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Normal and superconducting currents through the Sachdev-Ye-Kitaev model
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We study the current driven by an applied voltage as a function of time through the Sachdev-Ye-Kitaev model
when coupled to two normal or superconducting reservoirs. For normal leads, in the strong coupling limit and for
small bias, the current through the Sachdev-Ye-Kitaev model, described by a quartic interaction term, reaches
monotonically the stationarity, in contrast to the case of a disordered quadratic interaction where the current
has a peak before reaching the stationary phase. For superconducting leads the currents have oscillations whose
frequencies are determined by the gap and the voltage, and are suppressed in the strong coupling limit. Moreover,
due to different short time scales between the normal and the oscillating part of the superconducting current, a
peak appears before reaching the stationarity.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model has attracted a lot of
interest in recent years [1,2]. It displays very different features
with respect to common Fermi liquids (see, e.g., Ref. [3] for
a review), for instance, the resistivity is linear with respect
to the temperature, exhibiting a so-called Planckian transport
[3–5]. Moreover, the SYK model is dual to a two dimensional
nearly anti-de Sitter space [2,6–8], opening a different way
to investigate black holes. Concerning its experimental real-
ization, there are already many proposals either in solid state
physics (see, e.g., Ref. [9] for a review) and in cavity quan-
tum electrodynamics platforms [10]. Although several studies
have been done investigating the mesoscopic physics by the
SYK model (see, e.g., Refs. [11–16]), a characterization of
the current and supercurrent, driven by a double contact setup,
as functions of time is still lacking, differently from the case
of a single colder bath, where it is known that the SYK heats
up at short times, before thermalizing [17–19]. Concerning
its isolated dynamics, also the case of a quantum quench has
been investigated [20]. Other recent studies concern eternal
traversable wormholes [21], the Bekenstein-Hawking entropy
[22] and the existence of anomalous power laws in the tem-
perature dependent conductance [23].

We calculate the current triggered by out-of-equilibrium
normal and superconducting leads, and show some peculiar-
ities never observed so far. We consider a time-dependent
tunneling where the voltage enters via a time-dependent
phase, e.g., see Ref. [24]. For a weak tunneling coupling,
we can get metastability, signaled by a peak at short times,
due to a separation of timescales (see, e.g., Ref. [25]), which
happens for normal leads in a disordered Fermi liquid when
the disorder is large enough. In contrast, for the SYK, the cur-
rent monotonically increases without showing metastability
for any value of the disorder strength. Furthermore, for super-
conducting leads we get oscillations in time with frequencies
that can be affected also by the timescale of the medium. For
the SYK model these frequencies are determined by the gap
and the applied voltage.

The paper is organized as follows. In Sec. II we briefly
introduce the SYK model, in Sec. III we first calculate in
general terms the expression of the current, with anomalous
components for the superconducting leads, and then present
its form in the weak coupling limit, used to derive the results
reported in Sec. IV. The final section is devoted to conclu-
sions.

II. SYK MODEL

We consider N Majorana fermions χ j , satisfying the
anticommutation relations {χ j, χk} = δ jk , with disordered all-
to-all q-body interactions described by the SYK Hamiltonian,
which, for q = 4 fields (let us denote it SYK4), reads

H0 = − 1

4!

∑
j,k,l,m

Jjklmχ jχkχlχm, (1)

where Jjklm have a Gaussian distribution such that J2
jklm =

3!J2/N3. At a single site j the Keldysh Green function av-
eraged over the disorder reads

G0(t, t ′) = −〈T χ (t )χ (t ′)〉, (2)

where χ = χ j and T is the time ordering operator with respect
to the contour C′ = i[β, 0+) ∪ C where C = [i0+, τ + i0+) ∪
(τ + i0−, i0−]. By using the dynamical mean field theory as
N → ∞ we get the equations

G0(t, t ′) = (−∂t + �0(t, t ′))−1, (3)

�0(t, t ′) = J2G3
0(t, t ′), (4)

which can be solved numerically, as explained in Appendix A.

III. TUNNELING

We consider a tunneling with two superconductive leads
(L and R) switched on at times t > 0, described by the
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Hamiltonian HT = HT,L + HT,R, where

HT,a =
∑
k, j

wak je
isaV t/2(c†

ak↑ + c†
ak↓)χ j + H.c., (5)

where a = L, R and sL/R = ±. In detail, c†
akσ

are the creation
operators of the leads a = L, R and wak j are the tunneling
amplitudes which are random with a Gaussian distribution
having variance σ 2

w ∼ 1/N . The bias voltage V enters via
a time-dependent phase. The two leads are d dimensional
s-wave superconductors described by the Hamiltonian

Ha =
∑

k

	
†
ak

(
ξk −�

−� −ξk

)
	ak, (6)

where we defined the Nambu spinor 	ak = (cak↑, ca−k↓)T . At
the initial time the total system, with Hamiltonian Htot (0) =
H0 + HL + HR, is in the equilibrium state at the inverse
temperature β with density matrix ρtot = e−βHtot /Ztot , where
Ztot = Tr{e−βHtot } is the partition function. The Hamiltonian of
the leads can be diagonalized by performing the Bogoliubov
transformation(

