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Itinerant ferromagnetism in a spin-fermion model for diluted spin systems
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We investigate itinerant ferromagnetism using a diluted spin-fermion model, derived from a repulsive Hubbard
model, where itinerant fermions are coupled antiferromagnetically to spin auxiliary fields in a three-dimensional
simple cubic lattice. We assign a positive finite value (∼bandwidth) to the Hubbard on-site potential (U) at a
fraction of sites to model magnetic impurities and set U = 0 for rest of the sites, which corresponds to the
nonmagnetic sites. In this inhomogeneous Hubbard-model representation for randomly distributed magnetic
impurities, which is an appropriate model to study diluted spin systems like diluted magnetic semiconductors,
itinerant carriers are confined to the impurity band and play a key role in determining the kinetic energy
of the system and, consequently, the carrier-spin polarization. We focus, in particular, on understanding the
spin-dependent transport properties of itinerant fermions in the impurity band by taking positional disorder
of the auxiliary fields into account. Our semiclassical Monte Carlo calculations show that the ferromagnetic
transition temperature of the carrier spins indeed shows an optimization behavior with the carrier density,
similar to experimental observation in diluted magnetic semiconductors. We calculate the transport properties in
detail to establish a one-to-one correspondence between the magnetic and transport properties of the carriers. In
addition, the spin-polarized resistivities and density of states show that the system turns out to be a half-metallic
ferromagnet. Overall, our results obtained beyond the perturbative regime are significant for understanding the
ferromagnetism in diluted magnetic semiconductors.
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I. INTRODUCTION

The history of magnetism is very old but scientists have
begun to understand the concept during the 20th century [1].
A detailed understanding of magnetism is always necessary
to invent and design unique magnetic materials [2–5]. As
of now, microscopic description of itinerant ferromagnetism
still remains a subject of intense research [6–10]. Due to the
technological applications, even today the study of itinerant
ferromagnetism remains one of the most interesting as well
as challenging avenues for both experimental and theoretical
condensed matter physicists.

In recent years, significant progress has been made in
understanding magnetic ordering using the microscopic the-
ories of itinerant magnetism. In 1938, the Stoner model was
first introduced to interpret itinerant ferromagnetism [11]. In
his phenomenal work, Stoner pointed out that ferromagnetic
(FM) order can arise due to the interaction among the itiner-
ant electrons, which spin spilt the electronic band structure.
For various metals, such as Fe, Co, and Ni, the itinerant
electrons exhibit FM behavior [11,12]. In these materials,
electrons whose spins align to form a FM state are extended
and give rise to metallicity. This itinerant carrier-driven ferro-
magnetism also appears in 3d and 4d electron systems like,
ZrZn2 [13], doped-manganites [14], doped-cobaltites [15],
and strontium ruthenate [16].
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Prior to Stoner, one of the first justifications of quan-
tum ferromagnetism was put forward by Heisenberg, who
established that the exchange interactions, arising due to
spin-dependent Coulomb repulsion, drives the magnetism be-
tween localized moments [17]. The Heisenberg model both
in classical and quantum forms remains one of the finest and
oldest tools to explain the magnetism and related physical ob-
servables in strongly correlated magnetic insulators [18–21].
Although a FM Heisenberg model is explored to understand
itinerant ferromagnetism [22], the real difficulty lies in arriv-
ing at the effective Hamiltonian of an interacting spin system
with negative exchange coupling [20]. Ferromagnetic kinetic
exchange between localized spins that arises from an interplay
of spin and orbital degrees of freedom is relatively rare [23].

However, probing ferromagnetism in diluted FM semi-
conductors using the Heisenberg model is limited [24–26].
Dual semiconducting and magnetic properties of FM semi-
conductors [27,28], a diluted spin system, where magnetic
impurities are doped in a host semiconductor, is expected to
bring technological revolution in spintronics [29–31]. Theo-
retical investigation is necessary to understand the physics of
these materials that will help us to push the FM transition TC

beyond room temperature [32].
In this class of diluted spin systems, the magnetic impu-

rities provide both itinerant carriers and localized moments
[31,32]. The itinerant carriers reside in the shallow accep-
tor level introduced by magnetic impurity ions in the host
semiconductor band gap. It is widely accepted that the (ex-
change) interaction between the magnetic spins is mediated
by the itinerant electrons [33–37]. This warrants an additional
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interband coupling between the itinerant carriers and the
localized moments to study the magnetic and transport prop-
erties of charge carriers.

