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Charge transfer energy and band filling effects on two-hole Auger
resonances in strongly correlated systems
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We investigate the impact of charge transfer energy and band filling on the stability of the two-hole resonance
relevant for Auger electron spectroscopy (AES) in transition-metal oxides. As a minimal model to study charge
transfer effects in a transition metal (TM) and oxygen (OX) chain, we consider a one-dimensional chain with
spinless fermions with an alternating motif of site-pairs with nearest-neighbor (NN) repulsion U and uncorrelated
site-pairs, separated by a charge transfer gap �. We first show that while two holes added in a filled band of NN
interacting fermions in one dimension can stabilize to a two-hole bound pair, the bound pair delocalizes with
a U -dependent bandwidth. In contrast, we establish that the bandwidth of two holes added on a TM site pair
in a filled band is dramatically suppressed, realizing a “local” two-hole resonance (L2HR) at the same TM site
pair mimicking the AES phenomenology. Employing a memory-efficient exact numerical scheme and standard
Lanczos-based diagonalization, we then study two-hole spectra for holes added at TM site pairs in partially filled
bands. We analyze the multiple features that arise in the two-hole spectra at partial filling of the ground state.
We uncover that in the strong-U limit, there is a filling-dependent �crit above which the L2HR remains stable
for any band filling greater than 75%. In this regime, the energy location of the L2HR provides a direct estimate
of the correlation strength at TM site pairs for partial filling and is reminiscent of the Cini-Sawatzky theory for
the filled band case. At 75% band filling, an abrupt redistribution of two-hole spectral weight destroys the L2HR
regardless of the U or � values. We discuss the relevance of these nonperturbative results, obtained with full
lattice symmetry, for understanding the AES of partially filled bands in terms of the local two-hole spectrum.
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I. INTRODUCTION

Few-body bound states are of fundamental importance
in the study of many-body physics. They lead to emergent
properties that include superconductivity mediated by Cooper
pairs, repulsively bound pairs in Bose-Hubbard models [1],
trion bound states in GaAs quantum wells [2], Efimov states
[3,4], and stable molecules. When these bound complexes are
exact eigenstates, they represent true bound states. However,
in many situations, the low-energy states are described by
bound complexes interacting with a continuum of excitations,
where the complexes acquire a finite lifetime and occur as res-
onances. Such resonances also occur in the study of two-hole
bound complexes in the Auger electron spectroscopy (AES)
of correlated materials [5–9].

The “core-valence-valence” or CVV Auger process con-
sists of the decay of an x-ray-induced core hole into two final
state valence holes plus an Auger electron and is mediated
by on-site Coulomb interactions [9–11]. AES provides cru-
cial insights into a local atomic multiplet structure, on-site
interaction strengths, and crystal fields [12–14]. Further, sup-
plementing AES of the transition element with oxygen KLL
Auger spectra yields additional information on oxygen on-site
repulsion energy and interactions between holes in neighbor-
ing transition-metal and oxygen ions [15]. Such information
is vital for understanding correlated materials, making AES a
longstanding focus of extensive research [16–24].

The well-known exact solution to the two-hole Green’s
function, the Cini-Sawatzky [10,11] theory, applies to simple
cases, e.g., Cu, Zn where two holes are added in a full 3d
band. In this case, the central quantity of interest, the local
two-hole Green’s function, can be computed from a non-
interacting single-hole Green’s function. The resulting local
two-hole spectral function weighted with suitable matrix ele-
ments provides excellent agreement with experiments. Further
generalizations to include dynamical screening, off-site inter-
actions, overlap effects, and one-step formulation have helped
sharpen the theoretical analysis [9,25]. However, in partially
filled bands, success has been limited. The Green’s function
of two holes added at an atomic site in the background of
holes in the partially filled ground state is a nontrivial many-
body problem. Early attempts include ladder approximation
[26–28] and diagrammatic vertex correction [29] approaches.
They have achieved some success for partial filling close to
the fully filled limit by adding a small number of holes in
the filled band. Another standard approach to the problem
is the impurity approximation. Here a transition-metal ox-
ide with transition-metal (TM) ion intercalated with oxygen
(OX) is simplified to an Anderson impurity problem of a
single TM ion connected to an OX lattice [30–33]. More re-
cently, variational approaches for computing few-body bound
states in one dimension have been developed [34,35]. These
approaches have added valuable insights to the two-hole prop-
agator in partially filled bands. However, these methods have
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shortcomings that need to be alleviated. Impurity models are
computationally less intensive and can capture local atomic
physics, but they lower the true lattice symmetries and do
not exactly capture the effect of band filling. The many-body
perturbative approaches are restricted to partial filling close
to the filled ground state. Finally, the variational approach
developed for the few-body Green’s function is difficult to
generalize to finite hole-doped ground states.