αak↑
α

†
a−k↓

)
=

(
cos θk sin θk

sin θk − cos θk

)(
cak↑

c†
a−k↓

)
, (7)

with cos(2θk ) = ξk/λk , sin(2θk ) = −�/λk , and λk =
sign(ξk )

√
ξ 2

k + �2, such that

Ha =
∑
k,σ

λkα
†
akσ

αakσ . (8)

The left current is JL(t ) = JL,↑(t ) + JL,↓(t ), where

JL,σ (t ) = i
∑
k, j

wLk je
iV t/2〈c†

Lkσ
χ j (t )〉 − e−iV t/2〈χ jcLkσ (t )〉.

(9)

For the spin up current we get the Jauho, Wingreen, and Meir
formula [26]

JL↑(t ) = 2Re
∑
k, j

wLk je
iV t/2(cos θkG<

Lk↑ j (t, t )

+ sin θkF<
L−k↓ j (t, t )), (10)

where

G<
Lkσ j (t, t ′) = i〈α†

Lkσ
(t ′)χ j (t )〉, (11)

F<
Lkσ j (t, t ′) = i〈αLkσ (t ′)χ j (t )〉. (12)

A similar equation is achieved for the spin down current,

JL↓(t ) = 2Re
∑
k, j

wLk je
iV t/2(− cos θkG<

L−k↓ j (t, t )

+ sin θkF<
Lk↑ j (t, t )). (13)

Since the leads are noninteracting, we get

G<
Lk↑ j (t, t ′) = i

∑
j′

wLk j′

∫
C

dt1gLk↑(t1, t ′)Gj j′ (t, t1)

× (
e−iV t1/2 cos θk − eiV t1/2 sin θk

)
, (14)

F<
Lk↓ j (t, t ′) = −i

∑
j′

wLk j′

∫
C

dt1gLk↓(t ′, t1)Gj j′ (t, t1)

× (
eiV t1/2 cos θk + e−iV t1/2 sin θk

)
, (15)

G<
Lk↓ j (t, t ′) = −i

∑
j′

wLk j′

∫
C

dt1gLk↓(t1, t ′)Gj j′ (t, t1)

× (
e−iV t1/2 cos θk + eiV t1/2 sin θk

)
, (16)

F<
Lk↑ j (t, t ′) = i

∑
j′

wLk j′

∫
C

dt1gLk↑(t ′, t1)Gj j′ (t, t1)

× (
eiV t1/2 cos θk − e−iV t1/2 sin θk

)
, (17)

where we have defined the bare Keldysh Green functions of
the leads

gLkσ (t, t ′) = −i〈T αLkσ (t )α†
Lkσ

(t ′)〉 (18)

which can be evaluated as usual:

g<
akσ (t, t ′) = i〈α†

akσ
(t ′)αakσ (t )〉 = inake−iλk (t−t ′ ), (19)

g>
akσ (t, t ′) = i(nak − 1)e−iλk (t−t ′ ), (20)

gT
akσ (t, t ′) = θ (t − t ′)g>

akσ (t, t ′) + θ (t ′ − t )g<
akσ (t, t ′),

(21)

gT̃
akσ (t, t ′) = θ (t ′ − t )g>

akσ (t, t ′) + θ (t − t ′)g<
akσ (t, t ′),

(22)

where nL/Rk = 1/(1 + eβλk ). The Keldysh Green function of
the central region is defined as

Gj j′ (t, t ′) = −〈T χ j (t )χ j′ (t
′)〉 (23)

without averaging over the disorder. Thus, we get

JL(t ) = 2Re
∑
k, j, j′

wLk jwLk j′e
iV t/2i

∫
C

dt1e−iV t1/2Gj j′ (t, t1)

× (
(1 + cos 2θk )gLkσ (t1, t )

− (1 − cos 2θk )gLkσ (t, t1)
)

, (24)

where the argument t of Gj j′ (t, t1) belongs to the forward
branch [i0+, τ + i0+) and the argument t of gLkσ belongs to
the backward branch (τ + i0−, i0−]. We aim to perform the
average over disorder of the current in Eq. (24). Thus, we
separate the sum over j and j′ in two sums, i.e.,

∑
j, j′ =∑

j= j′ +
∑

j �= j′ , achieving JL(t ) = JL,d (t ) + JL,od (t ), where in
the term JL,d (t ) we sum over the indices j = j′, while in
JL,od (t ) we sum over the remaining indices j �= j′. As ex-
plained in Appendixes B and C, we can perform the average
over all the disorder getting

JL(t ) = JL,d (t ) + JL,od (t ), (25)

where the first term is

JL,d (t ) = 2Nσ 2
w Re

∑
k

eiV t/2i
∫

C
dt1e−iV t1/2G(t, t1)

× (
(1 + cos 2θk )gLkσ (t1, t )

