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We revisit the ground state of the Hubbard model on two-legged ladders in this paper. We perform density
matrix renormalization group (DMRG) calculations on large system sizes with large numbers of kept states
and perform extrapolation of DMRG results with truncation errors in the converged region. We find that the
superconducting correlation exponent Ksc extracted from the pair-pair correlation is very sensitive to the position
of the reference bond, reflecting a huge boundary effect on it. By systematically removing the effects from
boundary conditions, finite sizes, and truncation errors in DMRG, we obtain more accurate values of Ksc and Kρ

with DMRG. With these exponents, we confirm that the two-legged Hubbard model is in the Luther-Emery liquid
phase with Ksc · Kρ = 1 from tiny doping near half filling to 1/8 hole doping. When the doping is increased to
δ � 1/6, the behaviors of charge, pairing, and spin correlations do not change qualitatively, but the relationship
Ksc · Kρ = 1 is likely to be violated. With the further increase of the doping to δ = 1/3, the quasi-long-ranged
charge correlation turns into a true long-ranged charge order, and the spin gap is closed, while the pair-pair
correlation still decays algebraically. Our work provides a standard way to analyze the correlation functions
when studying systems with open boundary conditions.
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I. INTRODUCTION

The Hubbard model [1–3] is the prototype lattice model
of interacting fermions and plays a paradigmatic role in
correlated electron physics [4]. The connection of the two-
dimensional Hubbard model and the related t-J model to
cuprate superconductors has been debated [5–14] ever since
the discovery of the first cuprate superconductor [15]. Because
there is no rigorous analytic solution to the Hubbard model be-
yond one dimension [16], most studies of it rely on numerical
methods [17].

Quasi-one-dimensional systems, such as two-legged Hub-
bard ladders, have been extensively studied [18–23]. On
the one hand, the correlations in the two-legged Hubbard
model can be taken as the precursor to the possible su-
perconducting and charge density wave (CDW) instabilities
in two-dimensional systems. On the other hand, two-legged
systems can be accurately solved using the density matrix
renormalization group (DMRG) [24–26]. Early analytic and
numerical works [18–20] demonstrate that slightly doped
ladders can be categorized into the Luther-Emery liquid
phase [27,28], which promises a single gapless charge mode
and a gapped spin mode (labeled as C1S0 in the literature
[19,29,30]).

The Luther-Emery liquid phase is characterized by the al-
gebraic decay of both charge (with exponent Kρ) and pair-pair
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correlations (with exponent Ksc). Moreover, the exponents are
related and satisfy the relationship Ksc · Kρ = 1 [27,29,30].
Numerically, whether the relationship Ksc · Kρ = 1 holds has
been debated, with both affirmative [29] and negative [31,32]
results. Kρ can be usually extracted from the Friedel oscilla-
tions [33] in a system with open boundaries. The difficulty of
obtaining a reliable Ksc lies in the subtlety in the extraction
of the exponent Ksc from the pair-pair correlation function,
which usually oscillates with distance under the influence of
the modulation of charge density [29,31,32]. In the strong-
coupling limit of the t-J model with hole doping δ −→ 0,
bosonization calculation yields Ksc = 1/2 [34,35]. Previous
DMRG calculations found the decay of the superconducting
correlation function to be much faster than 1/Kρ at small
doping, hence violating the relationship Ksc · Kρ = 1 [31,32].
However, later results [29] found that the relationship of the
exponents holds. Therefore it is natural to ask to what degree,
e.g., doping levels, the relationship of the exponents holds in
the two-legged Hubbard model.

