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Hermitian topologies originating from non-Hermitian braidings
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The complex energy bands of non-Hermitian systems braid in momentum space even in one dimension. Here,
we reveal that the non-Hermitian braiding underlies the Hermitian topological physics with chiral symmetry
under a general framework that unifies Hermitian and non-Hermitian systems. Particularly, we derive an elegant
identity that equates the linking number between the knots of braiding non-Hermitian bands and the zero-energy
loop to the topological invariant of chiral-symmetric topological phases in one dimension. Moreover, we find
an exotic class of phase transitions arising from the critical point transforming different knot structures of
the non-Hermitian braiding, which are not included in the conventional Hermitian topological phase transition
theory. Nevertheless, we show the bulk-boundary correspondence between the bulk non-Hermitian braiding and
boundary zero modes of the Hermitian topological insulators. Finally, we construct typical topological phases
with non-Hermitian braidings, which can be readily realized by artificial crystals.
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I. INTRODUCTION

The concept of topology captures properties unchanged
under continuous deformations. It can be pictorially illustrated
by knots formed by braids, which cannot be unknotted by con-
tinuous stretching. While initially introduced to describe the
behavior of anyons [1–3], braiding was recently actively in-
vestigated in momentum-space band structures [4–19], where
braids appear in various scenes, such as nodal lines in topolog-
ical semimetals [4–7], the trajectories of Weyl or Dirac points
in adiabatic time evolution [8–11], and exceptional rings in
non-Hermitian systems [12–15].

Another active trend in recent research is to generalize
elements of Hermitian topological phases to non-Hermitian
systems [20–34]. Fundamental topological concepts, such as
topological invariants, bulk-boundary correspondence, and
topological stability, were reconsidered by incorporating
non-Hermitian features [30,32–39], such as gain-and-loss pro-
cesses and exceptional points. This leads to novel topological
classifications, and a plethora of non-Hermitian topologi-
cal phase with exotic non-Hermitian topological phenomena
[30,32–53]. Particularly, a massive number of states reside
on the boundary in the non-Hermitian skin effect [47–54],
rather than a few boundary states for Hermitian topological
insulators.

Non-Hermitian physics and braiding are not independent.
The energy spectra of non-Hermitian systems are complex
numbers, and hence the complex bands can naturally braid
in the complex plane even through a one-dimensional (1D)
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Brillouin zone. This leads to a recent classification of non-
Hermitian 1D systems by the knot structures [55–59].

In this paper, we reverse the conventional reasoning by
understanding Hermitian topological physics in terms of non-
Hermitian braiding in one dimension. A priori, there is a
formal one-to-one map between a Hermitian Hamiltonian H
in class AIII and a non-Hermitian operator Q in the basis spec-
ified by the eigenstates of the chiral symmetry. Using the map,
we find that a number of fundamentals of Hermitian topol-
ogy acquire more pictorial understandings from the braiding
structure of the non-Hermitian bands. Particularly, we rigor-
ously show that the abstractly defined topological invariant
of the Su-Schrieffer-Heeger (SSH) model can be visualized
as the linking number between the knots of the complex
non-Hermitian bands and the zero-energy loop. Since the left
and right zero modes of Q are exactly the zero modes of H
with opposite chirality, we see that the end zero modes of
the Hermitian insulator can be regarded as consequences of
the bulk non-Hermitian braiding. Nevertheless, the braiding
rationale can give rise to a novel class of topological phase
transitions characterized by the critical points where the knot
structure of the non-Hermitian bands transforms, which go be-
yond the conventional theory of topological phase transitions.
Moreover, we construct typical topological phases using our
theory, which can be readily realized by artificial crystals.

II. FRAMEWORK

Let us start with a non-Hermitian system described by the
Hamiltonian Q. Using Q, a Hermitian Hamiltonian H with
chiral symmetry S can be built as

H =
(

0 Q
Q† 0

)
, S =

(
I 0
0 −I

)
, SHS† = −H. (1)

2469-9950/2023/108(16)/165105(10) 165105-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8827-613X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.165105&domain=pdf&date_stamp=2023-10-03
https://doi.org/10.1103/PhysRevB.108.165105


W. B. RUI, Y. X. ZHAO, AND Z. D. WANG PHYSICAL REVIEW B 108, 165105 (2023)

FIG. 1. Non-Hermitian braidings as the origin of Hermitian topological phases. (a) Upper panel: the conventional 2D picture of topological
phase and its transition. Middle panel: the single band braids trivially and forms a knot of circle. The 3D picture shows the topological origin
as the linking between knot (black) and zero-energy loop (red). Lower panel: 3D picture of unlinking as the phase transition. (b) Knot of circle
formed by the braiding of bands. (c) Trefoil knot formed by the braiding of bands. (d) Illustrations of four types of crossings in the algorithm
to calculate the topological invariant.