To understand the physics of spin spliting in the carrier im-
purity band (IB) from the perspective of an itinerant-exchange
mechanism, we focus on the strong coupling limit. In this
limit, carriers are firmly localized to the impurity sites and, as
a result, the acceptor levels give rise to a distinct IB [38,39].
Although the IB picture in the most studied GaMnAs semi-
conductor remains controversial to date [40–43], the addition
of Mn to GaN like large band-gap semiconductors give rise
to a deep IB within the host band gap [44–46]. Moreover, a
crossover between the valence band to IB picture was obtained
in GaMnAs with reduction in Mn doping [47]. In addition,
a resonant tunneling spectroscopy investigation concluded
that the Fermi level is not located below the valence band
maxima in GaMnAs [48]. Besides, positive magnetic circular
dichroism background signal caused by the optical transitions
indicates the presence of an IB in the band gap [49]. Obser-
vation of high effective mass of the holes and a red-shifting
of the midinfrared resonance of optical conductivity also sug-
gest that the carriers are residing within the IB [50]. Another
important identification of the IB is the optimization of FM
TC with respect to effective carrier density as the carriers at
the band edges of the IB are more localized than at midband
region [43]. However, it remains debated whether the carriers
in GaMnAs reside in the valence band or in an IB [31,32,51].

Due to disorder (antisite disorder [52] and interstitial de-
fects [53]), the IB remains less than half filled, i.e., carrier
density remains smaller than the impurity density and the
Fermi energy lies in the IB. The position of the Fermi energy,
decided by the density of the itinerant carriers, plays a key role
in determining the kinetic energy of the system. Consequently,
the gain in kinetic energy is considered a major factor that
decides the carrier-spin polarization. Surprisingly, to the best
of our knowledge only one study so far has been carried out by
implementing the Hubbard-model representation of randomly
distributed magnetic impurities to study carrier-mediated FM
ordering in diluted magnetic semiconductors [54]. The mi-
croscopic correlated lattice fermion model implemented in
Ref. [54] treats the impurity concentration, impurity disorder,
and electron correlation on equal footing. In that work, the
collective magnetic response in the FM state was carried out
within a mean-field-plus-spin-fluctuation approach. Further,
detailed studies comprising carrier-spin-dependent transport
of localized carriers are limited to date.

In this paper, we focus on the spin-dependent transport
properties of the carriers confined to the IB. In our effec-
tive spin-fermion model Hamiltonian, derived from repulsive
Hubbard model, we assign the U ∼ BW (bandwidth) on a
small percentage of sites in a simple cubic lattice and set it to
zero for the rest of the sites. We take the carrier density with
respect to the impurity concentration, which is concomitant
with experimental measurements. We organize this paper as
follows: In Sec. II, we introduce the effective spin-fermion
model derived from the Hubbard Hamiltonian and outline our
method. We frame the IB scenario in Sec. III. In Sec. IV,
we present our numerical results, comprising spin-dependent
transport of carriers for U ∼ BW . Section V is dedicated to
compare the magnetic and transport properties by varying the

on-site interaction U . Section VI is devoted to analyzing our
main results for two different concentration of the impurities.
Finally, in Sec, VII we summarize our results.

II. MODEL HAMILTONIAN AND METHOD

We consider one band electron-hole symmetric Hubbard
Hamiltonian

H = −t
∑

<i, j>,σ

(c†
i,σ c j,σ + H.c.)

+U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
,

where the first term is the kinetic energy [t is the nearest-
neighbor hopping parameter and c†

iσ (ciσ ) are the fermion
creation (annihilation) operators at site i with spin σ ] and
the second term represents the repulsive Hubbard interaction
(U > 0).

We reduce the quartic fermion problem present in the
repulsive Hubbard model into a quadratic one by introduc-
ing the Hubbard-Stratonovich field and extract the following
effective spin-fermion-type Hamiltonian by suppressing the
imaginary-time dependence from the Hubbard-Stratonovich
fields (for details, please see Refs. [55,56]). Then, the above
Hamiltonian transfers to

Hs f = −t
∑

<i, j>,σ

(c†
iσ c jσ + H.c.)

+U/2
∑

i

(< ni > ni − mi.σi )

+ (U/4)
∑

i

(
m2

i − < ni >2
) − U

2

∑
i

ni,

where fermions are coupled to the classical auxiliary fields
(mi).