In this paper, we revisit the ground state of the two-legged
Hubbard model. We study dopings ranging from 1/16 to
as large as 1/3, trying to figure out the boundary of the
Luther-Emery liquid phase by examining the behaviors of
charge, spin, and pair-pair correlations. We focus on the issue
of whether the relationship Ksc · Kρ = 1 holds. We employ
DMRG in this paper, which can provide extremely accurate
results for ladder systems nowadays with the increase in com-
putational power. We push the bond dimension to a value as
large as 9500 (with truncation error of the order of 10−7) to
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TABLE I. Summary of the extracted exponents and correlation
lengths. Kρ and Ksc are the exponents for the algebraic decay of
charge density and pair-pair correlations. ξs and ξG are the correlation
lengths for the spin correlation (local magnetization) and single-
particle Green’s function. Quantities not listed in the table are ill
defined.

achieve a high level of accuracy for the Hubbard model on
ladders [29,31,32]. More importantly, we study large system
sizes and make sure the extracted exponents are free from the
finite-size effect. We also vary the position of the reference
bond in the calculation of pair-pair correlation functions to
get rid of the effect of open boundaries, which turn out to
have a huge impact on the extracted exponent Ksc (the error
caused by the open boundaries could be as large as 50%, as
will be shown in the discussion of results). With this careful
treatment of the effects of boundary conditions, finite sizes,
and truncation error in DMRG calculations, we obtain more
accurate values of Kρ and Ksc with which we can resolve the
previous controversy as to whether the relationship Ksc · Kρ =
1 holds and determine the precise phase boundary of the
Luther-Emery liquid phase.

The main results are summarized in Table I. We focus on
the strongly correlated region with U/t = 8. From tiny doping
near half filling to δ = 1/8, the two-legged Hubbard model is
found to be in the Luther-Emery liquid phase with algebraic
decay of pair-pair and charge correlations and exponential
decay of the spin correlation. The exponents of charge and
pairing correlations also satisfy the relationship Ksc · Kρ = 1.
In this region, Ksc < Kρ , which means that the superconduct-
ing correlation is the dominant correlation. The increase of the
hole doping tends to suppress the pairing correlations and con-
sequently enhances the charge correlation. When the doping is
increased to 1/6, the characterization of charge, pairing, and
spin correlations does not change qualitatively, but the expo-
nents of the superconducting and charge correlations seem to
violate the Ksc · Kρ = 1 relationship. The system also switches
to a charge-correlation-dominant phase with Kρ < Ksc. When
the doping level is increased further, i.e., for δ = 1/4 and 1/3,
Kρ becomes ill defined, and the charge correlation is likely to
be long ranged. The spin gap is closed at 1/3 doping, but the
algebraic decay of pair-pair correlation functions remains.

We notice that the Kρ values in Table I are consistent with
recent results obtained from infinite-system matrix product
states [36].

The remainder of this paper is organized as follows. In
Sec. II we introduce the Hubbard model and discuss the
calculation details. We then provide results for different dop-
ing levels in Sec. III. We show the long-distance behaviors
of the pairing, charge, spin, and single-particle correlations.

We extract the exponents and correlation lengths from them
by carefully analyzing the effects from boundary conditions,
finite sizes, and truncation error in DMRG calculations. We
finally summarize this work in Sec. IV.

II. MODEL AND METHODOLOGY

The Hamiltonian of the Hubbard model is

Ĥ = −
∑

〈i, j〉,σ
ti j (ĉ

†
iσ ĉ jσ + H.c.) + U

∑

i

n̂i↑n̂i↓, (1)

where ĉ†
iσ (ĉ jσ ) creates (annihilates) an electron at site i =

(xi, yi ) with spin σ and U represents the on-site Coulomb in-
teraction. We only consider nearest hopping t and set U = 8t .
n̂i = ∑

σ ĉ†
iσ ĉiσ is the electron number operator.

We focus on ladders with width Ly ≡ 2 and length Lx;
so there are in total N = Lx × Ly lattice sites. The average
hole concentration away from half filling is defined as δ =
Nh/N with Nh = ∑

i(1 − 〈n̂i〉). We apply a one-site pinning
field [an additional term hm · Ŝ0z with hm = 0.5 is added
to the Hamiltonian in Eq. (1)] at the left edge of the lad-
der, which allows us to detect the local magnetization 〈Ŝz

i 〉
[= 1/2 × (〈n̂i↑〉 − 〈n̂i↓〉)] instead of the more demanding cor-
relation functions. We also measure the d-wave pair-pair
correlation function defined as D(r) = 〈�̂†

i �̂i+r〉 with �̂
†
i =

ĉ†
(i,1),↑ĉ†

(i,2),↓ − ĉ†
(i,1),↓ĉ†

(i,2),↑ creating a singlet on the rungs
[29,37]. All other physical observables are defined at first
mention.

