operator basis (7). This leads to an equal
dimensional QCM as non-Hermitian case at the same size
L. The difference is encoded in the eigenvector of the null
eigenvalue. Since this operator basis consists of Hermitian
operators, their null space includes only real vectors. While
complex vectors are inevitable for non-Hermitian model (6).

B. Non-Hermitian interacting fermion model

Next, we consider a spinless fermion model with nearest-
neighbor interaction [86]

Ĥf =
N∑

i=1

[−J (e+gĉ†
i ĉi+1 + e−gĉ†

i+1ĉi ) + Un̂in̂i+1 + hin̂i], (9)

where ĉ†
i , ĉi, and n̂i = ĉ†

i ĉi are creation, annihilation, and
fermion number operators on site i, respectively. J , U , and
hi represent hopping amplitude, interacting strength between
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nearest-neighbor fermions and on-site potential. The non-
Hermiticity of this model is introduced through g, which
quantify the difference between left- and right-direction hop-
ping process and the Hamiltonian becomes Hermitian when
g = 0.

We diagonalize this model with total site N = 10 and
filling number N/2 for different Hamiltonian parameters and
four types of on-site potential: (i) zero on-site energy hi =
0, (ii) staggered on-site potential hi = (−1)i · h, (iii) biased
on-site potential hi = i · h, and (iv) random on-site potential
hi ∈ [−h, h]. Then we randomly pick a pair of left and right
eigenstates as input wave functions to perform the reconstruc-
tion.

This model is also range-two local and we could choose
the operator basis from all range-two local fermion operators.

{Ô} = {ĉ†
i ĉi, ĉ†

i ĉi+1, ĉ†
i+1ĉi, n̂in̂i+1|i = 1, 2, · · · N}, (10)

which span a 4N-dimensional operator space. Then we nu-
merically diagonalize the 4N × 4N-dimensional generalized
quantum covariance matrix C constructed from |R〉, |L〉,
and {Ô}.

For the operator basis considered in (10), we find the
eigenvalue spectrum of C always has two eigenvalues close
to 0 (<10−13) with the third smallest one of order 10−3 in
different cases we considered, indicating the existence of a
two-dimensional null space for C, see Fig. 2. It could be
verified numerically that both eigenvectors correspond to a
Hamiltonian of the form: Ĥ (ω) = a1Ĥf + a2N̂ , with different
coefficients a1 and a2. Thus the null space spanned by this two
eigenvectors is exactly the linear space spanned by the original
Hamiltonian Ĥf and the U (1) symmetry operator N̂ = ∑

i ĉ†
i ĉi

(which accounts for the conservation of particle number). See
Fig. 2 for comparison.

Another interesting question is whether the reconstruction
method is stable under small perturbation of input wave func-
tions. We discuss the sensitivity and present numerical result
within this model in Appendix B.

IV. GENERALIZATION AND OTHER APPLICATIONS

In this section, we discuss how to generalize our ap-
proach to solve other relevant problems in non-Hermitian
systems. In addition, the general formalism for reconstructing

non-Hermitian Hamiltonian using homogeneous operator
equations is also presented in Appendix C.

A. Phase expansion of given eigenstates

In the examples discussed above, we are able to recon-
struct the unique parent Hamiltonian from a single pair of
orthogonal eigenstates. However, this will not always be the
case. A multidimensional Hamiltonian space could exist if
we add more and more operators (such as higher-range local
operators) into the basis set to enlarge the operator space.
In general, any vector in the null space of the generalized
quantum covariance matrix corresponds to a parent Hamilto-
nian with given states as its biorthogonal eigenstate. Thus it
is possible to find novel non-Hermitian Hamiltonians sharing
common eigenstates through our approach.

It will be more interesting to discover novel non-Hermitian
Hamiltonian with given ground states. This can be achieved
through a careful treatment of finding the ground-state man-
ifold within the solution space, similar to the discussion in
Hermitian cases [12].