The nonmonotonic U dependence of the antiferromagnetic
transition temperature TN is established for undiluted system
(U at all sites, i.e., x = 1 limit) at half filling using a semi-
classical Monte Carlo (s-MC) approach [55] that matches well
with determinant quantum Monte Carlo (DQMC) results [57].
Recently, we used the s-MC approach to show that the anti-
ferromagnetic order persists beyond the classical percolation
threshold in the diluted one-band Hubbard model at absolute
half filling in three dimensions [56].

For diluted spin systems, we have considered finite U ∼
BW at randomly chosen sites k (with concentration x) and
put U = 0 for rest of the sites (with concentration 1 − x). Our
diluted Hamiltonian is of the form [54]

Hs f = −t
∑

<i, j>,σ

(c†
i,σ c j,σ + H.c.)

+U/2
∑
k∈I

(< nk > nk − mk .σk )

+ (U/4)
∑
k∈I

(
m2

k − < nk >2
) − U

2

∑
k∈I

nk − μ
∑

i

ni,

where I represents the randomly chosen set of impurity
sites. The overall electron density n is controlled through the
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chemical potential (μ) given in the last term. μ is chosen
self-consistently during the thermalization process to get the
desired electron density n at each temperature. In the quan-
tum Monte Carlo method, mk variables are often used as
Ising-like [58–60]. These Ising-like auxiliary fields were in-
troduced by Hirsch through a discrete Hubbard-Stratonovich
transformation [61]. So, we use Ising-like auxiliary fields in
our calculations. For this case the carriers are either point
towards up or down direction in strong coupling limit.

We use the s-MC method to anneal the system from high
temperature, consisting of randomly oriented auxiliary fields
to obtain the ground state for a fixed carrier density. First,
we chose a set of random auxiliary fields mk at the desired
number of sites and set 〈nk〉 to be uniform for a system size
of N = L3 = 103 and calculate the internal energy of the
carriers by exact diagonalization scheme. Then we update the
auxiliary field at an impurity site, say k, and recalculate the
internal energy of the carrier using the new auxiliary field
configuration. We employ the Metropolis algorithm to accept
or reject the above update. At every tenth Monte Carlo step,
using the resulting mk configuration, we update 〈nk〉 self-
consistently. This new set of 〈nk〉 is used to perform the further
Monte Carlo steps. To access large system size, we adopt a
Monte Carlo update technique based on the traveling cluster
approximation [62,63].

For impurity concentration x, we assign finite U for 103x
sites (for a system size 103) randomly and set U = 0 for the
rest of the sites. We define carrier density as the electrons
(or holes) per impurity site. Direct exchange interaction be-
tween the impurity spin sites is not taken into account, which
is a valid approximation in the diluted limit, by avoiding
the nearest-neighbor impurity pairing. All physical quantities
such as carrier magnetization and conductivity are averaged
over ten different positional disorder configurations of auxil-
iary fields in addition to the quantum and thermal averages
taken during the Monte Carlo simulations. In this paper, we
consider mainly x = 0.25, but compare our main results be-
tween x = 0.25 and 0.125 in the end. All parameters such
as on-site repulsion (U ) and temperature (T ) are scaled with
hopping parameter (t). We use U ∼ BW and vary the carrier
density with respect to x from 0 to 1.

III. IMPURITY BAND PICTURE

In the IB picture, which is relevant to FM semiconductors,
carriers reside in the shallow acceptor level separated from the
valence band due to the strong coupling between the impurity
ions and the carriers. The width of the IB and gap between
IB and valence band depend upon the coupling strength. The
location of the Fermi energy inside the IB plays a vital role
in determining the transport and magnetic properties of the
system. The optimum TC is expected for which Fermi energy
is at the center of the band to gain maximum kinetic energy
from the delocalization of the carriers and supposed to de-
crease towards the edge of the IB.

Using our s-MC calculations, we identify that the itinerant
FM order obtained in the IB picture in the spin-fermion model
is due to the following scenario of events in which one type
of carrier (say, up) is more mobile than the other one (down)
and drives the magnetism. A schematic figure is shown in

FIG. 1. Schematic: Large arrows indicate the auxiliary fields
while small arrows are the carriers (shown for sites i and j). We also
show the intervening nonimpurity site (k). Top Panel: Half-filling
(one carrier per each impurity site) case. We find that the carriers
orient randomly due to intervening nonimpurity site at half-filling.
Neither (a) nor (b) are found to be the ground state. Bottom panel:
Our calculations show ferromagnetic state is favored due to gain
in kinetic energy via the nonimpurity site as shown in (c) when
compared to the scenario drawn in (d).