Here, we present numerically exact results of two-hole
spectral functions for interacting spinless fermions in one
dimension. These results go beyond perturbative approaches,
retain full lattice symmetry unlike impurity approximations,
and can be employed at any partially filled ground state. A
repulsively two-hole bound state can be stabilized for spinless
fermions with nearest-neighbor (NN) repulsion. Such a bound
state delocalizes with a correlation-dependent bandwidth. The
reason for considering spinless fermions is to limit the Hilbert
space dimension to access larger system sizes. Since a single
spinless fermion can occupy each site, the two-hole bound
state comprises two holes on NN sites instead of being lo-
calized on a single site in actual AES. However, as discussed
in the paper, the stability of the two-hole bound state is largely
unaffected by the inclusion of spin degrees of freedom.

Another important experimental fact is that the two-hole
bound state in AES remains localized near the atom where the
core hole is created over experimental timescales. We consider
a one-dimensional model with pairs of TM sites with NN
interaction U separated by pairs of OX sites and add a charge
transfer energy � between the TM and OX site pairs. We
show that it is possible to drastically suppress the bandwidth
of the two-hole bound state within our model, approximat-
ing an almost localized two-hole bound state. This “local”
two-hole resonance within our model implies a pair of holes
localized on a TM site pair. The nomenclature of TM and OX
is borrowed from transition-metal and oxygen sites, respec-
tively, in a transition-metal oxide chain. These energy scales
are a natural first choice to investigate as, in transition-metal
oxides, Coulomb interactions and charge transfer energy are
dominant energy scales, for example, facilitating the well-
known Zaanen-Sawatzky-Allen classification [36], and are
also known to be the main driver of the two-hole resonance
in AES [10,11]. Restricting to only these scales allows us to
uncover how the ground-state charge fluctuation affects the
Green’s function of two holes added at a TM site pair over
a wide range of hole-doped ground states. We investigate the
model within an exact numerical scheme [37] and standard
Lanczos-based diagonalization.

We first compute the two-hole spectral function in a filled
(n = 1) lattice of spinless fermions with NN interaction U to
set the stage. From this, we establish that two holes added
on NN sites delocalize as a pair with a narrow U -dependent
bandwidth, forming a two-hole bound pair beyond a critical
U . We then consider a model that mimics the phenomenology
of AES by creating a chain of uncorrelated OX site pairs and
NN interacting TM site pairs with a correlation strength U
and a charge transfer energy � between OX and TM. We
show that unlike the simple NN repulsive model for n = 1, the
two-hole bound pair is strongly localized (with vanishingly
small bandwidth) at the TM site pair where they are initially
added. However, its stability requires both large U and �.

We refer to this resonance as a “local” two-hole resonance
(L2HR), indicating two holes localized on a single TM site
pair. We then investigate the interplay of � and band filling
(n) in the strong interaction regime or for appropriately chosen
large-U values.

We detail how partial filling (n < 1) of the ground state
and � play out in the large-U limit by mapping out the � − n
parameter regime where the L2HR is stable. We establish that
the L2HR is stable for 0.75 < n � 1, provided � is greater
than a filling-dependent �crit . By examining the detailed evo-
lution of the two-hole spectral function with ground-state
filling and �, we provide the reason for the observed limited
range of stability in the � − n parameter space and the sudden
redistribution of spectral weight at n = 0.75 that destroys the
signature of the L2HR in the local two-hole spectral function.
We show that in the regime where the L2HR is stable at partial
band filling, its energy location varies linearly with U and �,
similar to the Cini-Sawatzky theory for L2HR in filled bands.
We conclude by commenting on the relevance of our results
for Auger electron spectroscopy.

The paper is organized as follows. We summarize the the-
oretical approach for analyzing AES in Sec. II. Section III
briefly discusses the many-fermion formalism for extracting
the two-hole spectral function in real space. In Sec. IV A, we
discuss the results of the NN interacting fermions. We discuss
the results of the interplay of charge transfer, interaction, and
doping on the stability of the L2HR for the TM and OX
site-pair model in Sec. IV B. We conclude the paper in Sec. V.

II. GENERAL THEORY OF AUGER ELECTRON
SPECTROSCOPY

We briefly discuss the theory of core-valence-valence
(CVV) Auger scattering. The Auger scattering is a radia-
tionless process in which an x-ray-induced core hole at an
atomic site produces two valence band holes along with the
emission of an Auger electron. Within the two-step model
[10,11], the initial ionization of the atom by x ray and the
Auger relaxation are treated independently. The initial state
consists of a filled valence shell and an atomic site with a
core hole. Assuming almost instantaneous thermalization of
the core hole with its environment allows one to approximate
the initial state energy Ei to be equal to EN

0 + Ec. Here, Ec

is the core-hole energy, and EN
0 is the ground-state energy

of a Hamiltonian Hv describing the valence band electrons
including kinetic energy and electron repulsion. In the Auger
relaxation, a valence electron fills the initial core-hole state,
and the energy that is released excites another valance band
electron in a scattering state with energy Ek. The sudden ap-
proximation allows one to treat the two-hole valence state and
the emitted electron as independent processes. Thus, the final
state energy can be identified with E f = EN−2 + Ek, where
EN−2 is the (N − 2)-electron excited state of the valance
band Hamiltonian Hv .