We employ the DMRG method, which can provide ex-
tremely accurate results for ladder systems. We push the bond
dimension in the DMRG calculations up to m = 9500 with
typical truncation errors ε of the order of 10−7. Extrapolations
with truncation errors ε are also performed to remove the
tiny residual truncation errors. We study systems as long as
192 sites to get rid of the finite-size effect. More importantly,
when calculating the pair-pair correlation function, we vary
the position of the reference bond to ensure that the effect of
boundary conditions is absent. It turns out that the boundary
conditions have a huge effect (could cause an error as large
as 50%) on the extracted value of Ksc. With this careful treat-
ment of the possible errors, we provide reliable results for the
charge density, pair-pair correlations, and local magnetization.

III. RESULTS AND DISCUSSION

A. 1/8 doping level

We start with the 1/8 doping case, which draws dramatic
interests because of the intertwined spin, charge, and pairing
correlation near 1/8 doping in cuprates [38,39]. Figure 1
shows the charge density profiles of a ladder with length 192,
defined as the rung density n(xi ) = ∑Ly

y=1〈n̂i(x, y)〉/Ly on the
ladders. The charge density results from DMRG with numbers
of kept states m = 7000 to m = 8500 and the results from
an extrapolation with truncation error are all on top of each
other, indicating that the DMRG results are well converged.
For the 1/8 hole doping case in Fig. 1, the charge distribution
n(x) forms a CDW pattern with a wavelength λc = 1/δ = 8.
The spatial decay of the CDW correlation at long distances
can be described by a power law with Luttinger exponent
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FIG. 1. Density profile at 1/8 doping. The local rung density
n(x) for different numbers of kept states m and the results from
extrapolation with truncation errors are shown. The length of the
system is Lx = 192. The solid curve is the fitting curve using Eq. (2)
to extract Kρ . The dashed horizontal line represents the averaged
electron density. The inset shows the finite-size scaling of δn(Lx/2)
as a function of the system size Lx using Eq. (3).

Kρ . Previous works [29,33] show that Kρ can be obtained by
fitting the Friedel oscillations induced by the boundaries of
the ladder

n(x) ≈ A
cos (2πNhx/Lx + φ1)

[Lx sin (πx/Lx + φ2)]Kρ/2 + n0, (2)

where A is the amplitude, φ1 and φ2 are phase shifts, and
n0 = 1 − δ is the averaged charge density (we set n0 as a
parameter to be determined in the fit [29]). To get rid of the
boundary effect, we fit the density by gradually excluding data
near the boundaries, and the results are shown in Fig. 2(a)
and Table II. We can find an obvious boundary effect on the
extracted exponent Kρ . After excluding about a dozen data
points near the boundary, the extracted Kρ converges fast to
a value about 1.02(4), and the R2 of the fit is very close to
1 (with a deviation of the order of 0.0001). We also study

TABLE II. The dependence of the extracted parameters Kρ and
n0 [using Eq. (2)] on the range of sites used (δ = 1/8, Lx = 192). See
also the plot of Kρ vs the range of sites used in Fig. 2(a).

FIG. 2. The dependence of the extracted parameters Kρ [using
Eq. (2)] on the range of sites used for (a) δ = 1/8 (Lx = 192), (b) δ =
1/4 (Lx = 128), and (c) δ = 1/3 (Lx = 96). The shaded region around
the curve shows the error bars. The fitted values of Kρ , n0, and R2 are
also listed in Tables II–IV.

ladders with lengths 48, 64, 96, and 128 and find that the
extracted values of Kρ converge. For comparison, we can
alternatively obtain the parameter Kρ from the finite-size scal-
ing, because the density at the center of the system scales as
[29]