Here † denotes the conjugate transpose and I the identity ma-
trix. For the eigeneqution H |�〉 = E |�〉, the chiral symmetry
results in another set of eigenmodes {−E , S|�〉}. Thus, the
energy spectrum is symmetric with respect to zero energy.

A key observation is that for zero energy, i.e., E = 0, the
chiral-symmetric Hermitian H is decoupled to non-Hermitian
Q and Q†. Although seemingly minor, we will show that the
non-Hermitian topological properties of Q with respect to this
zero energy dictate the bulk topology, topological phase tran-
sition, and bulk-boundary correspondence of the Hermitian H .
Thus, the zero energy serves as a guideline in our study.

Since zero-energy eigenstates of H are at the same time the
eigenstates of S, they can be classified as left handed (right
handed) according to the eigenvalues +1 (−1) of the chiral
operator. Introduce |�〉 = (ψ+, ψ−)T as the eigenstates of H .
The zero-energy eigenstates (|�±〉) of different chiralities are
obtained as

H |�±〉 = 0 : |�+〉 = (ψ+, 0)T , |�−〉 = (0, ψ−)T , (2)

which satisfies S|�±〉 = ±|�±〉. Clearly, H shares the same
eigenstates with Q and Q†, as

E = 0 : Q†ψ+ = 0, Qψ− = 0. (3)

Thus, we may regard that the zero-energy modes in
chiral-symmetric Hermitian systems originate from the non-
Hermitain components. In contrast, non-zero-energy eigen-
states of Q can not retain in H [60].

III. ORIGIN OF HERMITIAN TOPOLOGICAL PHASES:
BRAIDINGS OF NON-HERMITIAN ENERGY BANDS

We consider Q with no symmetry (non-Hermitian class A)
and H with only chiral symmetry (Hermitian class AIII) in
Eq. (1) [32,61]. In one dimension (1D), both H and Q are
characterized by the winding number of

w = 1

2π i

∮
BZ1

dk · ∇k log det Q(k), (4)

where k denotes the momentum and Q(k) the correspond-
ing Hamiltonian in the 1D Brillouin zone (BZ1) [62,63].
In this regard, H (k) and Q(k) share the same topology
and, formerly, correspondences between the two have been
established [30,32,64,65]. It turns out the “one-to-one cor-
respondence” [32,64] describing the topological equivalence
between the Hermitian topology of H and the point-gap topol-
ogy [66] of Q is quite useful, and a systematic classification
of the point-gap topology of Q using H has been worked out
in higher dimensions and in other symmetry classes.

It shall be noted that the “one-to-one correspondence”
above is based on the point-gap topology of Q. Recently,
however, it has been shown that the non-Hermitian Q(k)
actually has a three-dimensional (3D) braiding topology in
the (k, ReE , ImE ) space [55–58] as shown in Figs. 1(a)–1(c),
which goes beyond the point-gap topology. In view of this, the
well-established equivalence relation between Q and H may
not be sufficient.

However, the topological invariant in Eq. (4) is not able
to capture all the physics, because it is essentially a two-
dimensional (2D) quantity, while the braiding structure of
Q(k) lives in three dimensions (3D). Thus, it is necessary to
develop a 3D picture to understand the topological origin and
further explore the relation between Q and H . In the middle
panel of Fig. 1(a), the single band of Q(k) braids trivially
and forms a knot of circle (black) over BZ in 3D, while
the zero-energy point forms a closed loop (red). To have a
nontrivial phase, the knot (K) and the zero-energy loop (S1)
must form a link. Note that the zero-energy loop S1 is defined
by a constant function E (k) = 0, ∀ k ∈ [0, 2π ), which forms
a loop due the periodicity of BZ. Then, the winding number in
Eq. (4) actually reflects the linking number between the two,

w = Link(K, S1). (5)

It is clear now that the topological phase transition, as shown
in the lower panel of Fig. 1(a), is triggered by the unlink-
ing process between K and S1. This is in contrast with the
conventional understanding of the phase transition induced by
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FIG. 2. Phase transition via critical point in non-Hermitian braid-
ings. (a) The transformation of non-Hermitian braiding in Q(k) via
EP. (b) The transformation via EP can induce Hermitian topological
phase transition in H(k).

shifting the energy band away from the zero-energy point, as
shown by the upper panel of Fig. 1(a).