The Auger transition is determined by the matrix element
[38]

∫
ϕ∗

cσ (RI − r1)ϕ∗
kσ ′ (r2)| 1

|r1−r2| |ϕvσ ′ (RJ − r1)ϕvσ (RL −
r2)dr1dr2. The core-hole wave function at the atomic location
RI is denoted by ϕcσ (RI − r1) and a one-body scattering
state for the Auger electron is ϕkσ (r2). ϕvσ (RJ − r1) and
ϕvσ (RL − r2) denote the final state valence state wave
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functions of two holes located at atoms at RJ and RL.
Usually, the Auger process is dominated by intra-atomic
contribution, allowing the simplification of identifying
RI = RJ = RK. We label this simplified matrix element
by Mσσ ′

RI
(k) ≡ e2

4πε0

∫
ϕ∗

cσ (RI − r1)ϕ∗
kσ ′ (r2)| 1

|r1−r2| |ϕvσ ′ (RI −
r1)ϕvσ (RI − r2)dr1dr2. In terms of the Fermi golden
rule, we have the momentum-resolved Auger intensity
proportional to |Mσσ ′

RI
(k)|2δ(EN−2 + Ek − EN

0 − Ec).
Defining (Ek − Ec) ≡ h̄ω, we have IRI (ω, k) =∑

σ,σ ′ |Mσσ ′
RI

(k)|2δ(h̄ω + EN−2 − EN
0 ). The δ function

contains information on the (N − 2)-fermion excitations in
the N -fermion ground state of Hv , generated by two electrons
removed from the site RI. This local two-hole spectral
function can be obtained from the Fourier transform of the
corresponding local two-hole Green’s function with two holes
created simultaneously in the N -fermion ground state of the
atom at RI and subsequently removed together. Thus, from a
many-body perspective, the central quantity of interest is the
two-hole local propagator with two-time labels.

For a one-orbital lattice Hamiltonian describing a valence
band with spin-full fermions and on-site repulsion (Hubbard
model), the Green’s function to be computed would involve
two holes of opposite spins added at the site RI. In the
present study, as discussed in Sec. I, we consider spinless
fermions with nearest-neighbor interactions in a one-orbital
lattice model. Here, the double occupation of a single site is
Pauli blocked. Thus, in our model with interacting spinless
fermions, two-hole localization refers to holes localized on
adjacent lattice sites. Thus, the relevant Green’s function to be
computed involves two holes on adjacent sites, as elaborated
in the next section.

III. METHOD

We consider a periodic lattice of L sites with N fermions.
Based on the discussion in the previous section, our quantity
of interest is the retarded two-hole propagator G(2h)

IJ;IJ (t, t ′) ≡
〈ψN

0 |c†
I (t ′)c†

J (t ′)cI (t )cJ (t )|ψN
0 〉, where two fermions are de-

stroyed at sites I and J at a time t , and added back at the same
site pair at a later time t ′, in the many-fermion ground state
|ψN

0 〉 with ground-state energy EN
0 . The real-space two-hole

spectral function in the frequency space A(2h)
IJ;IJ (ω) is given by

−1/π Im{G(2h)
IJ;IJ (ω)}, where G(2h)

IJ;IJ (ω) is the Fourier transform

of G(2h)
IJ;IJ (t, t ′).

For an interacting Hamiltonian H defined on a L site
periodic chain with N fermions, we consider a generic eigen-
value problem Ĥ |λN 〉 = EN

λ |λN 〉, where {EN
λ } and {|λN 〉}

are the N -particle eigenvalues and eigenvectors, respectively.
We have employed atomic units that amount to setting h̄,
electron charge (e), electron mass me, and 1/4πε0 equal
to 1. We choose a real-space N -fermion basis {| jN 〉} ≡
{c†

a1
. . . c†

aN |0〉}, whose elements are generated by permuting
real-space fermion positions, here denoted by the ai subscripts
of the creation operators.

We emphasize that the real-space basis is constructed from
the fermion occupations of lattice sites in real space, more
appropriately called the site basis. In the compact {| jN 〉}
basis notation, the N -fermion Green’s function is denoted
by GN

iN ; jN (ω). We note that the N -fermion Green’s function

is a matrix [GN (ω)] in the {| jN 〉} basis and defines the N -
fermion spectral function matrix by the relation [DN (ω)] ≡
−1/π{Im[GN (ω)]}. A trace of the N -fermion spectral func-
tion matrix [DN (ω)] taken over the N -fermion basis provides
the N -fermion density of states AN (ω).

For two holes created at site pair (I, J ) in the many-fermion
ground state |ψN

0 〉 and subsequently destroyed from the same
locations, the real-space two-hole spectral function is given by

A(2h)
IJ;IJ (ω) =

∑
jN , j′N

DN
jN , j′N

(
EN

0

)
DN−2

jN (IJ )−; j′N (IJ )− (ω). (1)

The details of the derivation are standard and are provided
in Sec. 1 of the Appendix. From the formula, we see that the
two-hole spectral function is expressed in terms of elements of
the N - and (N − 2)-fermion spectral function [DN (ω)] and
[DN−2(ω)], respectively. The relation | jN (IJ )−〉 = cI cJ | jN 〉
defines the indices of [DN−2(ω)] in Eq. (1). The defini-
tions for the primed labels are analogous. The elements of
[DN (ω)] are needed at ω = EN