B. Generalizing to a set of biorthogonal eigenstates

In this formulation, one tries to find a non-Hermitian
parent Hamiltonian with a set of biorthogonal eigenstates
{〈Li|, |Ri〉|i = 1, 2, · · · , d}. We could solve this problem with
modified quantum covariance matrix depending on the re-
quirement of degeneracy.

Nondegenerate biorthogonal eigenstates. If we do not de-
mand these states to be degenerate for the parent Hamiltonian,
the solution space will be the null space of the following
covariance matrix:

CND =
d∑

i=1

piC
LiRi , (11)

where CLiRi is the covariance matrix (4) constructed from
|Li〉, |Ri〉 and the operator basis {Ô}. {pi} is an arbitary set of
postive numbers, whose choice will not change the null space
of C.

Degenerate biorthogonal eigenstates. If we require these
states having common eigenvalue for the parent Hamiltonian,
the solution space could be transformed into the null space of
following covariance matrix:

CD
i j =

d∑
n=1

〈Rn|(Ô†
j − ∑

m1 pm1〈Rm1|Ô†
j |Lm1〉)(Ôi − ∑

m2 pm2〈Lm2|Ôi|Rm2〉)|Rn〉
2〈Rn|Rn〉

+
d∑

n=1

〈Ln|(Ôi − ∑
m1 pm1〈Lm1|Ôi|Rm1〉)(Ô†

j − ∑
m2 pm2〈Rm2|Ô†

j |Lm2〉)|Ln〉
2〈Ln|Ln〉 , (12)

where {pm} is a set of real numbers satisfying pm > 0
and

∑
m pm = 1. Similar as the nondegenerate case, the

choice of {pm} has no influence on the null space
of CD.

C. Discovering local conserved quantities
and internal symmetry

It is important to know the internal symmetry for a given
physical systems. Interestingly, the generalized quantum
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FIG. 2. Numerical result for the non-Hermitian interacting fermion model. The parameters are chosen as J = 1, g = 0.15, and U = 2.
From top to bottom, we choose (i) hi = 0, (ii) hi = (−1)i ∗ 0.3, (iii) hi = i ∗ 0.2, and (iv) hi ∈ [−1, 1]. Left: The eigenvalue spectrum of the
generalized quantum covariance matrix (we present their absolute values since the lowest one might be negative due to numerical error). Two
null eigenvalues could be identified in all cases. Middle and right: The two lowest eigenvector compared with the coefficients for original
Hamiltonian parameters. We found the numerical results could always be represented by Ĥ (ω) = a1Ĥf + a2N̂ .
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covariance matrix we proposed in this work provides a resolu-
tion to discover local conserved quantities for non-Hermitian
systems. Starting from a non-Hermitian Hamiltonian Ĥ �=
Ĥ†, we numerically or analytically compute some of its
biorthogonal eigenstates {〈Li|, |Ri〉|i = 1, 2, · · · , d}. If Ĥ has
some unknown symmetry corresponding to local conserved
operators {Ŝi}, they must share all biorthogonal eigenstates
(though the eigenvalues might be different). According to
the results above, each operator Ŝi must be in the null space
of (11), which guarantees all input states are simultaneous
eigenstates for any operator represented in this space. Here,
the operator bases are chosen from possible local symmetry
operators. Principally, d should be large enough to ensure the
null space shrinks to the space spanned only by symmetry
operators, while a few number of eigenstates are capable
to produce the desired solution space practically [13]. See
a discussion on detecting symmetry operators in Hermitian
systems from QCM in Refs. [42,87] and constructing parent
Hamiltonian with specific symmetry in Ref. [88].

V. DISCUSSION

In summary, we propose a systematical scheme to
reconstruct the non-Hermitian local Hamiltonian from a
single pair of biorthogonal eigenstates using generalized
quantum covariance matrix. This method is inherited from the
quantum covariance matrix in Hermitian systems. We apply
our method in spin chain with Lee-Yang edge singularity and
a non-Hermitian interacting fermion model. The numerical
results accurately reproduce the input parent Hamiltonian
in both cases. Then we discuss how to extend current
approach for further application, including phase expansion,
reconstruction for nondegenerate/degenerate biorthogonal
eigenstates, and detecting local conserved quantities in
non-Hermitian systems.