− (1 − cos 2θk )gLkσ (t, t1)
)
, (26)
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with G(t, t1) the disorder average of Gj j (t, t1), calculated by
using the effective action in Eq. (C1), which is equal to G0 in
the thermodynamic limit (see Appendix C). The second term
is, instead,

JL,od (t ) = 2N2σ 4
w Re

∑
k

eiV t/2i
∫

C
dt1e−iV t1/2 G̃(t, t1)

× ((1 + cos 2θk )gLkσ (t1, t )

− (1 − cos 2θk )gLkσ (t, t1)),

where G̃(t, t1) is defined in Eq. (C9).
Within a constant density of states approximation,

ρ(ξ ) � ρ, Eq. (26) simplifies as follows (see Appendix D):

JL,d (t ) = 4Nσ 2
wRe

∑
k

eiV t/2i
∫

C
dt1e−iV t1/2gLkσ (t1, t )G(t, t1)

(27)

so that we need to calculate only terms like∑
k

g<
Lk↑(t1, t ) = iρ

(
L

π

)d ∫
I

dλ
|λ|√

λ2 − �2

e−iλ(t1−t+i0+ )

1 + eβλ

(28)

and∑
k

g>
Lk↑(t1, t ) = −iρ

(
L

π

)d ∫
I

dλ
|λ|√

λ2 − �2

e−iλ(t1−t−i0+ )

1 + e−βλ
,

(29)

where I = (−∞,−�] ∪ [�,∞). For � small, we get∑
k

g<
Lk↑(t1, t ) = iρ

(
L

π

)d ∫
I

dλ
e−iλ(t1−t+i0+ )

1 + eβλ
(30)

which can be evaluated exactly,

β

∫
I

dλ
e−iλ(t1−t+i0+ )

1 + eβλ
= I<

1 + I<
2 + 2iπ

sinh(π (t1 − t )/β )
, (31)

where

I<
1 = eπ (t1−t )/βBz(1 + i(t1 − t )/β, 0), (32)

I<
2 = −e−π (t1−t )/βBz(−i(t1 − t )/β, 0) (33)

with z = −eβ� and Bz is the incomplete beta function,
Bz(a, b) = ∫ z

0 dt ta−1(1 − t b−1). Analogously, for � small,
Eq. (29) becomes∑

k

g>
Lk↑(t1, t ) = −iρ

(
L

π

)d ∫
I

dλ
e−iλ(t1−t−i0+ )

1 + e−βλ
. (34)

The integral can be performed exactly and we get

β

∫
I

dλ
e−iλ(t1−t−i0+ )

1 + e−βλ
= I>

1 + I>
2 − 2iπ

sinh(π (t1 − t )/β )
, (35)

where

I>
1 = e−π (t1−t )/βBz(1 − i(t1 − t )/β, 0), (36)

I>
2 = iβei�(t1−t )

(t1 − t )
2F1(1, i(t1 − t )/β; 1 + i(t1 − t )/β, z), (37)

FIG. 1. SYK4 with normal leads: (Top left panel) The current
j0 as a function of time for different values of βJ and small volt-
age. We put βV = 1 and βJ = 6, 14, 22, 30, 38, 46 (from light to
dark lines). The best fit with respect to the function in Eq. (40) is
indistinguishable by eye from the data points. (Top right panel) The
best fit for j0(∞) using the form uJz. We get u ≈ 0.7 and z ≈ −0.5
(β = 1). (Bottom left panel) For b we find the best fit with uJ1/4,
getting u ≈ 1. (Bottom right panel) For c0 we find the best fit with
uJx − 1, getting x ≈ −0.25, and u ≈ 1.8. In the inset, c1 as a function
of J is also reported. For all the fits we consider the points βJ > 20.

where 2F1 is the hypergeometric function. For the right current
JR it is enough to replace V with −V , so that JR(t ) = −JL(t ).
For simplicity we define the current density

j ≡ πd−1JL/
(
Nσ 2

wρLd
)

which is a dimensionless quantity. In what follows we will
focus on a weak tunneling limit, Nσ 2

w � 1. The leading term
in the current JL is then, JL,d , namely

JL � JL,d , (38)

while JL,od dominates for strong tunneling.

IV. RESULTS

Let us calculate the current as a function of time after
switching on the tunneling and the bias voltage, considering
normal and superconducting leads.

A. Normal leads

We start focusing on small voltage βV � 1. For normal
leads, namely for � = 0, the current is plotted in Fig. 1. We
find that for a relatively small coupling, βJ � 1, the current
j0(t ) ≡ j(t ) (to distinguish from � �= 0 case) behaves as

j0(t ) � a tanh(bt/β ). (39)
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FIG. 2. SYK4 with normal leads: (Top left panel) The current j0

as a function of time for different values of βV . We put βJ = 10 and
βV = 1, 5, 10, 15 (from light to dark lines). (Top right panel) The
stationary values of the current, calculated as the temporal average
for times 5 < t/β < 10, for different values of V . The solid line is
obtained by finding the best fit using the function in Eq. (42).