0 , the N -fermion ground-state
energy. EN

0 is determined from the lowest-energy peak of
the N -fermion density of states, AN (ω). Different elements
of DN

jN , j′N
(EN

0 ) are extracted from the N -fermion Green’s

function GN
jN ; j′N

(ω) = 〈 jN |Ĝ(ω)| j′
N

〉, evaluated between the

N particle basis elements, (| jN 〉)† and | j′
N

〉. We calculate
[GN (ω)], [GN±1(ω)] and [GN−2(ω)] using a recently devel-
oped memory-efficient variant of full exact diagonalization.
The scheme is outlined in Sec. 2 of the Appendix; we re-
fer the reader to our recent work for details and numerical
benchmarks [37].

IV. RESULTS

A. Repulsive spinless fermions in 1D

We first study the spectral response of a filled (L = N ) or
n = 1 many-body ground state to the introduction (and sub-
sequent removal) of two holes in the spinless-fermion model
with NN repulsion. We define the model with periodic bound-
ary condition (pbc) on a L site chain with NN interactions, as
follows:

H = −t
∑
〈I,J〉

(c†
I cJ + H.c.) + U

∑
I

nI nI+1, (2)

where c†
I (cI ) are spinless fermion creation (annihilation) oper-

ators at the site I . t and U are the NN hopping and interaction,
respectively. nI = c†

I cI is the number operator at a site I .
We measure all energies in units of t , which we have set to
unity. We analyze the properties of two holes created in a
filled system ground state by calculating the total two-hole
spectral function,

∑
I �=J A(2−hole)

IJ;IJ (ω) ≡ A(2−hole)(ω). We also

calculate the local two-hole spectral function A(2−hole)
IJ;IJ (ω) ≡

A(2−hole)
L (ω) for holes created on NN sites I and J. In the

present case, the term “local” implies the spectral function for
holes on NN sites, the closest analog of on-site in the spin-full
problem.

Figure 1(a) shows A(2−hole)(ω) for different values of U
where the spectrum is shifted by the ground-state energy
EN

0 (= NU ). For U = 0, we have the two-hole continua

165103-3



PRABHAKAR AND ANAMITRA MUKHERJEE PHYSICAL REVIEW B 108, 165103 (2023)

FIG. 1. Two-hole excitation spectrum in a filled ground state for spinless fermions with NN interacting. (a) The two-hole spectral function
A(2−hole)(ω) for indicated U values. The dissociation of the single continua into two distinct features is shown for U = 8. The inset in (a) shows
the comparison of the numerical bandwidth of the two holes delocalizing as a bound pair (circles) and analytic scaling (dashed line). (b) The
local two-hole spectral function A(2−hole)

L (ω) for U = 4 and 8. (c) The ratio of the numerical and exact frequency two-hole spectral sum rule
value as a function of broadening factor η. All results are for a L = 100 site chain with periodic boundary conditions.

extending from ω ≈ −4t to ω ≈ 4t . This feature is the two-
hole band comprised of the holes moving independently,
respecting the Pauli exclusion principle, and agrees with the
analytical form

∑
k �=k′ δ[ω + 2t cos(k) + 2t cos(k′)], with the

k (k′) sums extending over the entire Brillouin zone [−π, π ).
For U = 4, we see that the band center is at ω ≈ −16 or 4U
below zero. We also see that the two-hole spectral function
is distorted compared to the U = 0 case, and a small feature
appears at the upper band edge. Beyond U = 5, this feature
splits off, creating a band with two holes delocalizing as a
pair. We show typical data for U = 8, where we find a band
of width 8, centered around ω = −32, and a narrow band
centered at ω = −24. To understand the spectrum, we analyze
the potential energy of the basis states. The potential energy is
the correlation energy of the fermion configurations in a basis
state in the limit of no hopping. For all basis states containing
the two holes on nearest-neighbor sites, the potential energy
is (N − 3)U , while for all other two-hole basis states, it is
(N − 4)U . Since we shifted the spectra by the ground-state
energy (NU ), the centroids of the two bands with states con-
taining two holes not on nearest-neighbor sites are at −4U .
Similarly, the states with two holes on NN sites contribute to
the band centered around −3U . The finite bandwidths result
from kinetic energy that gives a width of 8t for the two holes
delocalizing independently and a much smaller bandwidth to
the other band. The inset in Fig. 1(a) shows the scaling of the
bandwidth of the narrow band (DBW ) as a function of U by
open symbols. The solid lines are the results from an analyt-
ical projection approach that agrees well with the numerical
results. Details of the analytical calculation are presented in
Sec. 3 of the Appendix.