δn(Lx/2) = n(Lx/2) − n0 ∼ Lx
−Kρ/2. (3)

The advantage of this scheme is that n(Lx/2) is least affected
by the boundary effect. The finite-size fit is shown in the inset
of Fig. 1. To calculate δn(Lx/2), we use the obtained n0 from
the least-squares fit of the charge density profiles using Eq. (2)
[29]. Considering the values from the two fitting procedures,
we give an estimation of Kρ at 1/8 as Kρ ≈ 1.02(4). The
values of Kρ for other dopings are estimated in the same way.
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FIG. 3. Pair-pair correlation and the extracted exponents at 1/8
doping. (a) Pair-pair correlation function D(r) for different numbers
of kept states m and the extrapolated result. The length of the system
is Lx = 192. The reference bond is set at the 49th vertical bond. The
red line and blue curve denote the linear and cosine fits, respectively,
defined in the main text. Only peaked values are used in the linear
fit. The inset zooms in the data scale. (b) Ksc as a function of the
reference bond. Here we only show the results of Ksc1 from linear
fits (Ksc2 has similar values). The shaded area represents the value of
1/Kρ with error bars.

The singlet pair-pair correlation function D(r) for the
Lx = 192 ladder is displayed in Fig. 3. The numerical results
are carefully extrapolated with truncation errors in DMRG
calculations to remove the finite-bond-dimension effect. We
find that D(r) decays algebraically with oscillations in the
period of CDW’s wavelength λc, which makes the extraction
of the exponent Ksc hard. Apart from fitting the peaks using
D(r) ∝ r−Ksc1 as has been typically done before [29,30], we
also fit the whole data set by including an extra cosine term as
D(r) ∝ A0r−Ksc2 + A1 cos(2πNh/Lx + φ)r−Ksc2 , which can be
viewed as a first-order approximation to the oscillating pair-
pair correlation function. We have checked that both fits give
consistent results within the error bars. We also checked that
the extracted value of Ksc is converged with the size studied.

As can be seen from Fig. 3(a), the pair-pair correlations
clearly deviate from the algebraic decay behavior at long
distance near the boundary even after an extrapolation with
truncation error. So to account for this effect, we exclude the
very-long-distance data for all the fits of pair-pair correla-
tions. At the same time, we study long ladders which provide
enough data for the fit process.

FIG. 4. Local magnetization and single-particle Green’s function
at 1/8 doping. (a) Absolute values of the local magnetization with
different lengths. We only show the local magnetization on one leg.
Sz on different legs are identical in absolute value but with opposite
sign. This is also true for other plots of Sz. Only the results from
the extrapolation with truncation errors are shown. The solid line
denotes the exponential fit using |Sz| ∝ e−xi/ξs with ξs = 45.3(3) for
Lx = 192. (b) Single-particle Green’s function with different num-
bers of kept states m and the extrapolated result for Lx = 192. The
reference site is set at (49, 2). Only peaked values are used in the
fits for both the local magnetization and the single-particle Green’s
function.

In the calculation of the pair-pair correlations, a more
important factor is the choice of the position of the refer-
ence bond. Figure 3(b) shows the extracted Ksc for different
reference bonds (only correlations between vertical bonds
are shown; the horizontal bonds have similar results). We
find that the boundary has a very large effect on Ksc.
When moving the reference bond away from the boundary,
Ksc converges, and the converged value satisfies the rela-
tionship Ksc · Kρ = 1 as predicted in Luther-Emery liquid
theory.

Figure 4(a) shows the absolute value of local magnetization
for systems with different lengths. We find that |Sz| decays
exponentially as |Sz| ∝ e−xi/ξs at long distances with a finite
correlation length ξs = 45.3(3), indicating the existence of a
finite spin gap in the system, which is consistent with the
prediction of the Luther-Emery liquid phase. Moreover, the
staggered spin density (−1)xi〈Ŝz

i 〉 (not shown) has a spatial
modulation with a wavelength twice that of the hole density
and shows a π phase flip at the hole concentrated position.
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FIG. 5. Density profiles at (a) 1/12 and (b) 1/16 dopings. The
local rung density n(x) for different numbers of kept states m and
the results from extrapolation with truncation errors are shown. The
lengths of the systems are Lx = 120 for 1/12 doping and Lx = 192
for 1/16 doping. The solid curves are the fitting curves using Eq. (2)
to extract Kρ . The dashed horizontal lines represent the averaged
electron density. The insets of (a) and (b) show the finite-size scaling
of δn(Lx/2) as a function of the system size Lx using Eq. (3).