Upon increasing J , the current, as a function of the time, is
modified and is better approximated by

j0(t ) � a
ebt/β − e−bt/β

ebt/β + (c0 + c1t/β )e−bt/β
. (40)

The parameters a, b, c0, and c1 determined by finding the
best fit are plotted as functions of J in Fig. 1. We see that
for large coupling the stationary current goes as a ∼ 1/

√
J in

agreement with the conformal solution. Furthermore, we find
c0 ∼ uJ−1/4 − 1 and b ∼ J1/4. For very small times t/β � 1,
from Fig. 1 we see that j(t ) is linear with the same slope
for any J , i.e., j0 ∼ αt/β, where α does not depend on J . In
particular, from a linear fit we get α ≈ πβV/5 for small V .
Actually, from Eq. (40), we get

α � 2ab

1 + c0
(41)

so that by using the asymptotic formulas of the parameters for
large J , we get α constant in J .

Different from the case of small voltages where the current
monotonically increases in time, for very large V the current
displays a peak at short times (see Fig. 2) because a separation
of time scales occurs. Furthermore, the stationary current
as a function of the voltage saturates to two independently
on J , by inspection of Eq. (27), since, for large V , the term
eiV (t−t1 )/2 oscillates rapidly, and we can perform the approxi-
mation G0(t, t ′) ≈ −1/2 and calculate the integral over t1: for
long t and large V we get j(∞) = 2. In particular, as shown
in Fig. 2 the stationary current goes like

j(∞) � 2(1 − e−cβV ). (42)

We find that the differential conductance goes exponentially
to zero as the bias increases. For a small bias, j(∞) ∼ cβV ,
and looking at Fig. 1 (top right panel), in the same regime
of small voltage, we have c ∼ 1/

√
βJ . Moreover, for a small

bias, we get j(∞) ∼ V
√

β/J , therefore, the resistivity goes
as ∼√

J/β, i.e., as
√

T , as square root of the temperature, in
perfect agreement with what was observed in Ref. [14].

Finally we notice that, for q = 2, i.e., for a SYK2 model, by
similar calculations, from the two-point correlation function,
we get j(∞) ∼ βV ((βJ )−1 + c(βJ )−3), thus a resistivity

FIG. 3. SYK4 with superconductive leads: (Left panel) The cur-
rent contribution josc as a function of time for different values of βJ .
We put βV = 1, β� = 0.5, and βJ = 0.1, 0.2, 0.3, 0.5 (from light
to dark lines). (Right panel) josc as a function of time for different val-
ues of βV . We put βJ = 0.1, β� = 0.5, and βV = 0.1, 0.5, 1., 1.5
(from light to dark lines). The red dashed lines are obtained by
finding the best fit using the function in Eq. (46) for 15 < t/β < 25.

∼ρ0 + cβ−2 which is quadratic in the temperature, in agree-
ment with the conventional Fermi liquid result.

B. Superconducting leads

Let us consider the SYK model contacted with super-
conducting leads. In general, for � �= 0, we can isolate the
terms coming from 1/ sinh(π (t1 − t )/β ), i.e., the last terms in
Eqs. (31) and (35), which give the contribution to the current
equal to 2 j0(t ) which does not depend on �. We can write

j(t ) = 2 j0(t ) + j1(t ) + j2(t ), (43)

where j1 comes from I<
1 and I>

1 , and it is equal to zero when
� = 0, while j2(t ) comes from I<

2 and I>
2 and it is equal to

− j0 when � = 0. Thus, we can rewrite

j(t ) = j0(t ) + josc(t ), (44)

where

josc(t ) = j0(t ) + j1(t ) + j2(t ) (45)

is an oscillating function of time. For � ∼ J , as shown in
Figs. 3 and 4, we get

josc(t ) � aosc + e−γ t/β [b sin((� + V/2)t + φ)

+ c sin((� − V/2)t + ψ )]. (46)

FIG. 4. SYK4 with superconductive leads: (Left panel) the cur-
rent josc as a function of time for different values of βV . We put
βJ = 10, β� = 5, and βV = 1, 5, 10, 15 (from light to dark lines).
The red dashed lines are obtained by finding the best fit using the
function in Eq. (46) for 1 < t/β < 3. (Right panel) the stationary
value of the full current, j(∞), calculated averaging over time, for
5 < t/β < 10, as a function of V in units of 2�.
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FIG. 5. SYK4 with superconductive leads: (Top left panel) The
full current j = j0 + josc as a function of time for different values
of βV . We put βJ = 10, β� = 0.5, and βV = 0.1, 0.5, 1, 1.5 (from
light to dark lines). (Top right panel) the stationary value of the cur-
rent j(∞) calculated averaging over time for 5 < t/β < 10. (Bottom
left time) The normal contribution j0 and (bottom right time) the
oscillating contribution josc to the current as functions of time for
βJ = 10, β� = 0.5, and βV = 0.1, 0.5, 1, 1.5 (from light to dark
lines).

In particular, the oscillations are weak for large J and the
decay rate becomes larger as J/� increases. Furthermore, the
stationary current is very low for V < 2� while it is large for
V > 2�, in agreement with the conventional result [27].

