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Raman response of the charge density wave in cuprate superconductors
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We study the Raman response, for B1g and B2g light-polarization symmetries, of the charge density wave
phase appearing in the underdoped region of cuprate superconductors. We show that the B2g response provides
a distinctive signature of the charge order, independently of the details of the electronic structure and from the
concomitant presence of a pseudogap, in sharp contrast with the behavior of the B1g response. This well accounts
for the Raman experimental results. We then clearly identify a charge density wave energy scale, and show that
its doping dependence is eventually driven by the monotonic behavior of the pseudogap. This has also been
pointed out in Raman experiments, and it is suggestive of a pseudogap ruling the multiple energy scales of the
exotic phases appearing in the cuprate phase diagram.
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I. INTRODUCTION

The investigation of key phenomena at the roots of high-
temperature (HTC) superconductivity (SC) has been at the
center stage of the condensed matter physics since more
than 30 years. The parent compound of HTC superconduc-
tors is an unconventional Mott insulator (MI), displaying
antiferromagnetism (AF) driven by strong electronic corre-
lations. Upon hole doping, these materials display several
distinct phases, as shown on the doping p versus temperature
T diagram [see Fig. 1(a)]. For p > pc, known as the over-
doped regime, the system displays conventional metallic
properties, well understood within the framework of the
standard theory of metals, the Fermi-liquid (FL) theory.
This includes, for instance, a large Fermi surface (FS) [see
Fig. 1(b)], measured, e.g., by angle-resolved photoemis-
sion spectroscopy (ARPES) [1]. For p < pc, the underdoped
regime, the FL properties are strongly violated. This region
is marked by the presence of the pseudogap (PG) phase [2],
which was originally introduced to interpret an expected loss
of spectral weight in spectroscopic responses [3,4]. Only a
small part of the FS, called the Fermi arcs, is in fact observed
by ARPES [5,6]. Like the HTC SC, the PG origin is not
well understood. At intermediate temperatures another exotic
phase appears, the charge density wave (CDW) order [7]. Our
focus in this work is on this metallic region where the CDW
is present.

In the last decade, several x-ray and STM experiments
have confirmed the presence of a CDW phase in the un-
derdoped regime of several cuprates [7]. This phase rises
in a wide range of doping and, similar to the SC phase,
is characterized by a domelike shape in the T vs p dia-
gram [see Fig. 1(a)]. Given the proximity between these
phases, the natural question arises whether and how the
CDW phase is related to the the well-established PG
and SC phases. Some experimental and theoretical find-
ings have put into evidence a competition between them

[8–17], however, a nontrivial relationship is believed to take
place.

Recent advancements have allowed to measure CDW also
within Raman spectroscopy. This technique has allowed in
particular to access the CDW energy scale [18]. These results
have provided new clues that suggest a common microscopic
origin of the CDW, SC, PG phases, along the directions of the
theoretical proposals in Refs. [19–21]. Despite many efforts,
though, the formulation of a theory that describes completely
the underdoped regime of cuprates, and in particular the role
played by the CDW order, has remained an open problem.

Our aim with this work is to give a theoretical contribution
to this problem within the Raman spectroscopy technique. We
shall clarify how the CDW can be detected in the Raman
response and, in particular, in the B2g light-polarization ge-
ometry. We characterize the CDW feature and show that it is
universal within the cuprate family even in the presence of a
PG phase. We then extract the CDW energy scale and compare
it with the PG one, providing a description on how the PG can
drive the doping-dependent behavior of the CDW, as observed
by the aforementioned Raman experiments [18].

This paper is organized in the following form. Section II is
divided in three parts. In the first part, Sec. II A, we introduce
the tight-binding phenomenological model that describes a
d-wave symmetric bidirectional CDW on the square lattice
and show how to treat the problem in the reduced Brillouin
zone (rBZ). At this stage, we neglect the effects of the PG.
In the second part, Sec. II B, we calculate the single-particle
spectral properties. In the third part, Sec. II C, we discuss the
Raman dynamical response, and in particular we compare two
light-polarization B1g and B2g symmetries. In Sec. II C 1 we
discuss the commensuration and finite length of the CDW
order. In the following section, Sec. III, we investigate the
properties of the CDW order in the presence of a PG, that
we introduce by means of the phenomenological Yang-Zhang-
Rice–type approach [22,23]. We prove the robustness of our
results even on the presence of the PG, and in particular we
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FIG. 1. (a) Schematic T vs p phase diagram for the cuprates,
displaying different quantum phases: antiferromagnetism (AF),
pseudogap (PG), superconductivity (SC), charge density wave
(CDW), and Fermi liquid (FL). The region highlighted by the red
circle is the focus of this study. (b) Fermi surface in the overdoped
regime of cuprates. The green (blue) circle identifies the region that
is probed by the B2g (B1g) Raman response, i.e., the nodal (antinodal)
region (see also Appendix B). The black arrows mark the nesting
points of the CDW wave vectors Qx and Qy.

extract the CDW and PG energy scale and establish their
mutual interaction. We give our conclusion in Sec. IV. Finally,
in the Appendixes A, B, C, D, and E we give some further
technical details about our calculations.

II. CDW ORDER

A. CDW modeling

Here we take a first-order approach and consider a simple
tight-binding description of the electrons in Cu-O planes of
cuprates, adding a CDW interaction. Our goal is to show
the pure effects of the formation of the CDW order on the
electronic structure, and in particular on the Raman response.
We shall consider the effects of interactions (in particular the
PG), which are indeed relevant in cuprates, in the next section.
This approach, which inserts by hand the CDW and the PG, is
purely phenomenological and it is intended to show the effects
of such orders on spectroscopic responses. We leave to future
developments a more consistent but more involved treatment
of the CDW and PG from microscopic theories, which re-
quire the implementation of more advanced techniques, like
the slave-particle approach [24] or the dynamical mean field
theory [25]. This is because, while the CDW can be treated via
perturbative self-consistent static mean field theory, the PG is
a well-known nonperturbative phenomenon.

From the phenomenological view point, we start from
the following Hamiltonian on the square lattice (with lattice
parameter a ≡ 1):

H =
∑
r,r′

trr′c†
rcr′ + 1

2

∑
r,a,Q

JQ,aeiQ·(r+a/2)c†
r+acr + H.c. (1)

This model can be obtained by a mean field decomposition in
the particle-hole channel of the t-J-V model (see, for example,
Ref. [26]). In the above Eq. (1) the first term is the kinetic
part, with c†

r the electron creation operator at the site r. The
terms r = r′ are included in the sum, their contribution is
the chemical potential −μ. The second term describes the
bond density wave between first neighbor, i.e., a = ±x̂,±ŷ,

with modulation vector Q. The modulation amplitude JQ,a is
considered as a fixed parameter in our analysis. The extra term
a/2 in the phase factor describes a modulation centered at the
oxygen atoms. Note that, for sake of convenience, we suppress
the spin index since it does not play any role.