Fig. 1 by assuming an IB picture where carriers are antifer-
romagnetically aligned to auxiliary fields at the impurity sites
(sites i and j). Intervening nonimpurity site k is also shown for
completeness. For the half-filling case (one carrier per each
impurity site), one would naively expect an antiferromagnetic
ground state mediated by carrier via the nonimpurity sites.
But it is also apparent the magnetic ground state strongly de-
pends on the magnetic impurity concentration. For x = 0.25,
which is below the classical percolation limit (xsc

p ∼ 0.31),
we do not find any magnetic ordering. This shows that the
antiferromagnetic coupling between the auxiliary fields and
localized carriers favors the paramagnetism at half-filling.
Beyond the half-filling case, an extra electron added to the
system is now relatively more mobile as the first electron is
already antialigned with the auxiliary field and gives rise to
the FM ground state by maximizing the kinetic energy via the
nonimpurity site(s).

We start our calculation for x = 0.25 and use U = 12 (∼
BW ) to manifest the formation of an IB that imposes the car-
rier localization. A well-separated IB for hole density p = 0.2
is clear from density of states (DOS) shown in Fig. 2(a) for
a relatively high temperature (T = 0.07). The DOS at each
ω is obtained by implementing the Lorentzian representation
of the δ function: N (ω) = ∑

k δ(w − wk ), where ωk are the
eigenvalues of the fermionic sector and the summation runs
up to total number of eigenvalues (2L3) of the system. The
valence band is very much symmetric but the narrow IB
is asymmetric. This asymmetric character of the IB picture
remains intact for all the carrier densities. It is important to
mention here that ferromagnetism in the Hubbard model is
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FIG. 2. Density of states for carrier density p or n = 0.2 at fixed
x = 0.25 depicts a distinct impurity band for U ∼ BW . DOS for
(a) hole density p = 0.2 and (b) electron density n = 0.2 for U =
12. (c) The gap between the impurity band and the valence band
increases with increasing the on-site interaction U and the IB shrinks.
(d) Site-resolved DOS for U = 12 case. All the DOS are plotted for
T = 0.07. The Fermi energy is set at zero.

attributed to an asymmetric DOS with a large spectral weight
near one of the band edges [64–66].

For high band-gap systems, the ferromagnetism along with
the nature of the charge carriers is still controversial. Holes
(electrons) are considered to be the charge carriers for p-
type conduction [31,67] (n-type conduction [68,69]) in FM
semiconductors. In Fig. 2(b), we also plot the DOS using the
electron density (n = 0.2). The structure of the IB and the
position of the Fermi energy for both hole (p) and electron
(n) pictures indicate that the magnetic and transport properties
would provide very similar results in our s-MC calculations,
which is expected from a particle-hole symmetric model
Hamiltonian. So, for brevity, we performed all calculations by
varying electron density n.

We plot the DOS for three different values of U in Fig. 2(c).
The IB gets narrower and the gap between the valence band
and IB increases with increasing U . This indicates that the
carriers tend to be more and more localized in a finite region
of the lattice comprised of the impurities. To substantiate this
fact, we plot DOS for U = 12 sites and U = 0 sites separately
in Fig. 2(d). It shows that U = 12 sites mostly contribute
to the formation of the IB, whereas U = 0 sites give rise to
the valence band. The contribution of U = 12 sites in the
valence band is due to the leaking of a small amount of carriers
from the impurity sites to the host lattice. This contribution
decreases upon increasing the U values.