For this oscillatory contribution josc there are three time
scales: (i) short times, where josc(t ) starts from zero and
rapidly grows until reaches a value of the order of aosc; (ii)
intermediate times, where josc(t ) shows oscillations; and (iii)
large times, where josc saturates. For small � � J , the in-
termediate time scale (ii) becomes too short and cannot be
observed (see Fig. 5). Furthermore, since the growing of josc

in the regime (i) is slower than the one of j0 (see Fig. 5), the
full current j reaches a maximum value at short times and then
relaxes at later time. As a function of the voltage, for small V ,
the stationary current is approximately linear in V .

C. SYK4 versus SYK2

Finally we are going to compare the cases with q = 4 and
q = 2, namely SYK4 and SYK2, showing their differences
in the current profiles. For q = 2 and normal leads � = 0,
the current as a function of time is still a hyperbolic tangent
for small βJ � 1, see Eq. (39). For βJ � 1, the hyperbolic
tangent is deformed into a curve exhibiting a maximum at
short times (see Fig. 6). This peak is due to the reaching of a
metastable state, which relaxes for larger times. Metastability
occurs since for large J there is a separation of the time scales
for q = 2. In contrast, for q = 4 the current monotonically
increases with time (for small voltage). For q = 2 and � �= 0,

FIG. 6. SYK2 with superconductive leads: The current contribu-
tions j0 (left panel) and josc (right panel) as functions of time for
different values of βJ for q = 2. We put βV = 1, β� = 0.5, and
βJ = 1, 2, 3, 4 (from light to dark lines).

josc displays exponentially decaying oscillations. For small
βJ , their frequencies are given by � ± V/2, but, increasing
βJ , become slower (see Fig. 6). These oscillations are weak
but can be observed also for large βJ . In contrast, for the case
with q = 4, the frequencies of the oscillations are not affected
by the coupling J and remain � ± V/2, however they decay
fast and are not observed when J becomes large compared to
the gap.

V. DISCUSSION AND CONCLUSIONS

To give an interpretation in terms of a two-dimensional
gravity, we note that in the holographic limit 1 � βJ � N ,
the SYK correlation function has the same form of the cor-
relation function of a particle with certain mass, calculated
near one of the two boundaries of a two-dimensional anti-de-
Sitter space time (AdS2) with metric ds2 = (−dt̃2 + dz2)/z2.
We recall that for a coordinate t̃ (u), we get the coordinate
z(u) = εt̃ ′(u), where u is a parameter which corresponds to
the time in the SYK model, and ε is small. Thus, we can
view our normal transport as the tunneling of the fermions
from the left to the right reservoir across a gas of particles
near the AdS2 boundary. Initially, every system is in a thermal
state with same temperature. When the tunneling coupling
is switched on, from the fermions of the left reservoir, new
particles are created near the AdS2 boundary. In simple terms,
the probability for these particles to fall inside the black hole
increases with u. However, it is possible to have tunneling
with the right reservoir, acquiring a nonzero current. Since
J/N corresponds to GN/φ̄r where GN is the gravitational cou-
pling and φ̄r is the renormalized (constant) dilaton field at the
boundary, by increasing J more and more particles tend to fall
inside the black hole, and the stationary current decreases to
zero. Furthermore, from this heuristic point of view, there is
no reason to have a peak of the current in time by increasing
the coupling J . The peak observed for superconducting leads
is due to the fact that the tunnelings of α↑ and α↓ are different,
also producing the oscillations of the current in time. The
frequency of these oscillations is not related to the black hole
and is therefore independent on J .

In conclusion, we have investigated the transport properties
across a non-Fermi liquid system described by a SYK model
with q = 4 real fermions. The current as function of time
shows an interesting behavior. For normal leads in the limit of
strong coupling and for a small bias, the current increases and
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reaches monotonically the stationarity, in contrast to the case
of a disordered Fermi liquid, e.g., for q = 2, where metasta-
bility occurs. For superconducting leads, for large � ∼ J ,
oscillations which decay exponentially having frequencies
� ± V/2 are present, however, the decay rate becomes large
as the gap decreases, therefore, they are strongly suppressed
for small gap compared to J . In contrast, for q = 2 the oscil-
lations have frequencies � ± V/2 for small J that smoothly
change upon increasing J , nevertheless they remain very pro-
nounced even for large J . Finally, we note that a decay of
oscillations of the singlet pair correlation functions following
a quantum quench in a SYK model has been recently observed
in Ref. [28], although in a slightly different system.
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APPENDIX A: NUMERICAL SOLUTION

We rewrite Eqs. (3) and (4) as

−∂t G0(t, t ′) +
∫

C′
dt ′′�0(t, t ′′)G0(t ′′, t ′) = δ(t − t ′), (A1)

�0(t, t ′) = J2G3
0(t, t ′). (A2)

We can numerically solve these equations by dividing the path
C′ in Np smaller paths [ti, ti+1], with i = 1, . . . , Np + 1. We
integrate Eq. (A1) in the interval [ti+1, ti], thus we get