The Hamiltonian (1) in the k space takes the form

H =
∑
k∈BZ

ξkc†
kck +

∑
Q,k∈BZ

λQ(k)c†
k+Q/2ck−Q/2 + H.c., (2)

where BZ denotes the Brillouin zone: BZ ≡ {|kx,y| � π
a }. The

free-electron dispersion in a general case is given by

ξk =
∑
n,a(n)

t (n)eik·a(n)
, (3)

where n denotes the order of neighbors, i.e., n = 1 for the
first neighbors, n = 2 for the second neighbors, along with
others, and a(n) are the corresponding neighbors’ vectors on
the square lattice. Calculating the first terms of Eq. (3) we
obtain

ξk = −μ − 2t (cos kx + cos ky) − 4t ′ cos kx cos ky

−2t ′′(cos 2kx + cos 2ky) + · · · , (4)

where we have defined t (0) ≡ −μ, t (1) ≡ t , t (2) ≡ t ′, and so
on. We fix the energy scale of the system by setting the
first-neighbor hopping amplitude t = 1, which typically cor-
responds to t � 0.1–0.3 eV, as obtained for instance by fitting
ARPES data [27].

Based on experimental results [28], we consider a x−y-
bond sign alternating d-symmetric CDW interaction, i.e.,
JQ,±x̂ = −JQ,±ŷ ≡ J

2 . Then the CDW potential in Eq. (2) can
be written as

λQ(k) = J

2
(cos kx − cos ky). (5)

We shall consider Q = Qx/y = 2π
na x̂/ŷ, i.e., a commensurate

modulation of n unitary cells in the x and y directions. Notice
that this assumption changes the translational invariance of the
system from a to na. An immediate consequence of the new
translational invariance is the emergence of gaps at the points
k and k′ that satisfy ξk = ξk′ ≡ ξk±Q, as we shall see below.
We can rewrite our Hamiltonian in Eq. (2) as a n2 × n2 matrix
(ignoring spin index) [29], by using the relation:

∑
k∈BZ

g (k) =
∑

p∈rBZ

n−1∑
nx,y=0,1,

g (p + nxQx + nyQy), (6)

for a general function g(k). The reduced Brillouin zone (rBZ)
is defined as rBZ ≡ {|px,y| � π

n }. Following some experi-
mental results [7,30], we will consider here a commensurate
modulation with n = 4. Then the Hamiltonian (2) becomes

H =
∑

p∈rBZ

�†
pH(p)�p, (7)

where we define the spinors as

�†
p ≡ (

c†
p, c†

p+Qx
, c†

p+2Qx
, . . . , c†

p+3Qx+3Qy

)
, (8)
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TABLE I. Three-band parameter sets and its corresponding
chemical potentials at hole doping p = 0.12 and CDW modulation
amplitude J/2 = 0.2t . Allais set appeared first in the context of
analyzing quantum oscillation frequencies on a reconstructed Fermi
surface due to the coexistence of the CDW and SC orders [31].
Liechtenstein set was used in Ref. [32] to study bilayer cuprates
as well as in Ref. [33] to calculate the band structure of compound
Ca2CuO2Cl2. Finally, Schabel set was introduced in Ref. [34] to fit
photoemission data on YBCO.

Parameters Allais Liechtenstein Schabel

t ′ −0.33t −0.3t −0.51t
t ′′ 0.03t 0.2t 0.07t
t ′′′ 0 0 −0.05t
t ′′′′ 0 0 −0.06t
μ −0.808t −0.766t −1.069t

and H(p) is a 16 × 16 matrix (see Appendix A for its explicit
expression). The corresponding Green’s function is given by

G(p, ω) = 1

(ω + iη)1 − H(p)
. (9)

Here 1 is the 16 × 16 identity matrix and η is a pole broaden-
ing parameter that can be physically interpreted as the inverse
quasiparticle lifetime. Throughout this work, we fix η = 0.2t .

In order to identify general CDW features of the cuprate
phase diagram, we consider three-band parameter sets, pre-
viously used to describe different compounds, as detailed in
Table I.

B. Single-particle spectrum

From the matrix G(p, ω) in Eq. (9) we can straightfor-
wardly obtain the spectral function

A(p, ω) = − 1

π
Im G(p, ω), (10)

and, consequently, calculate the Fermi surface A(p, ω = 0).
Each diagonal element of the matrix A(p, ω) represents the
spectral function in a specific region of the BZ, which is parted
in 16 rBZs by the CDW translational invariance. However, if
we relax the condition p ∈ rBZ and extend p ∈ BZ we can
work only with the first element A11(p, ω). The FS for the
three-band parameters sets (keeping J/2 = 0.2t) is shown in
Fig. 2. To explicitly identify the effects of the CDW interac-
tion, we display in Figs. 2(a)–2(f) the spectra when the CDW
is absent (J = 0), which represent a conventional FL. The
difference among the three sets of band parameters stands
mainly in the degree of the holelike curvature of the band.
Upon activation of the CDW interaction [Figs. 2(g)–2(l)], the
effect on the FS is mainly evident at the nesting wave vectors
Q [see Fig. 1(b)], where a gap opens as pointed out above.

The effect of the CDW 4 × 4 folding into the rBZ can
be, however, better enlightened by looking at the energy
ξk − ξF (where ξF is the Fermi energy setting the zero) vs
momentum k dispersion, also accessible with ARPES. For
clarity, we take the diagonal cut k⊥, displayed in Fig. 2(a),
and show ξk⊥ − ξF , again for sake of comparison for J = 0
and J/2 = 0.2t , in Figs. 2(d)–2(f) and 2(j)–2(l), respectively.
As discussed above, the quasiparticle dispersion is broken at
the Fermi energy at the nesting vector points where the small
gaps open. We can observe that, for energies under and above
these Fermi-level regions, folded bands appear in the spectra
due to the CDW folding of the full BZ, and this has direct
consequences on the electronic properties, as we shall see
below.