The linking number of Eq. (5) goes beyond the previously
mentioned correspondence between H(k) and Q(k), and can
faithfully describe the topological origin of H(k). This is more
evident for general cases of multiband Q(k). In these cases,
the n separable bands of Q(k) braid with each other [e.g.,
Figs. 1(b) and 1(c)], and form knots due to the periodicity
of BZ. As different braiding structures may correspond to the
same point-gap topology, the 2D winding number by Eq. (4),
while valid in describing point-gap topology, may be blind to
these 3D braiding structures. The 3D linking number, on the
other hand, can faithfully tell us that the topological phases of
H(k) originate from the non-Hermitian braidings in Q(k).

Compared to Eq. (4), the linking number may also simplify
the calculation [67] because it can be obtained by just count-
ing the crossings,

Link(K, S1) = n1 + n2 − n3 − n4

2
, (6)

where ni denotes the number of four types of crossings, as
shown in Fig. 1(d). For instance, by simply counting the
crossings, the winding number of the knot of circle in Fig. 1(b)
and the Trefoil knot in Fig. 1(c) is obtained as w = −1 and
+3, respectively.

IV. HERMITIAN TOPOLOGICAL PHASE TRANSITION
VIA CRITICAL POINT IN NON-HERMITIAN BRAIDINGS

The above discussion of the non-Hermitian braidings as the
origin of Hermitian topology leads to our discovery of a differ-
ent kind of topological phase transitions, which goes beyond
the conventional theory of topological phase transitions shown
in the first row of Fig. 1(a).

As illustrated by Fig. 2(a), where the two bands braid with
each other, the linking number can also be changed by the
transformation of the braiding structure. Here, the unlinking

between K and S1 is realized by the change of braiding
of Q(k). It happens via the critical point where two bands
intersect on the zero-energy loop. Such a critical point is a
unique non-Hermitian degeneracy, namely, exceptional point
(EP) [26,57], which results in the phase transition in H(k).

Suppose that the phase transition is induced by tuning an
extra parameter γ . Then the momentum and this extra param-
eter form a 2D (k, γ ) space, where EP could appear in this 2D
space. As shown in Fig. 2(b), kEP denotes the position of EP
and S1

EP denotes the loop that encircles kEP. To show that EPs
can induce phase transitions in Hermitian systems, recall that
for order-2 EPs in 2D space, there is an associated topological
invariant of vorticity [26,68]

v± = − 1

2π

∮
S1

EP

dk · ∇k arg [E+(k)−E−(k)], (7)

where ± denote the band indices, and k refers to the combi-
nation (k, γ ). The vorticity is a non-Hermitian invariant and
takes half-integer values (Z/2) because EP acts as a branch
point on the complex-energy plane. Thus, it is essentially
different from Hermitian topological invariants.

Notably, it can be proved that EP can alter the winding
number of

w(kEP) = 1

2π i

∮
S1

EP

dk · ∇k log det Q(k), (8)

by w(kEP) = −2v±. The derivation details can be found in
Appendix A. Thus, even though EP and its topological invari-
ant are essentially non-Hermitain, it can determine Hermitian
phase transition, and such a phase transition is different from
conventional ones as shown in Fig. 1(a) by shifting energies.

Let us return to the 1D systems. By treating one of the two
dimensions as the parameter to control the phase transition,
i.e., γ in Fig. 2(b), the above topological invariant signifies
the transition of topological phases in 1D. Because due to
topological robustness, the circle S1

EP can be deformed to
two loops, L1 and L2, as shown in Fig. 2(b). As Eq. (8) is
essentially the same as the winding number of Eq. (4), the
change of the winding number between L1 and L2 equals to the
topological invariant of the EP. Thus, surprisingly, we find that
non-Hermitian EPs can induce Hermitian topological phase
transitions.