G0(ti, t j ) − G0(ti+1, t j ) +
∫ ti+1

ti

dt
∫

C′
dt ′′�(t, t ′′)G0(t ′′, t j )

= Ii j, (A3)

where Ii j = δi+1, j/2 + δi, j/2, and by using the trapezoidal
rule we get

Ii j = G0(ti, t j ) − G0(ti+1, t j )

+ δti
4

Np∑
l=2

(�0(ti+1, tl ) + �0(ti, tl ))G0(tl , t j )(δtl + δtl−1)

+ δti
4

(�0(ti+1, t1) + �0(ti, t1))G0(t1, t j )(δt1 + δtNp ),

(A4)

with δt j = ti+1 − ti, and boundary conditions G0(tNp+1, t j ) =
−G0(t1, t j ) and G0(ti, tNp+1) = −G0(ti, t1), derived from
χ (ttNp+1 ) = −χ (t1). We consider ti as the Chebyshev nodes,
which are

ti+1 = iβ/2 + iβ/2 cos
(2i − 1)π

2(Nth − 1)
(A5)

for i = 1, . . . , Nth − 1, and t1 = iβ, tNth+1 = 0;

tNth+NK −i+1 = τ/2 + τ/2 cos
(2i − 1)π

2(NK − 1)
(A6)

for i = 1, . . . , NK − 1, and tNth+NK +1 = τ ;

tNth+NK +i+1 = τ/2 + τ/2 cos
(2i − 1)π

2(NK − 1)
(A7)

for i = 1, . . . , NK − 1, and tNth+2NK +1 = 0. We can write
Eq. (A4) in terms of a matrix in time, M(�), applied to G0,
namely we have the equation M(�)G0 = I which we have to
solve with a self-consistent procedure.

APPENDIX B: DERIVATION OF THE ACTION

The SYK action reads

SSY K =
∫

C′
dt

(
i

2

∑
j

χ jχ̇ j +
∑

j<k<l<m

Jjklmχ jχkχlχm

)
(B1)

and the tunneling is described by the action

ST =
∫

C
dt

( ∑
j,a,k,σ

wak jχ jψakσ

)
, (B2)

where, for brevity, we defined

ψakσ = eisaV t/2c†
akσ

− e−isaV t/2cakσ . (B3)

The action S = SSY K + ST can be expressed as the sum S =
S0 + �S + S(0), where

S0 =
∫

dt

(
i

2
χ0χ̇0 +

∑
a,k,σ

wak0χ0ψakσ

)
, (B4)

S(0) =
∫

dt

(
i

2

∑
j>0

χ jχ̇ j +
∑

0< j<k<l<m

Jjlkmχ jχkχlχm

+
∑

j>0,a,k,σ

wak jχ jψakσ

)
, (B5)

�S =
∫

dt
∑

0<k<l<m

J0lkmχ0χkχlχm. (B6)

We can derive an effective action Se for the Majorana fermion
j = 0 and the leads by tracing out all the other Majorana
fermions (e.g., see Ref. [29]), such that

eiSe ∝ eiS0

∫
DχeiS(0)+i�S, (B7)

where the path integral is over χ j with j > 0. Then

Se = S0 − i ln
∫

DχeiS(0)+i�S (B8)

up to an irrelevant constant. We can now calculate the average
over the disorder of Se by means of the replica trick

ln
∫

DχeiS(0)+i�S = lim
M→0

1

M
ln

∫
Dχei

∑
α (S(0)+�S). (B9)

We consider a Gaussian distribution such that J2
jklm = σ 2

J and

w2
ak j = σ 2

w, and integrals such as∫
dJjklm√

2πσJ

e
− J2

jklm

2σ2
J eJjklmx = e

σ2
J x2

2 . (B10)
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In order to simplify notation, we define the follow-
ing quantities, dropping the time dependences, 	 =∑

σ,σ ′,a,k ψakσ (t )ψakσ ′ (t ′), χα
j = χα

j (t ), χ
β
j = χ

β
j (t ′), and

�αβ = �αβ (t, t ′) = ∑
j>0 χα

j (t )χβ
j (t ′)/N . We have, then,

X ≡
∫

Dχei
∑

α (S(0)+�S)

=
∫

DχDJDwe
−∑

j<k<l<m

J2
jklm

2σ2
J e

−
∑

a, j>0,k w2
ak j

2σ2
w ei

∑
α (S(0)+�S)

=
∫

Dχ exp

{
−

∫
dt

1

2

∑
j>0,α

χα
j χ̇α

j

− σ 2
J N3

2(3!)

∑
α,β

∫
dtdt ′

(
χα

0 χ
β

0 �3
αβ + N

4
�4

αβ

)

+ σ 2
w

2

∑
α,β

∫
dtdt ′(N�αβ	

)}
. (B11)

We consider σ 2
J = 3!J2/N3. For a given function f (x), we can

use the following identity:

f (�) =
∫

dx f (x)δ(x − �) = N

2π

∫
dxdy f (x)eiNy(x−�).