The effect of the nesting CDW vector and the appearance
of the folded band structure can be seen, for instance, in the
local density of states (DOS), which is accessible experimen-
tally via scanning tunneling spectroscopy experiments. We
can calculate DOS directly from the Green’s functions:

ρ(ω) = 1

N

∑
p∈BZ

A11(p, ω), (11)

FIG. 2. Fermi surface and ARPES dispersion along the path k⊥ [indicated in (a)] for the three-band parameters set in the FL phase (J = 0)
(a)–(f) and in the CDW phase (g)–(l). The dashed white lines in (j)–(l) are the free-electron band dispersion and the red arrows represent new
electronic band transitions between CDW folded band branches.
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FIG. 3. DOS in the CDW phase for the three-band parameter sets
displayed in Table I. Inset: same as in the main plot but for the
FL phase. The dashed black line highlights the Fermi level. We
observe a dip in the spectral weight at an energy scale 2J which is
independent of the band structure details.

where N is the number of states in the BZ. In Fig. 3 we
display the DOS, ρ(ω), corresponding to the three parameter
sets of Table I, and the corresponding noninteracting DOS in
the inset. We note a common feature among the three DOS.
The CDW interaction does not open a full gap around the
Fermi level ω = 0, as first pointed out in Ref. [29]. It rather
changes the slope of the DOS at the Fermi level and redis-
tributes the spectral weight. The appearance of folded bands is
here evidenced by two features. The first is a band-parameter-
dependent modulation of the DOS, for ω < 0, which can be
ascribed to the folded bands appearing around the antinodal
regions [close to k ∼ (0,±π ), (±π, 0)] for ξk < ξF [see the
row of Figs. 2(j)–2(l)]. The second feature is band-parameter
independent, and appears as a spectral weight dip, a sort
of PG-like feature, at ω > 0 and around J . This feature is
ascribed to the folded band branches appearing rather close
to the nodal regions, between the CDW nesting points and
the quadrant diagonals [close to k ∼ (±π/2,±π/2)]. On the
whole, the CDW effect on the DOS is, however, rather weak, if
compared for example with the effect of the PG (see Sec. III).

These results suggest in particular that material indepen-
dent CDW features should be detectable with probes that
can access at the same time the electronic structure above
the Fermi level and close to the nodal regions. This strongly
constrains the range of spectroscopic probes that could be
employed.

C. Raman response

A suitable spectroscopic probe that has at the same time ac-
cess to energy-dependent features and different regions of the
BZ is Raman spectroscopy with different light-polarization
symmetries, namely, B2g and B1g [35]. The Raman B2g re-
sponse probes in fact the nodal region of the BZ, while the
B1g response probes the antinodal region [see Fig. 1(b)]. For
our weak CDW potential, we can consider a perturbative
expansion of the Raman response χν [35,36]. As detailed in

Appendix C, at zero temperature, for small momentum trans-
fers between the incident light and the electrons, and ignoring
the vertex corrections (which is reasonable for a weak CDW
potential) we obtain [35]

χν (�) = 1

N

∑
p∈rBZ

∫ 0

−�

dωTr
[
�ν

pA(p, ω)�ν
pA(p, ω + �)

]
,

(12)

where �ν
p is the 16 × 16 nonrenormalized vertex matrix for

a given ν = B1g, B2g symmetry and � is the incident photon
energy. The physical interpretation of the above equation is
immediate: one incident photon with energy � can promote to
excited states only the electrons with energy in the range ω ∈
[−�+, 0]. This process is described by the first spectral func-
tion A(p, ω). By energy conservation, these excited states
have energy in the interval ω ∈ [0+,�] and, consequently, are
described by A(p, ω + �). The whole scattering process is
modulated by the vertex matrix, which fixes specific regions
of the BZ.

In the effective mass approximation [35] and considering
the appropriate light-polarization vectors capable to probe the
nodal and antinodal regions of the BZ (see Appendix B) [37],
those vertex matrices are given by[

�
B2g
p

]
n,n′ = δn,n′

∂2ξn

∂ px py
, (13)

[
�

B1g
p

]
n,n′ = δn,n′

(
∂2ξn

∂ p2
x

− ∂2ξn

∂ p2
y

)
, (14)

where ξn is the n-diagonal element of the H(p) (see
Appendix A). An analysis of the above quantity shows a
difference in magnitude of the order of ∼10 (see Appendix B),
then we can already expect a similar order factor between χB1g

and χB2g .
Following the discussion of the previous section, we expect

that the reconstruction of the electronic structure due to the
CDW folding of the BZ affects also the electronic Raman
response. As a matter of fact, in a previous experimental result
[18], some of the authors have shown that a characteristic
CDW dip-hump feature appears in the relative B2g Raman
response, defined as �χ

expt
B2g

= χB2g (ω, T ) − χB2g
(ω, T =

290 K). Here T = 290 K > TCDW = 250 K is higher than the
CDW transition temperature TCDW [see Fig. 4(a)] and close
to the PG crossover temperature T ∗ = 325 K. At this tem-
perature no CDW feature is present and the PG intensity is
negligible. This operative procedure allows to subtract the
normal-state background in the Raman response and put
into evidence the features related to the instabilities appear-
ing at lower temperature, like the CDW ones. In the same
publication, by a band-model calculation, similar to the one
presented here, it has been shown that such a dip-hump fea-
ture is indeed expected in the theoretical relative B2g Raman
response �χB2g = χB2g (ω) − χ

(0)
B2g

(ω). For sake of simplicity
in the choice in the number of free model parameters, the cal-
culation is performed at T = 0. In this case the normal phase
response subtracted, χ (0)

B2g
(ω), which has no other instability, is

the Raman response of the FL phase [see Fig. 4(b)].
The presence of the CDW dip-hump feature in both the ex-

perimental and theoretical �χB2g supported the experimental
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FIG. 4. (a) Experimental relative �χ
expt
B2g

= χB2g (117 K, ω) − χB2g (290 K, ω) for Hg-1223 with hole doping p = 0.12. The red arrow
indicates the CDW energy scale ECDW≈0.1295 eV ∝ 2J . Figure adapted from [18]. (b) Theoretical relative B2g Raman response for the
three-band parameter sets of Table I. (c) Relative B1g Raman response (with the same color code). (d) The blue line (commen) corresponds to
the Allais curve in (b), while the orange one is obtained by averaging the responses calculated from the three wave vectors, Q, Q ± δQ, with
δQ/Q = 0.1.

conclusions. However, a comparison between theory and ex-
periment must be intended only at the qualitative level because
of the different temperatures used in the respective analysis.
Notice, for instance, that the effect of temperature is most
evident in the experimental Raman response at small energies
ω < 0.025 eV [see Fig. 4(a)], where nodal quasiparticles are
present. One in fact expects that χB2g (ω, T ) ∼ τ ω for ω → 0,
where τ is the quasiparticle lifetime at the nodes. As this
latter decreases with increasing temperature, it originates a
positive peak in the �χ

expt
B2g

. This feature is eventually absent
in the T = 0 theoretical curves [Fig. 4(b)]. We remark that
low-energy quasiparticles are absent at the energies relevant
for the CDW features, therefore, they do not influence our
conclusions on the appearance of the dip-hump feature in
�χB2g .