V. NON-HERMITIAN BRAIDINGS AND HERMITIAN
BULK-BOUNDARY CORRESPONDENCE

According to Hermitian bulk-boundary correspondence,
the nontrivial bulk topology corresponds to zero-energy topo-
logical boundary states, i.e., w = nR(L)

+ − nR(L)
− up to a sign

factor. Here, nR(L)
+ and nR(L)

− denote the number of zero-energy
modes of |�+〉 and |�−〉 in Eq. (2) that are exponentially
localized at the right (left) boundary. Their relation with the
bulk nontrivial winding number w is illustrated in Fig. 3.

We have shown that the winding number comes from
the non-Hermitian braidings using the linking number of
Eq. (5). In one-dimensional non-Hermitian systems, this bulk
winding number results in non-Hermitian skin effect (NHSE)
[47–51,54], manifested as the localization of wave functions
on boundaries. Note that this phenomenon has been observed
recently in experiments [52,53]. As the winding number
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FIG. 3. Hermitian bulk-boundary correspondence in 1D chiral-
symmetric topological insulators. The red or blue dots denote zero-
energy modes localized at the left or right boundary.

comes from the linking number, we may regard that the NHSE
corresponds to the bulk non-Hermitian braidings.

To further establish the relation between non-Hermitian
braidings and Hermitian bulk-boundary correspondence, we
show that the NHSE in Q gives rise to topological boundary
modes in H under semi-infinite boundary conditions (SIBC),
following [51,69]. These boundary conditions mean that the
system extends to infinite with a single right (left) boundary.
Let us consider a non-Hermitian 1D system Q under SIBC.
Under this boundary condition, all modes with nontrivial
winding number in Q exist and exhibit NHSE [51]. Hence, as
we consider the winding number to be nontrivial at the zero
energy, i.e., w �= 0 in Eqs. (4) and (5), the zero-energy modes
exist and are skin modes under SIBC. We note that the energy
of any skin modes can be shifted to zero by adding a reference
energy to the system.

The skin modes are exponentially localized at the right
(left) boundary described by {Ei,+, eα j |ψi,+〉} for Q† and
{Ei,−, eα j |ψi,−〉} for Q. Here, i is the energy index, j the site
index, and α the decaying factor. We focus on the zero modes
of Q† and Q, whose numbers are nR(L)

+ and nR(L)
− , respectively.

Here, the superscript R (L) denotes the right (left) boundary
of the system under SIBC. In constructing H by Q using
Eq. (1), owing to Eq. (3), only these zero-energy modes keep
the same localization feature as in Q, while all other modes
cannot retain in H [60]. Hence, under SIBC, the topological
zero-energy boundary modes in H originate from the zero-
energy modes in NHSE of Q, which correspond to the bulk
non-Hermitian braidings.

It is noted that in a finite system, instead of SIBC, open
boundary conditions (OBC) shall be considered. In this case,
the zero-energy skin modes that exist under SIBC may not ap-
pear under OBC. However, the relation can still be established
by using the concept of pseudospectrum in non-Hermitian
systems, as explained in Ref. [69]. Specifically, when these
zero-energy modes do not appear under OBC, there would be
corresponding modes appearing in the pseudospectrum of Q,
which are almost the eigenstates of the system, and they give
rise to the topological modes in the Hermitian system.

VI. TYPICAL TOPOLOGICAL PHASES WITH
NON-HERMITIAN BRAIDINGS

We now proceed to concrete models that demonstrate how
the non-Hermitian braidings give rise to Hermitian topologi-

FIG. 4. Typical two-band model. (a) The phase diagram for both
Q(k) and H(k) against γ . (b) The correspondence between EPs in
non-Hermitian Q(k) and band crossings (open circle) in Hermitian
H(k). (c) The knots of non-Hermitian bands in the 1D BZ (left
panel). The wave-function profiles of Q(k) (middle panel) and H(k)
(right panel) with OBC. The insets in the middle panel shows the
complex energy spectra of Q(k) with OBC. The insets in the right
panel show the energy spectra of H(k) with OBC. The red color
refers to zero-energy modes determined by numerical calculations,
which belong to the pseudospectrum of Q. The parameters are
� = 0.15, g = 3�, κ = 1.4�, c = 1.5�.

cal phases as well as their topological boundary states, whose
phase transitions are mediated by critical points. Let us con-
sider a two-band Q(k) with different non-Hermitian braidings,
which has been realized recently [59]. The model Hamiltonian
reads as

Q(k) = gσ1 + [κ cos k + c cos(2k) + i� sin(2k) − iγ ]σ3.