IV. SPIN-DEPENDENT TRANSPORT PROPERTIES
OF CARRIERS

To analyze the carrier magnetism, first we calculate the
magnetic moments M [M = 〈(n↑ − n↓)2〉 = 〈n〉 − 2〈n↑n↓〉,
where the angular brackets imply quantum and thermal aver-
aging] on each impurity (U = 12) site. The system-averaged
quantum local moments at U = 12 sites for n = 0.2 are

FIG. 3. Carrier spin polarization for n = 0.2 (using U = 12 and
x = 0.25). (a) The distribution of carrier moments Pq(M ) for U = 12
(distribution for U = 12 sites and U = 0 sites are plotted separately).
(b) Quantum s(0) and classical Sm(0) ferromagnetic structure factor
versus temperature show the same transition. The spin-resolved den-
sity of states are plotted for (c) T = 0.07 (above TC) and (d) T = 0.01
(below TC). The equal contribution from up- or down-spin sector in
(c) implies that the bands are unpolarized. For T = 0.01, the impurity
band is completely spin polarized. The Fermi energy is set at zero.

plotted in the inset of Fig. 3(a). The average moments are
approximately equal to the carrier density, barring the small
change that is because of the carrier leakage to the host band
as discussed in Fig. 2(d). Due to the carrier localization, for
U ∼ BW , it is expected that the formation of moments at the
impurity site are more or less uniform. The local moment dis-
tribution Pq(M ) = ∑

Mi
δ(M − Mi ) at T = 0.01 in Fig. 3(a)

for U = 12 sites depicts this fact. The moment distribution
for U = 0 sites, plotted separately in the same figure, shows
that the moment formation in the host lattice is minimal.

Using carrier magnetic moments, we now calculate
the quantum FM structure factor s(0) [where s(q) =

1
(Nx)2

∑
i j Si.S jeiq.(ri−r j )]. This quantum observable Si (quan-

tum spin vector) is calculated by using the eigenvectors
resulting from exactly diagonalizing the equilibrated field
configurations. As the quantum structure factor involves four
fermionic operators, Wick’s theorem is used to transform the
four fermionic expectation values to combinations of two
fermionic expectation values [70]. We plot the quantum FM
structure factor s(0) with temperature in Fig. 3(b). For n =
0.2, a maximum value of s(0) can be 0.04 (if one gets perfect
moment, i.e., M = 0.2 at each U = 12 sites). Although this is
not the case here, as shown in the inset of Fig. 3(a), there is a
clear FM transition.

We present the spin-resolved DOS for both high- and
low-temperature cases in Figs. 3(c) and 3(d). For T = 0.07
(which is above TC), the IB remains unpolarized. Both the
valence band and the IB are completely symmetric for both
up- or down-spin sectors. The IB is completely spin polar-
ized for T = 0.01, which depicts the complete FM ordering
of the carriers that reside within the IB. This agrees well
with experiment [48]. In addition, we plot the classical struc-
ture factor for the auxiliary fields Sm(0), where Sm(q) =

1
(Nx)2

∑
i j mi.m jeiq.(ri−r j ) (q are the wave vectors) along with
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quantum FM structure factor s(0) in Fig. 3(b) and it shows
the same transition. Due to strong coupling between itinerant
carriers and auxiliary fields, the carriers are always aligned
antiparallel to the fields. For this reason, classical FM struc-
ture factor Sm(0) and quantum FM structure factor s(0) behave
very similar to each other.

To figure out the correspondence between the ferro-
magnetism and the metallicity, we analyze the temperature
dependence of the resistivity for n = 0.2. For this, we cal-
culate the dc limit of the optical conductivity by using the
Kubo-Greenwood formula [71–73]. The procedure to calcu-
late dc conductivity has been benchmarked in a previous work
[74]. Here, we briefly outline the procedure we are currently
following in this paper. The real part of conductivity

σ (ω) = A

N

∑
α,β

nα − nβ

εβ − εα

|〈ψα| jx|ψβ〉|2 	

(ω − (εβ − εα ))2 + 	2

[real part is defined as σ (ω) for brevity] that we have taken
into account for our system with a finite number of energy
levels is obtained from the Kubo-Greenwood formulation for
the frequency-dependent electrical conductivity σKG(ω):

σKG(ω) = A

N

∑
α,β

nα − nβ

εα − εβ

−i|〈ψα|ȷx|ψβ〉|2
εα − εβ + i	 + ω

.

Here, A = e2/h̄a (a is the lattice constant) and N
is total number of lattice sites. nα = f (μ − εα ) is the
Fermi factor corresponding to one-electron energy level εα .
〈ψα| jx|ψβ〉 is the matrix element of the current operator
jx = it

∑
i,σ (c†

i+x,σ ci,σ − H.c.), where ψα , ψβ are the single-
particle eigenstates. In the limit 	 → 0, it is known that the
Lorentzian behaves like Dirac delta δ function and, as a result,
the expression for σ (ω) becomes

σ (ω) = Aπ

N

∑
α,β

nα − nβ

εβ − εα

|〈ψα| jx|ψβ〉|2δ[ω − (εβ − εα )].