Here we explain the origin of the dip-hump CDW feature,
that arises mainly from the electronic structure in the nodal
region. In fact, photon-induced Raman excitations appear be-
tween the occupied (ξk < ξF ) and the empty states (ξk > ξF )
of the conelike bands induced by the CDW folding in the BZ
[see red arrows in Figs. 2(j)–2(l)]. Notice that such a folding
is accompanied by a reduction of spectral weight close to the
Fermi energy, where a gap opens at the nesting vector points
Q, and a transfer of this spectral weight to higher energies
in correspondence to the conelike folded bands. The energy
separation between the bottom (in the occupied energy side)
and the top (in the empty energy side) of the folded conelike
bands is of the order of 2J . The transitions between these
two bands extend to energies higher than 2J , hence the CDW

feature is expected to appear at energies �2J . This is what
indeed is observed in Fig. 4(b). The maximal intensity of this
feature depends on where the maximal spectral intensity is
located on the bands, as seen on Figs. 2(j)–2(l). The maximum
of the CDW hump is therefore also located at energies �2J ,
but it is still proportional to 2J . Following the experimental
procedure, we shall identify the maximum of the hump as the
CDW energy scale (see following Sec. III D).

According to the observations on the DOS of the previous
section, as this CDW dip-hump feature mainly derives from
properties of the nodal region it should be rather universal
among different materials. Here we show that this is the case
by displaying �χB2g for the different band parameters [see
Fig. 4(b)], which we introduced in Table I. These results are
in agreement with the experimental observations of Ref. [18],
where such dip-hump feature in �χB2g is universal among
different members of the cuprate family, including Hg-based,
Y-based, and Bi-based compounds, though with rather differ-
ent amplitudes depending on the compound disorder level.

In contrast to the B2g Raman response, the B1g one, which
is sensitive to Raman transitions in the antinodal region, has
a sharply different behavior. In the previous section, we al-
ready pointed out that in the antinodal region folded bands
appear in the occupied side (ξk < ξF ), which strongly de-
pend on the compound band parameters. We observed that
the occupied side (ω < 0) of the DOS (Fig. 3) reflects this
material dependence of the electronic structure. It is then
not surprising that we cannot identify a general CDW fea-
ture in the B1g, like the dip-hump for the B2g, but rather a
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strong material-dependent response. This is clearly shown by
�χB1g = χB1g (ω) − χ

(0)
B1g

(ω) in Fig. 4(c). Therefore, B1g is not
the appropriate response to clearly identify universal CDW
features. These results settle the longstanding open question
on why it has not been possible to detect CDW order within
the B1g Raman response [18,38], in spite of this being much
stronger than the B2g one. To this one should also add the
effects of the PG, which manifests itself mainly in the B1g

geometry. The PG should further interfere with the CDW,
making the identification of the latter even more problematic
within the B1g light-polarization geometry. We shall further
discuss the interaction between CDW and PG in the following
section.

Commensuration and finite-length CDW order

Experimentally, it is now fairly well established that the
CDW phase has an incommensurate ordering wave vector
[10,12,39,40], though locally, on a range of several unit cells,
the commensuration is preserved [41,42]. Incommensuration,
in principle, implies complete loss of Bloch periodicity, and
therefore the unit cell of the system is thermodynamically
large. Since such a situation cannot be modeled in any cal-
culation, the standard practice is to truncate the unit cell
by a finite size. This is equivalent to imposing an approxi-
mate commensurate order, which revives Bloch periodicity. In
our calculation, we assume a commensurate ordering vector
Qx,y = π/2, which is close to the actual wave vector found
in experiments. Thus, the Hamiltonian in our calculation is a
16 × 16 matrix of Eq. (7). Conceptually, the above approx-
imation does not affect our main point that the CDW order
results in a dip-hump feature in the B2g Raman response.
This is because, irrespective of whether the ordering vector is
commensurate or not, the loss of spectral weight in the CDW
phase is due to gap opening around the nesting points in the
wave-vector space that satisfies ξk = ξk±Q. This leads to the
dip in the Raman response. Likewise, irrespective of whether
Q is commensurate or not, interband transitions between
folded bands give rise to the hump feature. Furthermore, the
leading contribution to the dip-hump comes from the hy-
bridization between the states at k and k + Q in the CDW
phase. Any hybridization contribution between the states k
and k + nQ, with n > 1, is relatively small by a factor of
(J/W )n−1, where W is the bandwidth, and therefore can be
neglected for sufficiently large n.

A second well-known important issue is that, in the ab-
sence of a stabilizing magnetic field, the CDW order is short
range. Therefore, it is legitimate to ask why our model, which
is appropriate for a true long-range density wave order, is
applicable. Eventually, this issue is also related to the question
whether Raman responses are able to detect such short-range
order. Such a short-range order can be modeled by modifying
Eq. (2) by a CDW potential which is slowly varying in space
such that the hybridization is of the form∑

Q(r),k∈BZ

J (r)

2
(cos kx − cos ky)c†

k+Q(r)/2ck−Q(r)/2 + H.c.,

(15)

where we consider spatial variation of both the energy scale
J and the ordering vector Q. As we discussed above, the CDW

feature in the Raman response is around the energy scale 2J .
Consequently, if the spatial variation is mostly in the ordering
vector Q(r), which seems to be the case for the cuprates
[7], we expect that the Raman response is not affected too
much by the short-range nature of the order. This is because
Raman response is an energy-resolved but momentum-
averaged probe, and therefore the dip hump is not blurred by
variations in Q(r), provided J remains uniform over different
patches. This is in contrast to momentum-resolved probes
such as, e.g., ARPES, which depend on well-defined momen-
tum states and are therefore sensitive to the variation of the
ordering wave vector. As a proof of principle, in Fig. 4(d)
we plotted �χB2g (ω) obtained by averaging over the Raman
responses obtained by three different ordering vectors Q and
Q ± δQ. We took δQ/Q = 0.1, which is consistent with the
worst-case scenario of the broadening of the x-ray lines used
in, e.g., Ref. [7]. As expected, we find that the energy scale at
which the dip-hump feature appears does not change signif-
icantly with 10% variation of the ordering wave vector, and
therefore the feature itself is not blurred by the spatial aver-
age. While this computation is sufficient to demonstrate that
Raman response is robust to spatial variations of the ordering
wave vector, for more accurate quantitative comparison with
experiments (which is not the goal here) one needs to average
the Raman signal with respect to a Gaussian distribution of
ordering wave vectors.