(9)

The two complex-energy eigenvalues are E (k) =
±([κ cos k + c cos(2k) + i� sin(2k) − iγ ]2 + g2)1/2.
As shown by I, II, and III in Fig. 4(c) [three green
stars in Fig. 4(a)], the braiding of two bands in the
(ReE (k), ImE (k), k) space leads to different knots (black) in
Q(k). These knots have different linking numbers with the
zero-energy loop (red), and thus, they are different phases of
H(k). Specifically, I corresponds to an unlinked phase having
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zero linking number; II is an unknot phase with linking
number +1; III is a Hopf link phase with linking number +2.

First, we show that the transformation of braiding struc-
ture mediated by EPs in Q(k), as denoted by T1 and T2 in
Fig. 4(a), leads to Hermitian topological phases transitions in
H(k). Here, H(k) = gσ1 ⊗ σ1 + [κ cos k + c cos(2k)]σ1 ⊗
σ3 + [γ − � sin(2k)]σ2 ⊗ σ3. We compare the energy spec-
tra of Q(k) and H(k) at T1 and T2 in Fig. 4(b). The position of
band intersection is determined by E (k) = 0, as shown by the
pink dots in Fig. 4(b). At these points, Q(k) = g(σ1 ± iσ3).
It is doubly degenerate, but only has one eigenvector of
(±i, 1)T , corresponding to order-2 EPs. Across these EPs,
the winding number changes by +1 due to the change of the
non-Hermitian braiding. Thus, the Hermitian phase transitions
are determined by these critical points.

Second, we turn to the relation between the non-Hermitian
skin modes with zero energy in Q and the topological bound-
ary states of Hermitian H. In the middle panel of Fig. 4(c),
the wave-function profiles of Q(k) under OBC for I, II, and
III phases are plotted, which all possess NHSE. In particu-
lar, we numerically calculate the zero-energy states and their
wave-function profiles [red points/curves in Fig. 4(c)], which
also exhibit skin effects localized at the boundary. However,
numerical calculation alone cannot determine whether these
are actual zero-energy modes or modes belonging to the pseu-
dospectrum. This is because modes in the pseudospectrum
could be very close to actual ones, as the pseudospectrum
satisfies [51,69]

σε(Q) = {E ∈ C | ||(E − Q)|E〉|| < ε}, (10)

where E and |E〉 represent eigenvalue and eigenstate that are
ε close to the actual ones, and numerical calculations of the
eigenvalues give only approximate results due to the under-
lying algorithm. In Appendix B, we demonstrate that these
modes belong to the pseudospectrum. Furthermore, we note
that in Q, the zero-energy modes themselves are skin modes,
not topological boundary modes, as proved in Appendix C.
In the right panel of Fig. 4(c), the wave-function profiles for
the corresponding H(k) are plotted under OBC. We can see
that only II and III have topological boundary states. This is
because for these two, there are zero-energy skin modes in
the pseudospectrum of Q, while it is not the case for I. After
constructing H by Q, these zero-energy skin modes can give
rise to the topological modes.

VII. GENERALIZATION TO MULTIBAND TOPOLOGICAL
PHASES WITH HIGHER-ORDER EPs

The mechanism of non-Hermitian braidings can be gener-
alized to multiband models where higher-order EPs (ho EPs)
may emerge. Here we discuss the case of triple band Q(k),
where more than two bands could intersect at ho EPs. The
non-Hermitian lattice model for Q(k) reads as

Q(k) =
⎛
⎝0 β q(k) + α

1 0 0
0 1 0

⎞
⎠. (11)

Here, q(k) = cos k + i sin k, and α and β are model param-
eters. With α = β = 0, the braiding of the three complex-
energy bands forms a knot of circle, as shown in Fig. 5(a).

FIG. 5. Generalization to multiband models with higher-order
EPs. Transition I of (a) → (b) →(c) is mediated by order-2 EPs.
Here α = 0, and β = 0, 1.89, and 2.2. Transition II of (a) →
(d) →(e) is mediated by a higher-order EP (ho EP). Here β = 0,
and α = 0, −1, and −1.1.

H(k) possesses a non-trivial phase if zero-energy loop links
with this circle.

First, by increasing β, transition I can be induced as shown
by Figs. 5(a)–5(c). Similar to Fig. 2, this transition is mediated
by order-2 EPs, that is, the intersection of two bands. If one
puts the zero-energy loop at such a EP [Fig. 5(b)], the change
of knot topology from braiding results in a phase transition.
Thus, in multiband cases, order-2 EPs can still lead to topo-
logical phase transitions in H(k).