(B12)

Considering x = −Gαβ (τ, τ ′), y = −i�αβ (τ, τ ′)/2 and the

functions f (�) = e−J2χα
0 χ

β

0 �3
and f (�) = e−J2N�4/4, we get

X =
∫

DGD�Dχ exp

{
−

∫
dt

1

2

∑
j>0,α

χα
j χ̇α

j

+ 1

2

∑
α,β

∫
dtdt ′

(
J2χα

0 χ
β

0 G3
αβ − N

J2

4
G4

αβ

+ N�αβ (Gαβ + �αβ ) + Nσ 2
w�αβ	

)}
; (B13)

the integral over the Grassmann variables is (N −
1) ln(Pf(−∂t + � + σ 2

w	)), since σ 2
w ∼ 1/N , we get

(N − 1) ln(Pf(−∂t + � + σ 2
w	)) ∼ (N − 1) ln(Pf(−∂t + �))

+ N

2
Tr

{
(−∂t + �)−1σ 2

w	
}
, (B14)

then

X =
∫

DGD� exp

{
(N − 1) ln(Pf(−∂t + �))

+ N

2

∫
dtdt ′(−∂t + �)−1σ 2

w	

+ 1

2

∑
α,β

∫
dtdt ′

(
J2χα

0 χ
β

0 G3
αβ − N

J2

4
G4

αβ

+ N�αβGαβ

)}
; (B15)

for N → ∞, we consider the saddle-point of the func-
tion which goes as N , which is the solution of the

equations

�αβ = J2G3
αβ, (B16)

Ĝ = (−∂τ + �̂)−1, (B17)

where Ĝ is the matrix with elements Gα,β . We consider
�αβ (t, t ′) = δα,β�0(t, t ′) and Gαβ (t, t ′) = δα,βG0(t, t ′), then

X ∝ e
M
2

∫
dtdt ′χ0(t )χ0(t ′ )�0(t,t ′ )+ MNσ2

w
2

∫
dtdt ′G0(t,t ′ )	(t,t ′ ) (B18)

so that we get Eq. (C1).

APPENDIX C: DERIVATION OF THE AVERAGE CURRENT

We aim to perform the average over disorder of the current
in Eq. (24). Let us start to focus on the sum with j = j′, i.e.,
on the term JL,d (t ). We can calculate the average of Gj j (t, t1)
over all the random variables except {wak j}a,k , namely except
those with site index j, by using an effective action for the
jth fermion and the leads. This action can be derived by using
the dynamical mean field theory for N → ∞ and reads (see
Appendix B)

S =
∫

C′
dt

iχ (t )χ̇ (t )

2
− i

2

∫
C′

∫
C′

dtdt ′χ (t )χ (t ′)�0(t, t ′)

+ S′
L + S′

R + S′
T , (C1)

where

S′
T =

∫
C

dt
∑
a,k,σ

wak jχψakσ (C2)

and

S′
L + S′

R = SL + SR − i

2

∫
C

∫
C

dtdt ′Nσ 2
wG0(t, t ′)	(t, t ′),

(C3)

where Sa, and a = L, R, are the actions of the free leads, and
	(t, t ′) = ∑

σ,σ ′,a,k ψakσ (t )ψakσ ′ (t ′), where

ψakσ = eisaV t/2c†
akσ

− e−isaV t/2cakσ (C4)

if t ∈ C and ψakσ = 0 otherwise. Thus, the actions of the leads
are modified into S′

a due to the coupling with the SYK model.
By performing the average over the disorder of the current in
Eq. (24), we get

JL,d (t ) = 2Re
∑
k, j

∫ ∏
a,k

Dwak je
−

∑
a,k w2

ak j

2σ2
w w2

Lk je
iV t/2

× i
∫

C
dt1e−iV t1/2

(
(1 + cos 2θk )gLkσ (t1, t )

− (1 − cos 2θk )gLkσ (t, t1)
)
G(t, t1), (C5)

where G(t, t1) is the average of Gj j (t, t1) over all the param-
eters except {wak j}a,k , calculated by using the effective action
in Eq. (C1). G(t, t ′) is then the solution of the following Dyson
equation:

G(t, t ′) = G0(t, t ′) +
∫

dt1dt2G0(t, t1)�′(t1, t2)G(t2, t ′),

(C6)
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where we define the self-energy

�′(t1, t2) =
∑
a,k,σ

w2
ak je

−isa (t1−t2 )V/2g′
akσ (t1, t2), (C7)

where the Keldysh Green function g′
akσ (t1, t2) are calculated

with respect to the action of the leads in Eq. (C3). The solution
G(t, t ′) of the Dyson equation formally is a power series of
the variables {w2

ak j}a,k , therefore we can easily calculate the
integral over wak j in Eq. (24), since the distribution is Gaus-
sian, getting Eq. (26), where G(t, t1) is still obtained by using
the effective action in Eq. (C1), i.e., by solving the Dyson
equation in Eq. (C6), but with σw instead of wak j . In particular,
since σ 2

w ∼ 1/N , from the Dyson equation in Eq. (C6) we get
G(t, t ′) = G0(t, t ′) + O(1/N ).