III. CDW AND PG COEXISTENCE

We shall now introduce the effects of the PG, and show
how this can impact the properties of the CDW phase that we
described in the previous sections. This will allow us to draw
definitive conclusions on the detection of the CDW in cuprates
within Raman spectroscopy experiments.

A. PG modeling

PG is introduced here by using the phenomenological
ansatz inspired by the proposal of Yang, Zhang, and Rice
(YZR model [22]), and which has proved successful in grasp-
ing many experimental features of cuprates [23]. According
to the YZR model, the Green’s function develops a pole sin-
gularity in the self-energy and assumes the form at low ω:

GPG(k, ω) ∼ 1

ω − ξ c
k − |�PG

k |2
ω−ξ f

k

. (16)

Here ξ c
k is the free-electron dispersion [see Eq. (4)], ξ f

k =
2t (cos kx + cos ky) is a strong scattering diamondlike line
which crosses the perfect nesting diagonals in the BZ quad-
rants. The origin of this scattering has been strongly debated.
It has been ascribed to short-ranged AF order [23] (which
could survive at large doping despite the long-ranged AF cor-
relation dies) or other more exotic mechanisms, like a not-yet
well-identified hidden order, or Mott physics. Notice that a
polelike form in the self-energy had been previously predicted
and widely analyzed by cluster dynamical mean field theory
studies [43–45] within the framework of the microscopic two-
dimensional Hubbard model. Following the YZR formulation,
we adopt here a d-symmetric PG by setting the self-energy
pole strength �PG

k = �(cos kx − cos ky). In order to simplify
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FIG. 5. Schematic representation of the model in Eqs. (17) and
(20). The f fermions live in the top abstract layer and hybridize with
the c fermions. The strength of the hybridization potential � has a
d-wave symmetric form. The color map on the bonds of the physical
layer represents a CDW with wave vector Qx = 2π

4a x̂.

our analysis, we set the same t in ξ f
k and in ξ c

k . We fix here
the doping p = 0.12. This allows us to disregard the doping
dependence of the band parameters originally considered by
YZR. In Sec. III D we shall rediscuss doping dependencies
within the contest of the interplay between CDW and PG.
The Green’s function (16) can be obtained from a two-band
theory that describes the coupling between two different kinds
of fermions c†

k and f †
k [46]

HPG =
∑
k∈BZ

ψ
†
kHPG(k)ψk, (17)

where ψ
†
k = (c†

k, f †
k ) and

HPG(k) =
(

ξ c
k �PG∗

k

�PG
k ξ f

k

)
. (18)

We can describe the f fermions as living in an abstract layer
and hybridizing with the physical c fermions; see Fig. 5. To
obtain the Green’s function in Eq. (16) we need to integrate
out the f fermions [46]. This is easily obtained within the
path-integral formalism [47] by considering an effective ac-
tion Seff[c̄, c] for the c fermions only (see Appendix D):

exp (−Seff[c̄, c]) ∝
∫

D( f̄ , f ) exp(−S[c̄, c, f̄ , f ]), (19)

where S[c̄, c, f̄ , f ] is the action corresponding to the
Hamiltonian HPG in Eq. (17).

B. PG and CDW modeling

Within our formalism, we can consider now at the same
time the CDW and the PG, by proposing the following
Hamiltonian in the k space:

H =
∑
k∈BZ

ξ c
kc†

kck +
∑

Q,k∈BZ

λQ(k)c†
k+Q/2ck−Q/2 + H.c.

+
∑
k∈BZ

ξ f
k f †

k fk +
∑
k∈BZ

�PG
k c†

k fk + H.c. (20)

We need again to integrate out the auxiliary f fermions in
order to obtain the corresponding c fermions effective action.
Letting the details of this integration for Appendix D, we
obtain

Seff[�̄,�] = −
∑

ωn,p∈rBZ

�̄npG−1(p, iωn)�np, (21)

FIG. 6. (a) Comparison between the DOS of the CDW, PG, and
CDW + PG phases. (b) FS for the CDW + PG phase (with the same
color map code adopted in Fig. 2). (c) Corresponding ARPES dis-
persion along the path k⊥. The dashed white line is the free-electron
dispersion and the red arrows are indicating new electronics transi-
tions. Liechtenstein parameter set is adopted here.

where �̄np is the n-Matsubara component of the spinor �̄p
[see Eq. (8)],

G−1(p, iωn) = iωn1 − H(p) − |�p|2
iωn1 − Hf

p
, (22)

with

�p =

⎛
⎜⎜⎜⎜⎜⎝

�PG
p 0 · · · 0

0 �PG
p+Qx

· · · 0
...

...
. . .

...

0 0 · · · �PG
p+3Qx+3Qy

⎞
⎟⎟⎟⎟⎟⎠, (23)

and a similar definition for Hf
p but with �PG

j → ξ f
j .

Like for the CDW-only case, we can relax the condition
p ∈ rBZ and work only with the first element of the G(p, ω).
Thus, the c-fermion spectral function is given by

A(k, ω) = − 1

π
Im G11(k, ω), (24)

where k ∈ BZ. From the Green’s function, we can calculate
all single-particle quantities. As we stressed in the previous
Sec. II, the change of the band parameters does not produce
too much differences in determining the CDW feature in
the Raman B2g response. For sake of convenience, we shall
consider here the Liechtenstein set, J/2 = 0.2t , � = 0.8t and
a hole-doping p = 0.12, which corresponds to a chemical
potential μ = −0.804t .