Second, by decreasing α, transition II can be induced as
shown by Figs. 5(a), 5(d), and 5(e). This transition is mediated
by ho EP [red point in Figs. 5(d)]. It is different from transition
I, as there are three bands intersecting at this point. However,
ho EP may also mediate topological phase transition. Because
by putting zero-energy loop at this point, transition II also
signifies the change of the linking number, resulting the phase
transition in H(k). Therefore, similar to order-2 EPs, ho EP
can mediate the change of braiding structure, resulting in the
topological phase transitions in H(k).

VIII. DISCUSSION

We have demonstrated that all the fundamental con-
cepts of chiral-symmetric Hermitian topological phases,
including bulk topology, topological phase transition, and
bulk-boundary correspondence, have non-Hermitian origins.
This non-Hermitian picture provides a deeper understanding
which is not possible by Hermitian theories, as signified by
the discovery of a class of topological phase transitions char-
acterized by the critical points. Hence, our work shows that
non-Hermitian topology may be regarded as building blocks
of Hermitian topological phases. In view of the rich concepts
in non-Hermitian physics, it would be worthwhile to explore
further, e.g., in the following direction. In the case of braiding
structures formed by more than two energy bands, similar to
the Hermitian systems [70–72], multigap (multiband) condi-
tions may be taken into account. It is expected that partitioning
energy gaps and bands into different groups could lead to
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different topologies in non-Hermitian Q, which may result in
different Hermitian topologies of H .
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APPENDIX A: RELATION BETWEEN VORTICITY
AND WINDING NUMBER

In this Appendix, we prove that the topological invariant of
order-2 EP, i.e., the vorticity, can determine the change of the
winding number. In 2D space, the vorticity of a EP reads as

v± = − 1

2π

∮
S1

EP

dk · ∇k arg [E+(k)−E−(k)]. (A1)

Here, k refers to the momentum in the 2D space. The winding
number around a EP is

w(kEP) = 1

2π i

∮
S1

EP

dk · ∇k log det Q(k). (A2)

The vorticity is a non-Hermitian invariant and takes half-
integer values (Z/2) because EP acts as a branch point on the
complex-energy plane. In the meantime, the winding number
takes integer values.

For the relevant two bands around an order-2 exceptional
point (suppose it is located at k = 0) of Q(k), the effective
Hamiltonian can be written as

Qeff(k) = d1(k)σ1 + d2(k)σ2 + d3(k)σ3, (A3)

where σi’s (i = 1, 2, 3) are Pauli matrices. The energy eigen-
values are

E±(k) = ±d (k) = ±
√

d1(k)2 + d2(k)2 + d3(k)2. (A4)

The winding number of Eq. (A2) can be calculated as

w(kEP) = 1

2π i

∮
S1

EP

dk · ∇k log det Qeff(k)

= 1

2π i

∮
S1

EP

dk · ∇k log E+(k)E−(k)

= 1

2π i

∮
S1

EP

dk · ∇k[log E+(k) + log E−(k)]

= 1

2π i

∮
S1

EP

dk · ∇k{log d (k) + log[−d (k)]}. (A5)

The two vorticities (v± and v∓) according to Ref. [26] can be
calculated as

v± = − 1

2π

∮
S1

EP

dk · ∇k arg[E+(k) − E−(k)]

= − 1

2π

∮
S1

EP

dk · ∇k arg[2d (k)]

= − 1

2π

∮
S1

EP

dk · ∇k

(
−i log

2d (k)

|2d (k)|
)

= − 1

2π i

∮
S1

EP

dk · ∇k log d (k). (A6)

Note we use the facts that arg(z) = −i log( z
|z| ) in the third step

and that | log d (k)| is a single-valued function in the last step.
And similarly,

v∓ = − 1

2π

∮
S1

EP

dk · ∇k arg[E−(k) − E+(k)]

= − 1

2π

∮
S1

EP

dk · ∇k arg[−2d (k)]

= − 1

2π i

∮
S1

EP

dk · ∇k log[−d (k)]. (A7)

In view of the winding number w(kEP) of Eq. (A5) and the
vorticities (v± and v∓) of Eqs. (A6) and (A7), it is clear that

w(kEP) = −(v± + v∓). (A8)

We note that v±=v∓ because

v∓ = − 1

2π i

∮
S1

EP

dk · ∇k arg[−2d (k)]

= − 1

2π i

∮
S1

EP

dk · ∇k
(

arg[2d (k)] + π
)

= − 1

2π i

∮
S1

EP

dk · ∇k
(

arg[2d (k)]
)

= v±. (A9)

Thus, we have

w(kEP) = −2v± (or − 2v∓). (A10)

Therefore, the winding number of w(kEP) is determined by
the vorticity of exceptional point. While the vorticities take
half-integer values, the winding number takes integer values.
This is different from the ordinary phase transition by shifting
energies.