To further clarify the character of the split off-peak, in
Fig. 1(b), we show A(2−hole)

L (ω) for holes created (and sub-
sequently destroyed) on a pair of adjacent sites I and J . For
U = 4, we find a wide distribution of spectral weight over the
entire width of the total two-hole spectral function. Signifi-
cant overlap exists between the sharp peak near −10 and the
broad continua. In contrast, for U = 8, we see a clear split-off
feature at U = −24 and well-separated, bandlike continua
coinciding with the two-hole band centered around −32 in

Fig. 1(a). The split-off feature has the same width as DBW

[inset in Fig. 1(a)], showing that the two holes delocalize
as a pair. However, it has a small overlap with the broad
band centered at −32, implying that this feature is a signature
of a two-hole bound pair and has a finite lifetime.Similar
repulsively bound states have been reported for bosons with
U 	 t [1,39] and the spin-full Hubbard model within Density
Matrix Renormalization Group (DMRG) [40].

We would like to briefly discuss the numerical accuracy of
these results. As is well known, from the analytic properties of
the Green’s function, by shifting the poles of the Green’s func-
tion above and below by a regulator η, the real axis defines
the retarded and advanced Green’s function. The expression
for the retarded Green’s function with a finite η is provided
in Eq. (A1). Thus, our two-hole spectral function derived
from the Green’s function depends on η. A standard way to
understand the systematics of η dependence of the two-hole
spectral function is to compute the two-hole frequency sum
rule for different values of η and compare the result with the
theoretical value of L(L − 1). Hence, in Fig. 1(c), we show
the two-hole frequency sum rule plot as a function of η. It is
defined as

∫ ∞
−∞ A(2−hole)(ω)dω, whose exact analytical value

is L(L − 1), for two holes in a filled band. The ratio of the
numerical value to L(L − 1) rapidly approaches 1, as η → 0.

Before we move on to the main model investigated in our
paper, we comment on the essential difference between the
spin-full fermion and the present study with spinless fermions.
We emphasize that the main question being addressed in this
paper is the validity of the local two-hole spectral function
as a signature of Auger spectroscopy in partially hole-doped
bands. Spin physics is not expected to play a dominant role
in determining the critical parameter values of the location of
the split-off feature. For example, the location of the split-off
feature in the main panel of Fig. 2(b) is given by −2� − U .
This closely agrees with previous work with two-body spin-
full fermions’ split-off feature in [34].

B. Interplay of band filling and charge transfer energy

We now consider the impact of band filling and charge
transfer effects in the presence of strong interactions on the
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FIG. 2. Local two-hole spectral function at TM site pair in filled
bands. (a) Schematic of the periodic model. (b) The local two-hole
spectral function for a pair of holes created on a TM site pair for
n = 1 and three � values, as indicated. Results shown are for U = 8
and L = 100. The vertical lines for � = 8 mark the locations of the
centers of the three features. The red and blue ellipses on the ω axis
are discussed in the text. (c) Projected DN−2

Proj (ω) which quantifies
the contribution to the (N − 2)-fermion spectral function from basis
states with two holes doubly occupying any TM site pair.

local two-hole spectral function. The model is defined as
follows:

H = −t
∑
〈I,J〉

(c†
I cJ + H.c.) + U

L/4∑
I=1

nTM
4I−3nTM

4I−2

+�

L/4∑
I=1

(
nTM

4I−3 + nTM
4I−2

)
. (3)

In Fig. 2(a), we show a schematic of the Hamiltonian. The
chain contains pairs of sites labeled as TM sites with on-site
energy (� � 0) and nearest-neighbor (NN) repulsion strength
of U among them. The TM site pairs are separated by pairs
of sites labeled as OX sites with U = 0. � acts as a charge
transfer energy between the TM and OX sites. Thus the TM
site pair with NN interactions acts as the simplest extension
of an alternating chain of TM and OX with spin-full fermions.
The spinless-fermion model allows us to examine the forma-
tion of two spatially localized holes on adjacent lattice sites as
opposed to on-site localization in the spin-full fermion case.
Below we show that indeed, such two-hole resonances are
stabilized in certain situations. We refer to such two-hole reso-
nances as “local” two-hole resonance (L2HR). As pointed out
at the end of the previous section, the locations of the two-hole
spectral function features remain largely unaffected by spin
excitations. Further, inclusion of spins severely restricts the
lattice sizes that can be accessed due to significantly enlarged

Hilbert space. For these reasons, we choose to work with the
spinless-fermion model.

The creation (annihilation) operators have the usual mean-
ing. I, J in the kinetic energy term runs over NN sites. nTM

I
is the number of operators on the TM site I . The OX sites
are noninteracting sites. We also define nOX

I as the number
of operators on the OX site I . With these identifications, we
define n = 1

L (
∑

I nTM
I + ∑

I nOX
I ), where the sum runs over

TM and OX sites in the first and second summations, respec-
tively. Here, L refers to the total number of sites. In terms
of these, we define fully filled (n = 1) and partially filled
(n < 1) bands. This n = 1 refers to a system where all TM
and OX sites are fully occupied. Finally, the hopping between
all sites is t .We study local two-hole spectra for two holes
created on adjacent TM sites in the filled (n = 1) and partially
filled [(n < 1) or (1 − n)] hole-doped ground states on L sites
with pbc. For the present model, the local two-hole spectral
function of interest is for two holes created on a single TM
site pair, as mentioned above. These TM holes hybridize with
holes states in OX sites and can delocalize through the system.