C. CDW and PG spectrum

In Fig. 6(a) we show the DOS, ρ(ω), with both CDW and
PG (green line). For sake of comparison, we also show the
same DOS when only the CDW order [Eq. (7)] and only the
PG [Eq. (17)] are present (blue and orange lines, respectively).
We note the characteristic PG spectral weight loss around the
Fermi level ω = 0, and that the CDW spectral weight dip is
subleading (see Fig. 3). The characteristic modulations due
to the bands folding away from ω = 0 remain well visible,
but are also a rather small feature compared to the large
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FIG. 7. B2g and B1g Raman responses for the different phases FL, PG, CDW, and PG + CDW. (a) Absolute B2g Raman response.
(b) Relative B2g Raman response. (c) Absolute B1g Raman response. (d) Relative B1g Raman response. Here the CDW response is
10 times weaker than the PG one.

PG spectral depression. These results are in line with several
observations on the DOS of cuprates via STM [48,49], where
the PG features are now well established, while the features
related to the CDW could be revealed only with a more in-
volved real-space map analysis [50]. Notice though that while
the presence of the CDW could finally be detected in the DOS,
it has not been possible to extract from these measures a clear
CDW energy scale.

It is also useful to observe the spectral density in mo-
mentum space A(k, ω), which can be directly accessed by
ARPES measurements. In Fig. 6(b) we plot a spectral intensity
cut A(k, ω = 0) at the Fermi level. This panel should be
compared with Figs. 2(g)–2(i). Again, the PG dominates the
spectra, and we recover the typical Fermi arc, which is a well-
known feature in underdoped cuprates [6,22], and which the
CDW order alone is not able to reproduce (unless considered
at artificially intense values, not observed in cuprates). An en-
ergy vs momentum cut along the BZ diagonal k⊥ is displayed
in Fig. 6(c). Again, this panel should be compared with the
spectral plot along the same cut for only the CDW case in
Figs. 2(j)–2(l). By looking at the occupied side ξk < ξF , we
can observe that the dominant PG opens a wide gap close
to the antinodal regions, shifting down all the bands, that are
like compressed. The resulting spectra are less dispersive, and,
the fact that is more interesting for our discussion, the CDW
folded bands are much less visible than in the case where only
the CDW is present. The resulting effect is the appearance
of waterfall-like features, i.e., abrupt vertical jumps in ξk vs
k-band dispersion, in going from k = (0, π ) → (π/2, π/2)
and approaching the nodal regions. Waterfall features in
cuprate spectra are well known [51–56], and ascribed to

phonon-electron or electron-electron correlations. Our result
shows that these features may be related to the CDW ap-
pearance as well. The subleading order of the CDW effects
compared to the PG ones makes the detection of CDW within
ARPES highly nontrivial. An involved analysis of the bands
folding, along the lines of Ref. [57], may be required, possibly
considering precise band structure details.

This result suggests an answer to the open question on
why it has been difficult to detect the CDW order within
ARPES up to now, differently from x rays and STM measure-
ments. Notice, however, that the CDW folded bands remain
clearly visible in the unoccupied side ξk > ξF of the spectra.
We predict then that future advancements in ARPES tech-
niques that could allow accessing the unoccupied states, like
laser-pumping photoemission (on the lines of [58]) or inverse
photoemission (see, e.g., [59,60]), could finally reveal the
CDW folded band structure.

We now turn to the Raman response, which is obtained by
using Eq. (12). We shall show that thanks to the momentum-
space selectivity and the access to unoccupied states, this
probe is still able to capture the CDW even in the presence
of a PG, as pointed out in experiments.

In Fig. 7(a) we show the B2g response obtained with both
the CDW and the PG. For sake of comparison, we also plot
the same Raman response with only the PG, CDW, and the
simple FL. In the case of the B2g response, the CDW and
the PG are of comparable intensity, and they “sum up” in the
relative Raman response �χB2g to produce a dip-hump feature
which has both contributions, as clearly shown in Fig. 7(b).
The B2g response is still in agreement with the experimental
B2g feature [displayed in Fig. 4(a)], and this shows that this
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Raman B2g response is indeed capable to detect the CDW even
in presence of the PG.

This behavior must be contrasted with the one of the B1g

response which is almost completely dominated by the PG,
displaying little contribution from the CDW [see Figs. 7(c)
and 7(d)]. Moreover, as we discussed in Fig. 4(c), the shape
of the relative �χB1g response strongly depends on the details
of the band parameters. CDW cannot be well detected in
this Raman polarization channel, as pointed out in the recent
experimental work of Ref. [18].

D. CDW and PG energy scales

The relation between the CDW and the PG displayed in
the Raman B2g response has been strongly debated [18,21].
In particular, the experimental results have pointed out that
the Raman B2g response allows extracting the CDW energy
scale ECDW, defined as the energy of the maximum of the
hump in �χB2g [Fig. 4(b)]. This procedure is similar to the
one well established for the PG energy scale EPG, which is at
its time defined as the energy of the maximum in the Raman
�χB1g. The remarkable experimental fact is that ECDW(p), as
a function of doping p, follows the trend of EPG(p), rather
than the one of TCDW(p), the CDW transition temperature,
as it would be naturally expected from a standard mean-field
behavior. Our result about the interaction between CDW and
PG, revealed by our modeling of the B2g response [Fig. 7(b)],
suggests indeed that the ECDW(p) may be ruled by the PG.

In order to show this, we introduce a doping dependence
in our model. We shall neglect at the first-order approxima-
tion the doping dependence of band parameters coming from
correlation effects (see Ref. [22] for a more detailed modeling
of this), and focus on the doping dependence of the PG, �,
which we extract from Raman experiments [61]:

�(p) = θ (0.2 − p) (1 − 2p)t, (25)

where θ (x) is the Heaviside step function. This �(p) form
simulates the sudden collapse of the PG phase around p =
0.2, as it was observed in experiments [61]. Always within a
first-order approximation, we also neglect the doping depen-
dence of the CDW phase considering

J (p) ≈ const = 0.4t . (26)

With this choice, any possible doping dependence of energy
scale must take its roots from the PG one. Notice that in our
model there is not explicit interaction between the PG and
CDW. This interaction is, however, implicit via the coupling
� of the auxiliary pseudogap f fermions and the coupling
J of the CDW interaction with the bare c-electron band [see
Eqs. (20) and (5)].

We can calculate the Raman response for different symme-
tries and doping levels and extract the CDW ECDW and PG
EPG energy scales from the B2g and B1g Raman responses as
the frequency ων where the maximum of the hump following
the dip is located, like in the Raman experiments [18,62] [see
Fig. 8(a)]. For comparison, we display the theoretical ECDW

(red line) and EPG (green line) in Fig. 8(b). As a matter of
fact, the CDW energy scale ECDW definitively follows the
PG one EPG, in close resemblance with the aforementioned
experiments [see Fig. 8(a)] [18], proving that indeed the PG

FIG. 8. ECDW(p) and EPG(p) energy scales extracted from the
B2g and B1g Raman responses, respectively. In (a) is shown
the experimental results adapted from [18], while in (b) is shown the
theoretical results obtained from our CDW-PG coexistence model
given in Eq. (22).

can be the driving force dominating the CDW energy scale
too.