APPENDIX B: ZERO-ENERGY MODES IN FIG. 4(c)
BELONG TO PSEUDOSPECTRUM

In this Appendix, we demonstrate that the zero-energy
modes in Fig. 4(c) II, obtained numerically by diagonalizing
the Hamiltonian, belong to the pseudospectrum.

First, we investigate the behavior around the phase transi-
tion point T1 in Fig. 4. As shown in Fig. 6, we calculate the
spectra immediately before T1, i.e., T1 − 0.01, and immedi-
ately after T1, i.e., T1 + 0.01. We find that there exists a zero
mode |0〉 satisfying,

||Q|0〉|| < 10−4 (B1)

at T1 + 0.01, while there is no such mode at T1 − 0.01. Note
that numerical calculations give only approximate values,
which means this mode may also belong to pseudospectrum
according to Eq. (10). To determine whether this is an actual
zero mode of Q, we note that the phase transition is tuned by a
continuous parameter γ and, thus, the spectrum shall change
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FIG. 6. The evolution of the PBC and OBC spectra around the phase transition point at T1. Numerical calculation shows that the zero
modes appear immediately after T1, determined by the criteria ||Q|0〉|| < 10−4.

continuously. Hence, if zero modes exist after T1, some modes
shall approach zero before T1. However, there are no such
modes at T1 − 0.01. Thus, by the continuous property of the
Hamiltonian, this isolated zero mode shall not be an actual
mode of Q.

Second, having ruled out the zero modes of Eq. (B1) as
actual zero modes of Q, we proceed to demonstrate that
this zero mode belongs to the pseudospectrum. According to
Refs. [51,69], the pseudospectrum satisfies

lim
ε→0

lim
N→∞

σε (QOBC) = σ (QSIBC), (B2)

where N is the system size, and QOBC and QSIBC are
the Hamiltonians of OBC and SIBC systems, respectively.
The above equation means that after taking the limits, the
pseudospectrum σε (QOBC) is equal to the SIBC spectrum
σ (QSIBC), which is given by the union of σ (QPBC) and the
whole area of E ∈ C enclosed by σ (QPBC) with a nonzero
spectral winding number. Here, σ (QPBC) refers to the PBC
spectrum. Regarding the region immediately after T1, as
shown in Fig. 6, for a fixed ε with a large N , the pseu-
dospectrum is given by the region enclosed by the PBC
spectrum with nonzero winding number, which includes the
zero-energy point and differs from the region immediately
before T1. Thus, after T1, the zero mode can appear in this
pseudospectrum region, which is determined by ε = 10−4 of
Eq. (B1) in numerical calculations.

APPENDIX C: ZERO-ENERGY MODES IN FIG. 4(c) ARE
NOT TOPOLOGICAL MODES IN Q

In this Appendix, we further demonstrate that the zero-
energy modes in Fig. 4(c) II and III in the main text are skin
modes, not topological modes of Q. To do this, we first show
that these modes have the common feature of skin modes, and
then show that other than non-Hermitian braidings, there is no
additional nontrivial topological structure associated with the
model Hamiltonian of Eq. (9) in the main text.

First, the skin modes have the common feature of appear-
ing inside the periodic boundary spectrum. This is because
they have a nontrivial winding number, which requires to be
enclosed by the periodic boundary spectrum. In Fig. 7, we plot
the spectra of Q(k) for I, II, and III under periodic boundary

condition (PBC), corresponding to Fig. 4(c) in the main text,
and then compare them with those under open boundary con-
dition (OBC). We can see that the OBC spectra (blue) all fall
inside the PBC spectrum (gray) for I, II, and III. In particular,
for the zero modes of OBC in II and III, as highlighted by red
arrows, they also fall inside the PBC spectrum (gray). Thus,
these zero modes have the feature of skin modes.