The spin and hole modulations are consistent with the stripe
phase [38,39].

The single-particle Green’s function is defined as Gσ (r) =
〈ĉ†

(x0,y),σ ĉ(x0+r,y),σ 〉 with σ being the spin index. We find that
Gσ (r) is also sensitive to the position of the reference bond,
similar to the pair-pair correlations. We only show the con-
verged results in this paper. The results for 1/8 doping are
shown in Fig. 4(b). Gσ (r) decays exponentially as |Gσ (r)| ∝
e−r/ξG with the correlation length ξG = 26.8(2).

From the above analysis of the charge, pairing correlation,
local magnetization, and single-particle Green’s function, we
conclude that the two-legged ladder at 1/8 doping with U = 8
belongs to the Luther-Emery liquid phase and the exponents
of the charge and superconducting correlations satisfy the
relationship Ksc · Kρ = 1.

B. 1/12 and 1/16 dopings

We perform similar calculations and analyses for 1/12 and
1/16 dopings in this section. The charge density profiles for
1/12 and 1/16 dopings are shown in Figs. 5(a) and 5(b),
which also display the Friedel oscillations with λc = 1/δ.
We find that the amplitude of charge density oscillations is
reduced with the decrease in the doping level. The exponent
increases from Kρ = 1.13(3) to Kρ = 1.28(3) from δ = 1/12

TABLE III. The dependence of the extracted parameters Kρ and
n0 [using Eq. (2)] on the range of sites used (δ = 1/4, Lx = 128). See
also the plot of Kρ vs the range of sites used in Fig. 2(b).

to δ = 1/16 (see the insets of Fig. 5 and Table I). This behav-
ior is consistent with the prediction that Kρ → 2 with δ → 0
[34,35].

Following the fitting procedures in the 1/8 doping case,
we also extract Ksc from the pair-pair correlations by varying
the position of the reference bond as shown in Figs. 6(a) and
6(d). The converged values for Ksc are 0.95(3) and 0.85(5)
for 1/12 and 1/16 dopings, respectively. For these dopings,
Ksc < Kρ , indicating that the superconducting correlation is
dominant at low dopings [29]. Similarly to the 1/8 doping
case, the relationship Ksc · Kρ = 1 is also likely to be satisfied,
which is consistent with the prediction from Luther-Emery
liquid theory.

The absolute value of the local magnetization and the
single-particle Green’s function for 1/12 (1/16) doping are
shown in Figs. 6(b) and 6(c) [Figs. 6(e) and 6(f)], respec-
tively. Both of them decay exponentially with distance, and
the correlation lengths are smaller than 1/8 cases, indicating
that the spin and single-particle gap increase with the decrease
in doping.

C. 1/6 doping level

In this section, we move to the 1/6 doping case. Figure 7
shows the charge density profiles for a Lx = 120 ladder, which
is also characterized by an algebraic quasi-long-range order
with period λc = 1/δ = 6. As we can see in the inset of Fig. 7,
the Kρ values extracted from the two approaches are consis-
tent with Kρ ≈ 1.01(4). Following the procedure described
above, we show the variance of Ksc with the position of the
reference bond in Fig. 8(a). We find that Kρ < Ksc (see also
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FIG. 6. Results for 1/12 [(a)–(c)] and 1/16 [(d)–(f)] dopings. (a) and (d) show Ksc as a function of the reference bond. The lengths of
the systems are Lx = 120 for δ = 1/12 and Lx = 192 for δ = 1/16. The shaded area represents the value of 1/Kρ with error bars. (b) and (e)
show the absolute values of the local magnetization at 1/12 and 1/16 dopings with different lengths. Only the results from the extrapolation
with truncation errors are shown. The solid lines denote exponential fits using |Sz| ∝ e−xi/ξs with ξs = 28.9(2) for δ = 1/12 (Lx = 120) and
ξs = 22.26(7) for δ = 1/16 (Lx = 192). (c) and (f) show the single-particle Green’s function for different numbers of kept states m and the
extrapolated result. The reference site is set at (31, 2) for δ = 1/12 (Lx = 120) and (49, 2) for δ = 1/16 (Lx = 192). Only peaked values are
used in the fits for both the local magnetization and the single-particle Green’s function.