(i) Local two-hole spectrum in the undoped case. In
Fig. 2(b), we show the local two-hole spectral function defined
as A(2−hole)

IJ;IJ (ω) ≡ A(2h−T M )
L (ω), where I and J are adjacent

sites belonging to a TM site pair. The result is shown for U =
8 and three values of � for a 100-site lattice. The results are
presented in a logarithmic scale on the y axis to clearly show
the various structures. The ground-state energy for the fully
filled case is EN

0 = L(U + 2�)/4, as U and � are present
only for the TM sites. As above, all the results are shifted
by EN

0 . For � = 8, we see a well-separated feature at ω =
−2� − U (= −24). This energy corresponds to the potential
energy reduction at t = 0 measured from the ground-state
potential energy. It is identical for all basis states, with the two
holes doubly occupying a TM site pair. The next structure is
centered around ω = −� − U (= −16), the potential energy
of basis states with one hole on the TM site and one in the
OX sites. Finally, the highest-energy feature centered around
ω = 0 refers to the case where both holes are on OX sites.
We notice that the second and third features, respectively, are
two and five orders of magnitude smaller than the first feature.
To go beyond the simple potential energy-based analysis, we
note that for the filled case, DN

jN , j′N
(EN

0 ) = 1 as there is

only one state, i.e., the filled many-body configuration. This
is because DN

jN , jN
(EN

0 ) = AN (EN
0 ) = 1, which is simply

the N -fermion spectral function evaluated at the ground-state
energy. Thus, from Eq. (1), we see that the A(2−hole)

IJ;IJ (ω) =∑
jN , j′N

DN−2
jN (IJ )−; j′N (IJ )− (ω). To ascertain that the peak at

−2� − U = −24 in Fig. 2(b) for U = � = 8 is indeed a
two-hole local resonance, we compare the A(2h−T M )

L (ω) with
DN−2

Proj (ω) = ∑
jN−2

DN−2
jN−2 ;jN−2

(ω), where the jN−2 label runs

only over the basis states which have the two holes together
on any TM site pair for U = � = 8. Figure 2(c) shows the
projected spectral function. We immediately see that the peak
of this quantity coincides with that of A(2h−T M )

L (ω). Since
A(2h−T M )

L (ω) only contains the TM site-pair projected contri-
bution, it clearly shows that the peak at −2� − U is indeed
the local two-hole resonance. Moreover, the trace over the
projected basis also shows that the effective bandwidth of
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FIG. 3. Local two-hole spectral function in the almost filled ground state or at small hole doping. (a) The local two-hole spectral function
for a pair of holes created on a TM site pair. The results are for doping values n = 0.98, U = 8, and three � values. (b) The six possible
three-hole configurations in increasing order of their potential energies (from top to bottom). The TM site pairs are shown as a single level,
elevated by � from the OX site pairs, as labeled in the top configuration. Filled circles denote the holes in an otherwise filled system. The
potential energies for each configuration are indicated as superscripts for every state. The schematic only shows representative configurations
in every case. (c) Comparison of the two-hole spectra (red) and projected three-hole spectral function contribution (gray). The projection
involved in the gray curve is discussed in the text.

the two holes delocalizing only over only the TM pairs is
negligible. The effective Hamiltonian approach, as was dis-
cussed for the NN interaction model in the previous section,
also provides an infinitesimally small bandwidth in the present
case.

The almost vanishing bandwidth (within numerical accu-
racy) leads to the strong spatial localization of A(2h−T M )

L (ω)
at the TM site pair where the two holes were created and
stabilizes the local 2-hole resonance (L2HR). This preference
of the local two-hole resonance also suppresses the other
possible feature centered around −2� − 2U , corresponding
to both holes occupying different TM sites, to negligibly small
values.

Reducing � to 4, we see a clear shift of spectral weight
from the two-hole resonance primarily to the central feature.
The three features are still centered around −2� − U , −� −
U , and zero. However, we notice that the relative height of the
central feature also grows roughly by one order of magnitude.
As for � = 8, the DN−2

Proj (ω) projected onto the basis states of
two holes on a TM site pair still has the dominant contribution
at the peak at −2� − U , allowing the interpretation of this
feature as the L2HR.

Finally, for � = 0, the resonance merges with the central
feature (centered at −U ) and the L2HR is lost. On the other
hand, if U = 0 and � is nonzero, the potential energies of
the basis states that contribute to −2� − U and −2� − 2U
become degenerate, the ground state has comparable contri-
butions from the two holes of TM site pairs, and they are
singly occupying different TM site pairs. Hence we conclude
that a combination of U and � is needed to stabilize a well-
separated resonance, primarily localized on the TM site pair
in the undoped case. For completeness, we briefly discuss

the origin of the substructures centered around ω = −16 and
ω = 0 seen in Fig. 2(b) for U = 8 and � = 8. The basis-
state potential energy for one TM hole and one OX hole is
−� − U = −16, and is zero for both holes on OX. Since the
states with two holes on TM hybridize with the above two
categories of states, they show features around the locations
ω = −16 and ω = 0. The support of the features on the ω

axis is controlled by the spread of the spectrum belonging to
the states of the two categories. Of course, the magnitudes
are highly suppressed because of large � and U . The red
(blue) ellipses on the ω axis in Fig. 2(b) show the eigenval-
ues of the Hamiltonian diagonalized in the restricted basis
containing one TM and one OX hole (two OX holes). We
find that these locations agree with the substructures around
ω = −16 and ω = 0. We note that due to large U and �, the
effect of hybridization which would shift the locations of these
substructures (usual level repulsion effects) is small. They are
likely to be more relevant at smaller U and � values.