Our proposal answers non-Hermitian quantum inverse
problem in a general sense and opens up several new
directions of exploring non-Hermitian physics guided by
biorthogonal eigenstates. We believe that more novel and
meaningful non-Hermitian Hamiltonians could be established
and some underlying symmetry could be revealed through our
approach. Besides, it will be interesting to reconstruct local
entanglement Hamiltonian in non-Hermitian systems using
our methods and discover conserved quantities associated
with it, in parallel to the work in Hermitian systems [43,89].

From numerical perspective, our scalable recipe paves the
way for future studies of non-Hermitian inverse problem using
matrix product state, tensor network, and other computational
methods available to the higher dimensions. The potential
of generalized quantum covariance matrix should remain
accessible at moderate system sizes.

From the experimental side, our work offers a straightfor-
ward way to search desired non-Hermitian parent Hamiltonian
from controllable interaction. We anticipate it will be mean-
ingful and helpful for the design of non-Hermitian models for
experimentalists.
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APPENDIX A: SOME PROOF OF THE GENERALIZED
QUANTUM COVARIANCE MATRIX

1. Deriving the generalized quantum covariance matrix

For a generic non-Hermitian Hamiltonian, we may assume
it takes the following form:

Ĥ =
∑

i

ωiÔi (A1)

{Ôi} is a set of local operators. Given a pair of biorthogonal
eigenstates (〈L0|, |R0〉), the parent Hamiltonian satisfies:

Ĥ |R0〉 = ε0|R0〉
Ĥ†|L0〉 = ε∗

0 |L0〉.
(A2)

Or equivalently,

(1 − |R0〉〈L0|)Ĥ |R0〉 = 0

(1 − |L0〉〈R0|)Ĥ†|L0〉 = 0
(A3)

we have taken normalized eigenstates 〈L0|R0〉 = 1.
Denote |ψi〉 = (1 − |R0〉〈L0|)Ôi|R0〉 and |φ j〉 = (1 − |L0〉
〈R0|)Ô†

j |L0〉. Next we may construct Ci j = 〈ψ j |ψi〉/2
〈R0|R0〉 + 〈φi|φ j〉/2〈L0|L0〉. Then (A3) could be rewritten as∑

i

ωiCi j = 0 (for any j)

∑
j

Ci jω
∗
j = 0 (for any i).

(A4)

It is easy to show that C is a Hermitian matrix, thus the above
two equations are equvalent. To conclude, we only need to
find the null space of the generalized quantum covariance
matrix C to obtain the non-Hermitian parent Hamiltonian
Ĥ = ∑

i ωiÔi with |L0〉 and |R0〉 as a pair of its biorthogonal
eigenstates.

2. Generalizing to multibiorthogonal eigenstates

In the main text, we discuss the reconstruction process for
a set of biorthogonal eigenstates {〈Li|, |Ri〉|i = 1, 2, · · · , d}.
Without any requirement on degeneracy, we construct the
covariance matrix CLiRi associated each pair of biorthogonal
eigenstates from (4) and sum them together with an arbitrary
set of positive prefactors. Since each CLiRi is semipositive
definite, the null space of (11) is the null space correspond-
ing to each biorthogonal eigenstates simultaneously. Thus
the solution space ensures all input wave functions to be its
eigenstates.

For degenerate case, we first note the null space of (12)
ensures all |Li〉 and |Ri〉 to be its left and right eigen-
states with corresponding eigenvalue εi. Next, it also fulfills
(εn − ∑

m pmεm) = 0 for any n (we have used 〈Li|Rj〉 = δi j).
The only possibility is ε1 = ε2 = · · · = εd . Thus we could
establish parent Hamiltonian with degenerate biorthogonal
eigenstates from (12).
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FIG. 3. The blue dots denote reconstruction errors (B3) numer-
ically calculated with 0.01 � ε � 0.1. The continuous curve is the
linear fitting function y = 0.7029ε.