A last point that we would like to call attention to is the
role played by the CDW order on the energy scales shown in
Fig. 8(b). A first look at Fig. 7(b) may lead the reader to think
that the charger order has no influence on the energy scales
ECDW and EPG. However, given the implicit coupling between
� and J in our model [see Eq. (22)], both energy scales carry
a J dependence. To show that, in Appendix E we display the
doping-dependent energy scales for the case J (p) ∝ TCDW(p).
From this result we see the above-mentioned fact.

IV. CONCLUSIONS

We study the charge density wave in cuprate high-
temperature superconductors, focusing on its detection within
Raman spectroscopy. To this purpose we adopt a micro-
scopic tight-binding approach to describe the Cu-O planes
of cuprates, and consider terms that describe both a bimodal
x−y CDW (which mimics experiments [7]) and the pseudogap
phase within a Yang-Zhang-Rice–type approach [22]. Our
main result is to show that the CDW produces a distinctive
dip-hump feature in the Raman B2g light-polarized response,
consistent with what observed in Raman experiments [18].
This feature is universal and only weakly dependent on the
details of the band parameters of the different cuprate com-
pounds. We interpret these findings in terms of electronic
Raman excitations which involve electronic branches folded
into the Brillouin zone reduced by the four-lattice-steps CDW
periodization in the x and y directions. These electronic
branches are most relevant close to the nodal regions of
momentum space, and hence produce a signature in the B2g

geometry which is most sensitive to that region. In sharp con-
trast, the B1g Raman response is less sensitive to the electronic
changes brought about by the CDW order and most sensitive
to the details of the band dispersion. The CDW signature in
this light polarization is therefore strongly compound depen-
dent. By adding the PG interaction, we show that the B2g CDW
feature survives, validating its interpretation within Raman
experiments on cuprates.

We observe that in general the effects of the CDW order
are subleading with respect to the PG ones. PG interaction is
overwhelming in the B1g response, which remains the most
adapted one to detect the PG. This latter also dominates the
spectral weight depression around the Fermi level in the den-

165111-9



M. F. CAVALCANTE et al. PHYSICAL REVIEW B 108, 165111 (2023)

sity of states, though subleading CDW distinctive features can
be identified [48]. PG has more impact on ARPES, where
the CDW order detection remains debated. This is in part
due to the fact that CDW folded bands are most visible in the
unoccupied side of the spectra, which is not easily accessible
by ARPES. CDW features in the occupied side, located closer
to the antinodes, may produce waterfalls structures that are
blurred by the short-ranged nature of the CDW order in these
materials (in the absence of strong magnetic fields).

Finally, we show that the dominant role of the PG may also
be at the origin of the monotonic behavior of the CDW energy
scale with doping, that, like the superconducting gap, does
not follow the domelike shape of its critical temperature. This
latter behavior is what would be expected in a conventional
mean-field description of a broken symmetry. This is sugges-
tive of the role of the pseudogap in ruling the energy scales
on the complex and exotic phase diagram of cuprate high-
temperature superconductors [19–21]. Possible future work
should address the competition between the CDW and the
PG starting from microscopic theories that treat these two
phenomena on the same footsteps, like, e.g., Hubbard-type
Hamiltonians (see, e.g., Ref. [17]). The charge order should
be also studied within the superconductor phase where other
nontrivial symmetry-broken orders, like pair density wave
[63], could emerge.
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APPENDIX A: 16 × 16 CDW MATRIX HAMILTONIAN

In this Appendix, we write the 16 × 16 CDW matrix
Hamiltonian in Eq. (7). The d-symmetric, four-periodic, and
bidirectional charge modulation matrix in Eq. (7) is given by

H(p) =

⎛
⎜⎜⎜⎜⎝

A0 B 1
2

0 B 7
2

B 1
2

A1 B 3
2

0

0 B 3
2

A2 B 5
2

B 7
2

0 B 5
2

A3

⎞
⎟⎟⎟⎟⎠, (A1)

where

An =

⎛
⎜⎜⎜⎜⎝

ξp+nQy λ 1
2 ,n 0 λ 7

2 ,n

λ 1
2 ,n ξp+nQy+Qx λ 3

2 ,n 0

0 λ 3
2 ,n ξp+nQy+2Qx λ 5

2 ,n

λ 7
2 ,n 0 λ 5

2 ,n ξp+nQy+3Qx

⎞
⎟⎟⎟⎟⎠
(A2)

FIG. 9. Square of vertex function [Eqs. (B1) and (B2)] for the
B2g (a) and the B1g (b) channels.

and

Bn =

⎛
⎜⎜⎜⎜⎝

λ0,n 0 0 0

0 λ1,n 0 0

0 0 λ2,n 0

0 0 0 λ3,n

⎞
⎟⎟⎟⎟⎠, (A3)

with 0 denoting the 4 × 4 null matrix, λm,n ≡ λQ(p + mQx +
nQy), ξp was defined in Eq. (3) and Qx,y just below Eq. (5).

APPENDIX B: VERTEX FUNCTION

In this Appendix, we show the BZ regions probed by
the B2g and B1g light polarizations. For a simple single-band
model, the vertex matrices in Eqs. (13) and (14) become
scalars. Besides, assuming Liechtenstein band parameters set
(see Table I), we have explicitly

�
B2g

k = −4t ′ sin kx sin ky, (B1)

�
B1g

k = 2[t (cos kx − cos ky) + 4t ′′(cos 2kx − cos 2ky)]. (B2)

In Fig. 9 we plot the square of each vertex function above in
the first quadrant of the BZ. We can see that the B2g vertex
probes the nodal region of the BZ whereas the B1g one the
antinodal region.