Then, we estimate the dc conductivity by averaging σ (ω)
over a low-frequency interval �ω,

σdc(�ω) = 1

�ω

∫ �ω

0
σ (ω)dω,

where �ω is taken to be four times larger than the mean finite-
size gap of our finite size system (determined by the ratio of
the bare bandwidth and N). At low temperature, the system
shows metallic behavior as shown in Fig. 4(a). The insulator-
metal transition coincides with the onset of ferromagnetism
[s(0) is replotted in Fig. 4(a)]. To check for the finite-size ef-
fect, which remains a concern in the small system-size-based
Monte Carlo calculations, we show s(0) with temperature for
two system sizes L = 10 and 12 in Fig. 4(b). Our results
indicate that the curves are pretty similar to each other.

The metallic behavior and the spin-polarized DOS [see
Figs. 4(a) and 3(d)] at T = 0.01 indicate that the system turns
out to be a half-metallic (HM) ferromagnet (HMF) at low
temperature. Half-metallic systems are those for which the
system shows metallicity for one spin channel and insulating
behavior for the other. This behavior was first observed in
Heusler alloys [75]. In fact, half-metallicity in Heusler al-
loys is well studied [76,77]. Recently, Co2MnSi is reported

FIG. 4. Correlating ferromagnetism and metallicity for n = 0.2
(for U = 12 and x = 0.25). (a) Temperature dependence of resistiv-
ity in units of h̄a/πe2 (a is the lattice constant) shows metallicity
at low temperature. Quantum structure factor s(0) is also replot-
ted here to draw a correspondence between the metallicity and
the ferromagnetism. (b) Quantum ferromagnetic structure factor
s(0) with temperature for two system sizes using L = 10 and 12.
(c) Spin-resolved density of states at different temperatures, where
the spectral weight of the up-spin sector gradually gets transferred
to the down-spin sector as temperature decreases. The Fermi energy
is set at zero. (d) Temperature dependence of spin-resolved resistiv-
ities shows that system conducts through down-spin channel at low
temperature.

to have spin polarization value of 93% through ultraviolet-
photoemission spectroscopy [78]. Co2FeAl0.5Si0.5 is another
Heusler alloy which exhibits half-metallicity through Fermi
level tuning [79]. Half-metalicity was also revealed for
oxides like CrO2 [80], La0.7Sr0.3MnO3 [81], Fe3O4 [82],
etc. However, the accuracy of the results are scrutinized
[83–86]. Reports of HM transport in high band-gap diluted
magnetic semiconductors materials is limited mostly to first-
principles calculations [44,87,88] where temperature effect is
excluded.

Next, we verify the HMF behavior in more detail in
our model Hamiltonian calculations. We present the thermal
evolution of the spin-resolved IB (i.e., the DOS is plotted
specifically near Fermi energy) for n = 0.2 in Fig. 4(c).
Our calculated up- and down-DOS are pretty symmetric to
each other for T = 0.07. The up-spin sector gradually loses
the spectral weight, which gets transferred to the down-spin
sector as temperature decreases. At T = 0.01, we find a
spin-polarized system. In support, we also calculate the spin-
resolved resistivity with temperature [see Fig. 4(d)]. For the
paramagnetic part (T > TC), the resistivity in both spin chan-
nels remain more or less equal. The resistivity for up- (down-)
spin sector shows characteristics of an insulating (metallic)
system at low temperatures that confirms the HM transport
behavior of our system.

The moment distributions Pq(M ) for the different densities
using only U = 12 sites are shown in Fig. 5(a) at T = 0.01.
The moment distributions get steeper and the peak value
[defined as Pq(M∗)] increases up to n = 0.3 and decreases
thereafter. This shows that the moment distribution curve gets
broadened with a reduction in Pq(M∗) value on both sides
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FIG. 5. Distribution of carrier moments for different carrier den-
sities (for U = 12 and x = 0.25). (a) The distribution of carrier
moments Pq(M ) for U = 12 case (using only U = 12 sites). Pq(M )
gets narrower up to n = 0.3 and broadens thereafter. This shows that
moments at n = 0.3 are more uniform than other densities. (b) The
peak of the distribution [defined as Pq(M∗)] for different n shows that
it is optimum for n = 0.3.

of n = 0.3. We plot the peak value of moment distribution
curves Pq(M∗) versus n for T = 0.01 and 0.07 in Fig. 5(b).
Next we will show that the optimization of Pq(M∗) is very
similar to the optimized FM, conductivity, and participation
ratio (PR) windows (see Fig. 6). This emphasizes the fact
that the optimum FM TC is obtained for which the moment
fluctuation at U = 12 sites is minimal.