(ii) Local two-hole spectrum for small doping. In Fig. 3(a),
we show A(2h−T M )

L (ω) for a ground state of N = 47 fermions
in a L = 48 site lattice. The resulting filling, n ∼ 0.98, is
the smallest nontrivial doping possible at this system size,
consisting of a single hole in the N -fermion ground state.
For the partially filled case, we first work out Tr{DN

jN , jN
(ω)}

and locate the lowest-energy peak, which gives the N -fermion
ground-state energy for the given Hamiltonian. As before,
we shift A(2h−T M )

L (ω) by the ground-state energy. We see
in Fig. 3(a) that the two-hole spectrum develops more fea-
tures than the filled case due to additional charge fluctuations
since one hole is already present in the ground state. To
analyze A(2h−T M )

L (ω), shown in Fig. 3(a), we first list all the
possible three-hole configurations once we create two extra
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holes. Figure 3(b) shows the six possible kinds of three-hole
configurations in order of increasing energy from (i) to (vi).
Superscripts for each configuration denote their potential en-
ergies as measured from the lowest possible potential energy
of the basis states. The “lowest possible potential energy”
corresponds to the potential energy of the N -fermion basis
state with the ground-state hole on any TM site pair. All basis
states belong to one of the six groups; depending on the total
occupation of the TM and OX sites, the schematic shows some
representative conjugations of each group.

For � = 10, we see four dominant structures centered
around ω = −2� − U (= −28), ω = −� − U (= −18), ω =
−�(= −10), and ω = 0. These correspond to the configura-
tions (ii)–(v) in Fig. 3(b). The lowest-energy configuration
shown in Fig. 3(b) is −2� − 2U . This feature is strongly
penalized, as discussed for the undoped case.

Further, in Fig. 3(a), we find that with reducing �, the
initially suppressed features gain in magnitude, the centroid
of the feature (ii) rapidly approaches (iii), and, for � � 2,
it merges with the other structures. For example, for � = 6,
the features (ii)–(iv) move close to each other. There is also
an overall shift of all the low-energy features toward zero.
Finally, for � = 1, we see that the features (ii)–(iv) merge.

We now analyze A(2h−T M )
L (ω) with n = 0.98 for � = 10

based on the many-fermion density of states. From Eq. (1),
we crucially observe that the ω dependence of A(2h−T M )

L (ω)
comes only from (N − 2)-fermion density of states (DOS). In
Fig. 3(c), we show DN−2

Proj (ω) = ∑
jN−2

DN−2
jN−2 ;jN−2

(ω) in gray,

where, the jN−2 label now runs only over the basis states where
two holes are on any pair of TM sites and the third hole is
on any other TM pair. We choose to project into these basis
states since the N -fermion ground state is dominantly made
up of the basis states where the ground-state hole occupies
TM rather than OX.

To compare, we replot in Fig. 3(c) (red curve) the cor-
responding A(2h−T M )

L (ω) for � = 10, from Fig. 3(a). Unlike
in the undoped case where DN

jN , jN
(EN

0 ) = 1, here we see
that even in the presence of a single hole in the ground state,
the DN

jN , j′N
(EN

0 ) has a significant effect. In particular, only

the low-energy peak of DN−2
Proj (ω) at (ω = −2� − U = −28)

corresponding to configuration (ii) of Fig. 3(b) retains its
contribution in A(2h−T M )

L (ω). Similar reduced contributions
are seen for all other features as well. This suppression of
the features results from the summation over jN and j′N and
the fact that the off-diagonal elements of the N and N − 2
particle spectral function matrices are not positive definite. We
have also explicitly performed restricted summation over the
jN and j′N in Eq. (1), such that only one of the six possible
(N − 2)-fermion basis-state groups contribute at a time to
DN−2(ω). From this analysis, we have ascertained that apart
from the basis states where two holes occupy a single TM site
pair and the third hole is on any other TM pair, no other basis
state has an appreciable contribution to the two-hole spectrum
at ω = −2� − U . A similar analysis for other basis-state
groups shows highly suppressed contributions to the peak at
−2� − U for � = 10 and � = 6. For � = 1, many of the
six basis-state groups contribute at all energies, wiping out
the signature of the L2HR from the local two-hole spectral
function.

FIG. 4. Local two-hole spectral function in large hole-doped
ground states. (a) The local two-hole spectral function for pair of
holes created on adjacent TM sites for n = 0.75, for � = 10 and
U = 8, by the solid line. The dotted (orange), dashed (gray), and
thin-dashed (blue) lines show the (N − 2)-fermion spectral function
projected on basis states with potential energies −2�, −2� + U ,
and −�, respectively. (b) The two-hole spectral function for n = 0.8,
which has four holes in the ground state compared to five at n = 0.75
for L = 20, the size studied here. The inset in (b) shows the two-hole
spectral function for n = 0.75 and small �(= 2).