APPENDIX C: DERIVATION OF RAMAN RESPONSE

In this Appendix, we derive the Raman responses given
in Eq. (12). The following calculation can also be applied to
other dynamical responses, such as optical conductivity. In the
Matsubara frequency axis we have the general expression for
the response function [47]

χ̃ (q, i�m) =
∫ β

0
dτ ei�mτ χ̃ (q, τ ), (C1)

where χ̃ (q, τ ) = −〈Tτ O(q, τ )O(−q, 0)〉, with Tτ the com-
plex time τ ordering operator, is the source perturbation. For
the Raman response, we have [35]

O(q) ≡
∑
n,p

�np�
†
np+q�np, (C2)

where n corresponds to the index of the basis in which the
Hamiltonian (7) is written and �np are the vertex matrix el-
ements [see Eqs. (13) and (14)], which give the scattering
strength. One important point to note is that q and �m are
bosonic quantities. Without loss of generality, in Eq. (C2) and
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the upcoming derivation we suppress the spin index. From
Eq. (C2) we see that the Raman response measures “effective
density fluctuation” in the system [35].

Considering the ladder approximation [35,36,47], we
obtain

χ̃ (q, i�m) = −
∑
n,n′,p

�np�n′p+q

∫ β

0
dτ ei�mτ Gn′n(p + q,−τ )

× Gnn′ (p, τ ) + (vertex correc), (C3)

where Gnn′ (p, τ ) = −〈Tτ�np(τ )�†
n′p(0)〉 is the interacting

Green’s function and +(vertex correc) means the vertex cor-
rections. For n �= n′ this Green’s function is finite due to the
“interband” excitation terms present in the CDW Hamiltonian
of Eq. (7). Performing a Fourier transformation in the product
of the two Green’s functions with opposite time argument and
using the standard relation [47]

Gnn′ (p, i�m) =
∫ +∞

−∞
dω′ Ann′ (p, ω′)

i�m − ω′ , (C4)

where Ann′ (p, ω′) is the spectral function, we obtain (ignoring
the vertex corrections hereafter)

χ̃ (q → 0, i�m) = − 1

β

∑
iν

∑
n,n′,p

�np�n′p

∫ +∞

−∞
dω′dω′′

× Ann′ (p, ω′)
i(ν + �m) − ω′

An′n(p, ω′′)
iν − ω′′ , (C5)

where ν is a fermionic Matsubara frequency. Summing over
the Matsubara frequencies [47]∑

ν

1

iν − y1

1

iν − y2
= β

y1 − y2

[
1

eβy1 + 1
− 1

eβy2 + 1

]
,

(C6)

performing the analytic continuation i�m → � + iη, and tak-
ing the limit of zero temperature we obtain for Imχ̃ (q →
0,�) ≡ χ (�)

χ (�) =
∑
n,n′,p

�np�n′p

∫ 0

−�

dω′Ann′ (p, ω′)An′n(p, ω′ + �)

(C7)

=
∑

p∈rBZ

∫ 0

−�

dω′Tr[�pA(p, ω′)�pA(p, ω′ + �)]. (C8)

Finally, after normalizing the above expression with respect to
the number of states in the BZ, N, we obtain Eq. (12).

APPENDIX D: INTEGRATING OUT THE f FERMIONS

In this Appendix, we give details about the procedure to
integrate out the auxiliary f fermions in the Hamiltonian (20).
In the path-integral formalism the partition function corre-
sponding to the Hamiltonian in Eq. (20) is [47]

Z =
∫

D(c̄, c)D( f̄ , f )e−S[c̄,c, f̄ , f ]. (D1)

Here D(ᾱ, α) = ∏
ωn

∏
k dᾱkndαkn, where α = c, f (and ᾱ)

is a Grassmann’s variable, and ωn are the fermionic Matsubara

frequencies. In the imaginary-time axis, the action is

S[c̄, c, f̄ , f ] =
∫ β

0
dτ

∑
k∈BZ

(c̄k∂τ ck + f̄k∂τ fk ) + H, (D2)

where the time dependence of the quantities was omitted.
Similar to the spinor �p in Eq. (8), if we define

ϒ̄p = ( f̄p, f̄p+Qx , f̄p+2Qx , . . . , f̄p+3Qx+3Qy ), (D3)

we can rewrite the above action as

S[c̄, c, f̄ , f ] =
∑

p∈rBZ

∫ β

0
dτ

{
�̄p[∂τ + H(p)]�p

+ ϒ̄p
(
∂τ + Hf

p

)
ϒp + �̄p�pϒp + H.c.

}
,

(D4)

where we use the notation ∂τ ≡ ∂τ1 and Hf
p and �p are

defined in the main text [see Eq. (23)]. Taking the Fourier
transform and performing the integral over time, we obtain

S[c̄, c, f̄ , f ] =
∑
ωn,p

{
�̄np[−iωn1 + H(p)]�np

+ ϒ̄np
( − iωn1 + Hf

p

)
ϒnp

+ �̄np�pϒnp + H.c.
}
. (D5)

Defining new variables

�̄np = �̄np
�p

Hf
p − iωn1

+ ϒ̄np, (D6)

�np = �∗
p

Hf
p − iωn1

�np + ϒnp, (D7)

the partition function in Eq. (D1) becomes

Z =
∫

D(�̄,�)D(�̄,�)e−S[�̄,�,�̄,�], (D8)

with the transformed action

S[�̄,�, �̄,�] = −
∑
ωn,p

{
�̄npG−1(p, iωn)�np

−�̄np
( − iωn1 + Hf

p

)
�np

}
, (D9)

where G−1(p, iωn) is defined in the main text [see Eq. (22)].
Since the � part of the above action is freelike, we can directly
perform its path integration to obtain Z�. Thus,

Z = Z�

∫
D(�̄,�)e−Seff[�̄,�], (D10)
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FIG. 10. ECDW(p) and EPG(p) energy scales extracted from the
B2g and B1g Raman responses, respectively, and considering that the
CDW phase has an explicit doping dependence given by Eq. (E1).

where Seff[�̄,�] is the effective action of c fermions given in
Eq. (21).

APPENDIX E: DOPING-DEPENDENT CDW ORDER

We show here how a doping dependence of the CDW
phase influences the results on the energy scales displayed in
Fig. 8(b). Within a general mean-field framework, we assume
that J (p) follows the domelike doping dependency of TCDW(p)
[see Fig. 1(a)]:

J (p) = 0.4t

√
1 −

(
p − 0.13

0.04

)2

, (E1)

where Jmax = J (p = 0.13) = 0.4t and J (p) goes to zero at
p = 0.13 ± 0.04. We perform again the Raman response cal-
culations for different doping levels and extract the energy
scales. The results are displayed in Fig. 10. We can see that
the doping dependency of the J changes both energy scales, as
a consequence of the implicit interaction between the PG and
CDW phases in Eq. (22). This shows that, though the CDW
order is subdominant with respect to the PG, its effects could
be a priori visible on the energy scales.
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