Now we analyze the quantum FM structure factor for dif-
ferent carrier densities n at T = 0.01 using interacting U = 12
sites as mentioned in Figs. 3(a) and 5(a). For T = 0.01, the
quantum FM structure factor as shown in Fig. 6(a) increases

FIG. 6. Magnetic and transport properties (U = 12 and x =
0.25). (a) Quantum ferromagnetic structure factor s(0) obtained for
T = 0.01 plotted against electron densities. Uniform magnetization
mf versus electron density at T = 0.01 show one-to-one correspon-
dence with s(0) as it is proportional to the square root of s(0).
(b) Ferromagnetic window with respect to the electron density (n).
The ferromagnetic transition temperature (TC) shows optimization
behavior. The inset shows the FM window for both electron and
hole densities. (c) dc conductivity calculated at T = 0.01 shows
metallicity at middle of the ferromagnetic window and depicts an
insulator-metal-insulator (IMI) transition with respect to n. (d) Par-
ticipation ratio around Fermi energy PR(EF ) shows that the states
at the middle of ferromagnetic windows are more extended and
agrees well with conductivity results. Corresponding quantities for
two system sizes are compared in the inset of (c) and (d).

with carrier density as expected due to the enhancement of the
moments at the interacting sites [see Fig. 5(a)] and decreases
sharply beyond n = 0.5. We also calculated the system-
averaged uniform magnetization m f = 〈(n↑ − n↓)〉 for U =
12 sites and show that m f goes as the square root of s(0)
[see Fig. 6(a)]. The nonmonotonic behavior of s(0) (and m f )
around n = 0.5 indicates that the FM order vanishes for n =
0.6. The FM TC calculated for different n, shown in Fig. 6(b),
corroborates this fact. The FM window exhibits optimum
ordering at the middle of the window. This emphasizes the
fact that, within our s-MC calculations, a minimum amount
of carrier is essential to gain considerable kinetic energy to
spin polarize the system. On the other hand, for higher carrier
densities, the magnetism is suppressed due to a decrease in
carrier mobility as the availability of spatial interacting lattice
sites decreases, which constrains the carrier movement. In
the inset of Fig. 6(b), we show that the FM window and TC

remains the same for both hole and electron density calcu-
lations. The spin stiffness in spin-wave calculations in the
diluted Hubbard model also poses a similar nonmonotonic
picture with carrier density [54]. Similar results for magnetic
impurities were also obtained in other spin-wave and MC
calculations [63,89–92].

The nonmonotonic FM window signifies that the kinetic
energy is minimum at the edge of the FM window. As a
result, one expects a metallic system at the center of the
band and an insulating state at the edge for low tempera-
tures. In fact, conductivity calculations for different n plotted
at T = 0.01 [see Fig. 6(c)] shows the same and depicts an
insulator-metal-insulator (IMI) transition with carrier density.
This also establishes the fact that the mobility is minimum
near the edge of the FM window. The PR, which is a measure
of the localization, is also calculated to corroborate this fact.
The participation ratio PR [= 1/

∑
i(ψ

i
l )4, where ψ i

l is the
normalized quasiparticle wave function for the ith site with
the lth eigenvalue] provides a measure to see if the state is
localized or extended. PR(EF ), which is the PR value around
the Fermi energy, is shown in Fig. 6(d). Higher PR(EF ) values
for (n = 0.2 − 0.5) shows that the states in the middle of
the FM window are more extended, which agrees well with
the FM TC and conductivity data. In inset of Figs. 6(c) and
6(d), we show that the conductivity and normalized PR re-
mains more or less the same for the two system sizes (L = 10
and 12).