On the other hand, concerning the term JL,od (t ), we can
proceed similarly, writing a Dyson equation for Gj j′ for
j �= j′,

Gj j′ (t, t ′) = G0, j j′ (t, t ′)

+
∫

dt1dt2G0, j j (t, t1)�′
j j′ (t1, t2)Gj′ j′ (t2, t ′)

+
∫

dt1dt2G0, j j (t, t1)�′
j j (t1, t2)Gj j′ (t2, t ′)

+
∫

dt1dt2G0, j j′ (t, t1)�′
j′ j′ (t1, t2)Gj′ j′ (t2, t ′)

+
∫

dt1dt2G0, j j′ (t, t1)�′
j′ j (t1, t2)Gj j′ (t2, t ′),

(C8)

where the self-energy goes as �′
j j′ (t1, t2) ∼ w jw j′ , so that

only the first two terms in the right hand side might give
leading terms of order O(1/N ). The average of the first term
of the current coming from G0, j j′ is trivially zero, so that
the contribution to the current comes from the second term.
Therefore, we have to calculate the average∫ ∏

a,k

Dwak jDwak j′e
−

∑
a,k (w2

ak j +w2
ak j′ )

2σ2
w wLk jwLk j′Gj j′ (t, t1)

=
∫ ∏

a,k

Dwak jDwak j′e
−

∑
a,k (w2

ak j +w2
ak j′ )

2σ2
w wLk jwLk j′

×
∫

dt ′
1dt2G0, j j (t, t ′

1)�′
j j′ (t

′
1, t2)Gj′ j′ (t2, t ′)

= σ 4
w

∫
dt ′

1dt2G0(t, t ′
1)e−i(t ′

1−t2 ) V
2

∑
σ ′

g′
Lkσ ′ (t ′

1, t2)G0(t2, t1)

≡ σ 4
w G̃(t, t1), (C9)

where we considered the self-energy

�′
j j′ (t1, t2) =

∑
a,k,σ

wak jwak j′e
−isa (t1−t2 )V/2g′

akσ (t1, t2). (C10)

As a result, we get the off-diagonal contribution to the current
given by Eq. (27).

In summary, the off-diagonal contribution to the current
comes from averaging w jw j′Gj j′ . On the contrary, if we
look, instead, only to the averaged Green’s functions, the off-
diagonal terms Gj j′ , with j �= j′, eventually generated from
the coupling to the leads by multiple tunneling processes
are suppressed by disorder averaging. This can be seen also
diagrammatically since, after expanding the Dyson equation,
only terms proportional to products of w2n

j survive the aver-
aging over Gaussian disorder, replacing those parameters by
σ 2n

w , while the bare Green’s functions are independent on the
fermionic indices. As a result all the terms in the diagrammatic
expansion are diagonal and uniform so that the index j can be
safely dropped out.

APPENDIX D: CONSTANT DENSITY OF STATES

To calculate the current JL,d in Eq. (26) we have to evaluate
the sum∑

k

(1 + cos(2θk ))gLkσ (t1, t ) − (1 − cos(2θk ))gLkσ (t, t1),

(D1)

where t belongs to the backward branch. Let us show that if
ρ(ξ ) = ρ constant, the contribution coming from the terms
with cos(2θk ) is zero, namely we get

g+ ≡
∑

k

cos(2θk )(gLkσ (t1, t ) + gLkσ (t, t1)) = 0. (D2)

We consider t1 belonging to the backward branch. We get

g+ =
∑

k

cos(2θk )(gT̃
Lkσ (t1, t ) + gT̃

Lkσ (t, t1))

= i
∑

k

√
�2 − λ2

k

|λk|
(

2
cos(λk (t1 − t ))

1 + eβλk
− eiλk |t1−t |

)
,

(D3)

where we noted that cos(2θk ) = ξk/λk =
√

�2 − λ2
k/|λk|. In

the continuum limit, we get∑
k

· · · =
(

L

π

)d ∫
ρ(ξ )dξ . . . (D4)

which, in constant density of states approximation, reads(
L

π

)d

ρ

∫
dξ · · · =

(
L

π

)d

ρ

∫
I

|λ|√
�2 − λ2

dλ . . . , (D5)

where I = (−∞,−�] ∪ [�,∞). We have, therefore,

g+ ∝
∫

I
dλ

(
2

cos(λ(t1 − t ))

1 + eβλ
− eiλ|t1−t |

)
= 0 (D6)

since∫
I

dλ

(
2

cos(λ(t1 − t ))

1 + eβλ
− eiλ|t1−t |

)
=

∫ ∞

�

2 cos(λ(t1 − t ))

(
1

1 + eβλ
+ 1

1 + e−βλ
− 1

)
, (D7)

which is zero, being 1
1+eβλ + 1

1+e−βλ − 1 = 0. The same result
holds if t1 belongs to the forward branch.
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