Second, the above criteria, however, cannot fully rule out
the possibility that these zero-energy modes are topological
modes. Because there is a special chiral symmetry σy for Q(k)
of Eq. (8) in the main text, to achieve the goal of ruling out
topological modes, we need to calculate the winding number
(denoted as w2) associated with this special chiral symmetry
σy. A nontrivial w2 indicates the existence of topological zero
modes, while a trivial one cannot. However, since Q(k) is non-
Hermitian, we cannot directly calculate w2 using the Bloch
Hamiltonian because of the difference between PBC and OBC
spectrum. Following Refs. [46,47] in the main text, we use the
non-Bloch band theory and calculate the generalized Brillouin
zone (GBZ) first, and then use the GBZ to compute the non-
Bloch topological invariant w2.

In Fig. 8(a), the GBZ for Fig. 4(c) I in the main text is ob-
tained, which corresponds to Fig. 7 I above. We use this GBZ
to compute the band spectrum EGBZ and plot it in Fig. 8(b).
Comparing with OBC spectrum EOBC, we can see that GBZ
can well predict the behavior of open boundary systems.

FIG. 7. The comparison between spectra under periodic bound-
ary condition (PBC, gray) and open boundary condition (OBC, blue).
The zero modes in OBC spectra are highlighted by red arrows, which
fall inside the PBC spectra.
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FIG. 8. (a) Generalized Brillouin zone (GBZ) calculated for
Fig. 4(c) I in the main text. (b) The comparison between the GBZ
spectrum EGBZ and the OBC spectrum EOBC.

We proceed to compute the non-Bloch winding number
w2 based on GBZ. First, we perform a unitary transformation
U = exp(i π

4 σx ) to obtain the standard off-diagonal form of
Q(k),

UQ(k)U −1 =
(

0 R+(β )
R−(β ) 0

)
, (C1)

where the chiral symmetry operator becomes UσyU −1 = −σz.
Note that we have substituted k with β for GBZ (k → β =
ek). Then, according to Eq. (8) of Ref. [47] in the main text,
the winding number w2 can be computed as

w2 = −w+ − w−
2

, w± = 1

2π
[arg R±(β )]Cβ

, (C2)

where [arg R±(β )]Cβ
means the change of phase of R±(β ) as

β goes along the generalized Brillouin zone Cβ in a counter-
clockwise way.

As shown in Fig. 9 above, we have calculated the non-
Bloch winding number w2 numerically. We find that it is
trivial, i.e., w2 = 0, for all γ in the range same as Fig. 4(a)
in the main text. In particular, for the parameters of I, II, and
III in Fig. 4(c) (or Fig. 7 above), their winding numbers are
all trivial (w2 = 0). Therefore, we can conclude that the zero
modes in II and III are not topological modes. In other words,
they are skin modes.

FIG. 9. The non-Bloch winding number calculated by the gen-
eralized Brillouin zone (GBZ). It corresponds to the special chiral
symmetry of the non-Hermitian Q(k). The plot range is the same as
Fig. 4(a) in the main text.

APPENDIX D: AN EXAMPLE OUTSIDE CLASS AIII

In the main text, we consider H in Hermitian class AIII
constructed by Q using Eq. (1). In this Appendix, we provide
an example outside class AIII, namely, a model in class BDI.

The momentum-space Hamiltonian reads as

Q(k) = gσ1 + [c sin (2k) + ic cos (2k) − iγ ]σ3, (D1)

where g, c, and γ are model parameters, and σi’s are standard
Pauli matrix. Here, Q(k) has a similar braiding topology as
that in Fig. 4(c) III, for parameters c = 0.15, g = 0.2, and
γ = 0.2.

Based on Q(k), we can construct the Hermitian Hamilto-
nian

H (k) = gτ1 ⊗ σ1 + c sin (2k)τ1 ⊗ σ3

− [c cos (2k) − γ ]τ2 ⊗ σ3. (D2)

Aside from chiral symmetry, this Hamiltonian has the follow-
ing symmetries: (i) charge-conjugation symmetry

CH (k)C−1 = −H (−k), C = τ0 ⊗ σ3K, (D3)

and (ii) time-reversal symmetry

T H (k)T −1 = H (−k), T = τ0 ⊗ σ1K. (D4)

Here K is the complex-conjugation operation. Because
C2 = T 2 = +1, the model Hamiltonian belongs to class BDI.
It is straightforward to verify that H (k) has a nontrivial topol-
ogy due to the braiding in Q(k).
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