V. COMPARISON OF FERROMAGNETIC
WINDOWS FOR DIFFERENT U

Next, we explore the FM window for four different U
values. The FM window in Fig. 7(a) shifts to the right with
increasing U . This is because the carriers are more localized
for larger U values [see in inset of Fig. 7(b)] and enhances the
carrier mobility among the interacting sites due to the avail-
ability of more interacting lattice sites beyond n = 0.5. This
analysis is true for higher density edges of the IB. In fact, in
the large U (
 BW ) limit, the FM window is expected to span
up to n = 1.0 like the undiluted Kondo lattice model [93,94].
At the same time, ferromagnetism in the lower part of the FM
window gets depleted for stronger localization of carriers that
remain localized far apart on impurity sites. The quantum FM
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FIG. 7. Ferromagnetic windows for different U . (a) Ferromag-
netic window shifts to right with U . (b) Ferromagnetic structure
factor s(0) versus n at T = 0.01. s(0) for all U values show
nonmonotonic behavior that agrees with the FM window. (c) dc con-
ductivity with respect to n shows IMI pattern for different U values.
(d) Participation ratio PR(EF ) which is a measure of delocalization
also signifies that the states corresponding to FM order are extended,
though for higher U values PR(EF ) decreases. Inset in (b) shows the
peak of local moment distribution shift towards the carrier density
value (for n = 0.2) for higher U and indicates the electrons are more
and more localized for larger U .

structure factor for different U values [see Fig. 7(b)] at low
temperature (T = 0.01) also shows nonmonotonic behavior,
similar to the U = 12 case. Here, for all U , the maximum s(0)
is found for the particular carrier density beyond which the
ground state is paramagnetic. In Fig. 7(c), the conductivity
results show that the IMI pattern also remains intact for all
U . With increasing U , the conductivity decreases, mainly at
the middle of the FM window, as carriers are more localized
at larger U values. In addition, PR(EF ) in Fig. 7(d) supports
the localization-delocalization-localization pattern with the
electron density, which is also obtained from the FM and
conductivity calculations.

VI. COMPARISON OF FERROMAGNETIC WINDOWS
BETWEEN x = 0.25 AND x = 0.125

In addition to x = 0.25, we performed systematic cal-
culations to unveil the FM window for x = 0.125 case. In
Fig. 8(a), we compare the FM windows for x = 0.25 and
0.125 using U = 12. Here the FM window with respect to n
shifts to the right, but TC reduces considerably. The average
local moments on U = 12 sites remain same for both x [see
Fig. 8(b)]. This indicates that the induced moment at U = 0
sites would decrease for smaller x. In fact, as we decrease the x
the resulting moments at U = 0 sites decrease [see the inset of
Fig. 8(b)]. Although moments for U = 12 sites are the same,
the DOS in Fig. 8(c) shows that the carriers are more localized
as the IB gets narrower for x = 0.125. This is due to the

FIG. 8. Comparison of magnetic and transport properties be-
tween x = 0.25 and x = 0.125 (using U = 12). (a) FM window
shift slightly and optimum Tc decreases considerably for x = 0.125.
(b) Average carrier moments at U = 12 sites for both concentrations
at different densities. Inset shows the average moments at U = 0
sites. (c) Density of states shows that impurity band gets narrower
for smaller impurity concentration. This signify that the carriers are
more localized for x = 0.125 as compared to x = 0.25. (d) dc con-
ductivity vs n shows that the conductivity decreases for x = 0.125.

increase of the distance between interacting sites in x = 0.125
as compared to x = 0.25. This is one of the reasons for the
drop in TC value. In Fig. 8(d), the reduction of conductivity
with x agrees with the fact that the mobility of carriers decline
for x = 0.125.

VII. CONCLUSIONS

In summary, based on a spin-fermion model, we show
that the ferromagnetism is favored for low density of car-
riers, which is concomitant to the experimental results. In
a nonperturbative limit (U ∼ BW ), our analysis shows that
the density of the itinerant carriers, confined to the IB, that
decides the kinetic energy of the system, plays an impor-
tant role in determining the carrier-spin polarization. The FM
ordering temperature shows an optimization behavior with
the carrier density. We have provided a systematic study
of carrier-spin-dependent transport properties of the carriers
over the whole carrier density range. An IMI transition is
observed across the FM window. Due to strong coupling
between itinerant carriers and auxiliary fields, the polariza-
tion of auxiliary fields follows the property of carrier-spin
polarization very closely. Thus, our results are significant
for the understanding of ferromagnetism in diluted magnetic
semiconductors.
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