FIG. 7. Density profile at 1/6 doping. The local rung density
n(x) for different numbers of kept states m and the results from
extrapolation with truncation error are shown. The length of the
system is Lx = 120 at 1/6 doping. The solid curve is the fitting curve
using Eq. (2) to extract Kρ . The dashed horizontal line represents the
average electron density. The inset shows the finite-size scaling of
δn(Lx/2) as a function of the system size Lx using Eq. (3).

Table I), suggesting that the charge correlation is dominating
at 1/6 doping. We find that charge and superconducting ex-
ponents are likely to violate the relationship Ksc · Kρ = 1. The
local magnetization and single-particle Green’s function are
shown in Figs. 8(b) and 8(c). Both of them decay exponen-
tially with correlation lengths ξs = 67.6(2) and ξG = 36(2).

D. 1/3 and 1/4 dopings

Figure 9(a) shows the charge density profile at 1/4 doping
for a Lx = 128 ladder. We can see that the charge modulation
has a persistent amplitude with period λc = 1/δ which does
not decay in the bulk. The extracted Kρ values using Eq. (2)
are shown in Fig. 2(b) and Table III. The value of Kρ varies
dramatically with the data range used in the fit. The fact
that Kρ has very large error bars and oscillates across zero
indicates the failure of the fit using Eq. (2), which suggests
that the charge order is likely long ranged in the system.

The pair-pair correlations for δ = 1/4 are shown in
Figs. 10(a) and 10(b). Following the same procedure above,
we find Ksc = 1.05(6) at δ = 1/4. We show the local mag-
netization on both semilogarithmic and double-logarithmic
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FIG. 8. Results for the 1/6 doping level. (a) shows Ksc as a func-
tion of the reference bond. The length of the system is Lx = 120. The
shaded area represents the value of 1/Kρ with error bars. (b) shows
the absolute value of the local magnetization at 1/6 doping for sys-
tems with different lengths. Only the results from the extrapolation
with truncation errors are shown. The solid line denotes exponential
fitting using |Sz| ∝ e−xi/ξs with ξs = 67.6(2) for Lx = 120. (c) shows
the single-particle Green’s function for different numbers of kept
states m and the extrapolated result. The reference site is set at
(31, 2). Only peaked values are used in the exponential fits for both
the local magnetization and the single-particle Green’s function.

scales in Figs. 10(c) and 10(d). We find that the data are
better described by an exponential decay fit with a very large
correlation length ξs = 107(2) instead of a power-law decay.
The single-particle Green’s function is found to decay expo-
nentially with a correlation length ξG = 50(2) [see Figs. 10(e)
and 10(f)].

The results for 1/3 doping are similar to those for 1/4
doping. The charge order is likely to be a long-ranged one as

FIG. 9. Density profiles at (a) 1/4 and (b) 1/3 dopings. The
local rung density n(x) for different numbers of kept states m and
the results from extrapolation with truncation errors are shown. The
lengths of the systems are Lx = 128 for 1/4 doping and Lx = 96 for
1/3 doping. The solid curves are the fitting curves using a cosine
function.