APPENDIX B: RECONSTRUCTION FROM
BIORTHOGONAL EIGENSTATES WITH ERROR

If the input wave function has some error with respect to
real wave function, the output parent Hamiltonian will also
deviate from the original one. For non-Hermitian case, we
may test the stability of Hamiltonian learning from perturbed
biorthogonal eigenstates |Rp〉 ∝ |R〉 + ε|R′〉 and |Lp〉 ∝ |L〉 +
ε|L′〉, where |R〉 and |L〉 are true eigenstates with ε 
 1 is a
character of deviation. Substituting these into the generalized
quantum covariance matrix, we could expand the new covari-
ance matrix by

Cp = C + εC′ + o(ε2). (B1)

Assuming C has a one-dimensional null space, the eigenvector
with minimal eigenvalue of Cp could be solved by standard
nondegenerate perturbation theory in quantum mechanics as

|ωp〉 ∝ |ω1〉 + ε
∑
i �=1

〈ωi|C′|ω1〉
χi − χ1

|ωi〉 + o(ε2) (B2)

with χi and |ωi〉 the ith eigenvalue and eigenvector of C. Thus
the reconstructed operator will only differ at the order of ε

from the true Hamiltonian by Ĥp = Ĥ + εĤ ′. See Ref. [13]
for some further discussion.

We test the reconstruction error in the interacting fermion
model (9). First, we exact diagonalize this Hamiltonian to
get all of its biorthogonal eigenstates {|Ri〉, |Li〉}. Then we
construct the covariance matrix from |Rp〉 = |Rj〉 + ε|R′〉 and
|Lp〉 = |Lj〉 and solve its null space. Note that although only
the right eigenstate is changed, this setup leads to the same
form of the new covariance matrix (B1). To compare the re-
constructed operator with the original Hamiltonian, we define
the error through

error = max

{∣∣∣∣ |ωp〉i − |ω〉i

|ω〉i

∣∣∣∣}, (B3)

where |ω〉 is the analytical coefficient set and |ωp〉 is the
normalized numerical coefficient set computed from (B1). We
show the scaling of error with ε in Fig 3.

APPENDIX C: RECONSTRUCTING NON-HERMITIAN
PARENT HAMILTONIAN USING HOMOGENEOUS

OPERATOR EQUATIONS

A similar scheme has been proposed in Ref. [17] to recover
Hermitian parent Hamiltonian through solving homogeneous
operator equations (HOE). This approach was adopted in
Refs. [33,34] for open quantum systems evolved following
Lindblad master equation. In this section, we present the
formalism for general nonunitary dynamics without and with
jump. In the later case, our routine is equivalent to previous
work.

1. Time-independent case without jump

As a first simple example, we consider a steady state
of nonunitary dynamics without quantum-jump process. For
instance, if |R0〉 is a right eigenstate of certain non-Hermitian
Hamiltonian with real eigenvalue ε0 = ε∗

0 , the reduced den-
sity matrix ρ0 = |R0〉〈R0| remains a steady state for Ĥ [90]
satisfying

i
dρ0

dt
= Hρ0 − ρ0H† = 0. (C1)

Thus the expectation value of any local operator 〈K̂m〉 =
Tr(ρ0K̂m) is invariant under the evolution of Ĥ . This could
be rewritten as

d〈Km〉
dt

= −i〈(KmH − H†Km)〉 = 0. (C2)

Substituting the ansatz Hamiltonian (A1) into the above equa-
tion yields a non-Hermitian version of linear HOE.∑

i

ωi〈(KmOi − O†
i Km)〉 = 0, for ∀m. (C3)

To solve this equation, we split both ωi and the expectation
value into real and imaginary parts as∑

i

(AmiReωi − BmiImωi ) + i
∑

i

(AmiImωi + BmiReωi ) = 0

(C4)

with Ami(Bmi ) standing for the real (imaginary) parts of
〈(KmOi − O†

i Km)〉, respectively. Next we may convert these
equation set into a more compact form through