TABLE IV. The dependence of the extracted parameters Kρ and
n0 [using Eq. (2) on the range of sites used (δ = 1/3, Lx = 96)]. See
also the plot of Kρ vs the range of sites used in Fig. 2(c).
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FIG. 10. Pair-pair correlation, local magnetization, and the single-particle Green’s function at 1/4 doping. (a) Ksc as a function of the
reference bond. The length of the system is Lx = 128. (b) A typical fit of the pair-pair correlation function. The reference bond is set at the
65th vertical bond. (c) and (d) Absolute value of local magnetization and (e) and (f) single-particle Green’s function. The results from finite
numbers of kept states and the results from extrapolation with truncation errors are shown. The plots in (c) and (e) and those in (d) and (f)
have semilogarithmic and double-logarithmic axes, respectively. The solid black line in (c) denotes exponential fitting using |Sz| ∝ e−xi/ξs with
ξs = 107(2). By comparing (c) and (d), we find that the decay of the local magnetization is likely to be exponential, even though the extracted
correlation length is comparable to the length of the system. The single-particle Green’s function is also more likely to exhibit exponential
decay. Only peaked values are used in the fits.

shown in Fig. 9(b). In Fig. 2(c) and Table IV, we find that the
extracted value of Kρ also varies dramatically with the data
range. The extracted Ksc = 1.10(8) as shown in Figs. 11(a)
and 11(b). The spatial decay of local magnetization can be
well fitted using either an exponential law or a power law but
with correlation length equal to the size of the system [see
Figs. 11(c) and 11(d)], indicating that the spin gap is likely to
be closed at 1/3 doping. The decay of single-particle Green’s
function is found to be power-law-like, indicating the closing
of the gap at 1/3 doping [see Figs. 11(e) and 11(f)].

IV. CONCLUSIONS

We revisit the ground state of the Hubbard model on
two-legged ladders with DMRG. We find that Ksc extracted
from the algebraic decay of the pair-pair correlation depends
strongly on the position of the reference bond. We obtain more
accurate exponents Kρ and Ksc with DMRG after system-
atically treating the effects from boundary conditions, finite
sizes, and truncation errors in DMRG. We confirm that the
two-legged Hubbard model is in the Luther-Emery liquid
phase with Kρ · Ksc = 1 from tiny doping near half filling to

165113-8



REEXAMINING DOPED TWO-LEGGED HUBBARD LADDERS PHYSICAL REVIEW B 108, 165113 (2023)

FIG. 11. Pair-pair correlation, local magnetization, and the single-particle Green’s function at 1/3 doping. (a) Ksc as a function of the
reference bond. The length of the system is Lx = 96. (b) A typical fit of the pair-pair correlation function. The reference bond is set at the 49th
vertical bond. (c) and (d) Absolute value of the spin density and (e) and (f) single-particle Green’s function. The results from finite numbers
of kept states and the results from extrapolation with truncation errors are shown. The solid black lines in (c) and (e) and those in (d) and
(f) denote exponential and power-law fits, respectively. For spin density, we find that the data can be fitted with either an exponential fit or a
power-law fit. However, the correlation length extracted from the power-law fit is larger than the system size, which indicates that the decay of
the local magnetization is likely to be a power law. For single-particle excitation, we also find that the decay behavior of Gσ (r) can be fitted
with either an exponential fit or a power-law fit. Only peaked values are used in the fits.

1/8 hole doping, resolving the long-term controversy. When
the doping is increased to δ � 1/6, the behaviors of charge,
pairing, and spin correlations do not change qualitatively, but
the relationship Ksc · Kρ = 1 is likely to be violated. With
the further increase of the doping to δ = 1/3, the quasi-long-
ranged charge correlation turns into a long-ranged charge
order, and the spin gap is closed, while the pair-pair correla-
tion still decays algebraically. In Ref. [37], the Hubbard ladder
at 1/3 doping with next-nearest-neighbor hopping t ′ and a
larger U = 12 was studied [37]. The charge correlation was
found to decay algebraically, while the spin and single-particle
excitations are gapped [37]. A comparison of the results in
Ref. [37] and in this paper indicates that the boundary of

different phases depends on the details of the parameters in
the model. Our work provides a standard way to analyze
the correlation functions when studying systems with open
boundaries.
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