Gω =
(

A −B
B A

)(
Reω
Imω

)
= 0. (C5)

To recover the non-Hermitian parent Hamiltonian, one may
evaluate all expectation values of 〈(KmOi − O†

i Km)〉 from ρ0

and construct the matrix G. The null space {Reω, Imω} of G
gives a non-Hermitian parent Hamiltonian Ĥ = ∑

i(Reωi +
iImωi )Ôi having ρ0 as one of its steady states. The above
discussion applies for any steady state fulfilling (C1), not
limited on pure state case. However, steady state could be
quite rare for a generic non-Hermitian Hamiltonian.

2. Time-dependent case without jump

For a time-dependent state ρ(t ) (non-normalized) driven
by a non-Hermitian time-dependent Hamiltonian Ĥ (t ), the
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equation of evolution is

i
dρ(t )

dt
= H (t )ρ(t ) − ρ(t )H†(t ). (C6)

This gives the evolution of the expectation value of a general
local operator as

d〈Km〉
dt

= −i〈(KmH (t ) − H†(t )Km)〉 (C7)

with 〈O〉 = Tr(ρ(t )O). Assuming the parent Hamiltonian
could be spanned over a set of local operators as Ĥ (t ) =∑

i ωi(t )Ôi, we obtain the non-Hermitian time-dependent
HOE∑

i

ωi(t )〈(KmOi − O†
i Km)〉 = i

d〈Km〉
dt

, for ∀m. (C8)

Denote ξm(t ) = id〈Km〉/dt , we could transform these equa-
tion set into

G(t )ω(t ) =
(

A(t ) −B(t )
B(t ) A(t )

)(
Reω(t )
Imω(t )

)
=

(
Reξ (t )
Imξ (t )

)
,

(C9)
where Ami(t ) = Re〈(KmOi − O†

i Km)〉 and Bmi(t ) = Im
〈(KmOi − O†

i Km)〉.
At a given time t , one can compute all neccessary

expectation value to construct (C9). Solving this matrix
equation reproduce the instantaneous non-Hermitian parent
Hamiltonian Ĥ (t ) = ∑

i[Reωi(t ) + iImωi(t )]Ôi.

3. Time-dependent case with jump

At the presence of jump process, the evolution of a
density matrix should be described by Lindblad master

equation [91,92]

i
dρ(t )

dt
= H (t )ρ(t ) − ρ(t )H†(t ) + i

∑
j

L jρ(t )L†
j , (C10)

where Lj are the jump operators. Considering the locality of
H and L, we may expand them by Ĥ (t ) = ∑

i ωi(t )Ôi and
L̂ j = ∑

k l jk Ŝk , where {Ŝk|k = 1, · · · , K} consists of possible
local operator basis for jump operator. Then the evolution of
the expectation value for a local operator K̂m becomes

i
d〈Km〉

dt
= 〈(KmH (t ) − H†(t )Km)〉 + i

∑
j

〈L†
j KmLj〉

=
∑

i

ωi(t )〈(KmOi − O†
i Km)〉

+ i
∑
jk1k2

l∗
jk1

l jk2〈L†
k1

KmLk2〉

= Reξm(t ) + iImξm(t ).

(C11)

If we rewrite Ĥ (t ) = ĤHer + i
∑

j L†
j L j (ĤHer is a Hermitian

Hamiltonian), the above equation is the same as the case
studied in Ref. [33].

Denote cp = ∑
j l∗

jk1
l jk2 (p = k1 ∗ K + k2) and Cmp/Dmp

= Re/Im(i〈L†
k1

KmLk2〉) with index p ranges from 1 to K2. The
above equation could be reorganized into

(
A(t ) −B(t ) C −D
B(t ) A(t ) D C

)⎛⎜⎜⎝
Reω(t )
Imω(t )

Rec
Imc

⎞⎟⎟⎠ =
(

Reξ (t )
Imξ (t )

)
.

(C12)

Solving this equation we could get the time-dependent
Hamiltonian Ĥ (t ).
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