(iii) Larger hole-doping case. We now consider n = 0.75
or 25% hole doping in the ground state. For reducing compu-
tational cost, we limit the computation to L = 20 and N =
15 or five holes in the ground state. In Fig. 4(a), we show
A(2h−T M )

L (ω) for � = 10 and U (= 8) by the solid red curve.
We also show the (N − 2)-fermion spectral function pro-

jected onto three sets of (N − 2)-fermion basis states with
the lowest three potential energies. These three curves de-
pict DN−2

Proj (ω), projected onto the basis states with potential
energies −2�, −2� + U , and −�, measured from the low-
est possible basis-state potential energy. These correspond
to basis-state groups with only two, three, and one TM site
pair doubly occupied by holes, respectively. Comparing the
peak locations of A(2h−T M )

L (ω) with the three (N − 2)-fermion
projected spectral function, we find that the lowest peak in
A(2h−T M )

L (ω) has contributions from basis states with poten-
tial energies −2�, followed by those with potential energy
−2� + U . From the above, these basis states have two and
three TM site pairs doubly occupied by holes. The most
prominent peak in A(2h−T M )

L (ω) has a contribution from basis
states with three TM site pairs doubly occupied by holes and
from basis states with two TM site pairs doubly occupied
by holes. In fact, the (N − 2)-fermion basis states that have
only one TM pair doubly occupied by holes and well sepa-
rated from other features are those with potential energy −�

(blue thin-dashed line) and contribute to the third features of
A(2h−T M )

L (ω). We have explicitly checked that among the 17
possible (N − 2)-fermion basis-state groups with distinct po-
tential energies, no other groups contribute to the low-energy

165103-7



PRABHAKAR AND ANAMITRA MUKHERJEE PHYSICAL REVIEW B 108, 165103 (2023)

FIG. 5. Doping dependence of �crit for local two-hole resonance.
(a) �-filling (n) plot showing the critical charge transfer energy for
well-defined local two-hole resonance for large U (= 8t ). (b) The
scaling of the energy location of the L2HR feature with � for � >

�crit . The main plot shows the hole-doping dependence of the L2HR
peak location (centroid) for � = 6t (diamonds) and 8t (squares) for
fixed U (= 8t ). The inset shows the L2HR centroid locations with
varying � > �crit for U = 6t at n = 0.9375 with open symbols. The
crosses are obtained from Lanczos.

peaks of A(2h−T M )
L (ω). Thus, the lowest-energy peak can no

longer be interpreted as L2HR. In contrast, in Fig. 4(b), we
show A(2h−T M )

L (ω) for n = 0.8 for the same system size, �

and U . This case has only one less hole in the N -fermion
ground state or four holes compared to five for n = 0.75.
We see that A(2h−T M )

L (ω) for n = 0.8 has a clear low-energy
feature, whose composition is similar to the low-doping cases
discussed earlier and can be interpreted as L2HR. We do not
repeat the analysis here. This rather drastic spectral weight
redistribution with a small change in hole doping can be
rationalized in the following manner.

The two-hole addition on a TM site pair is only possible
on basis states with at least one TM site pair doubly occupied
by two fermions. At n � 0.75, the ground state is dominantly
composed of basis states where all fermions reside on OX
at large � and U . The basis states where two-hole addition
only has finite amplitude have to have at least one doubly
occupied TM site pair. However, these N -fermion basis states
have higher potential energies compared to those where the
TM is singly occupied or unoccupied and, consequently, have
small contributions to the ground-state wave function. For
completeness, in the inset of Fig. 4(b), we show A(2h−T M )

L (ω)
for small �(= 2), which, as expected, does not have any clear
resonance peak. In summary, at n = 0.75, the spectral weight
of the two-hole spectral function is strongly distributed among
features constructed out of basis states where holes doubly
occupy multiple TM site pairs. We note that these conclusions
hold for larger system sizes as well. Regardless of the system
size for n � 0.75, there are basis states where no TM site pairs
are doubly occupied with fermions. Since the ground state for
large U and � is dominantly constructed out of such basis
states, the matrix element for creating two holes on a TM site
pair is significantly suppressed.

(iv) Critical � for local two-hole resonance. Figure 5(a)
shows the plot of the critical � needed for a well-defined
L2HR as a function of hole doping of the ground state. The
critical � is defined to the � value for which a single low-
energy resonance (centered at −2� − U ) is pulled out of the

rest of the two-hole spectral function features. The U is set to
be larger than the kinetic energy bandwidth, as is typical for
3d TM oxides. We also consider positive �, which, apart from
small bandwidth dependent corrections, dictates that holes
doped to create a partially filled ground state prefer to occupy
the TM site pairs, similar to doped Mott insulators. In the
regime of � where we have a stable L2HR, we numerically
observe this to be true. Also, a similar � < 0 analysis can
be carried out, mimicking a negative-charge transfer situation.
However, in partially filled bands, if added holes prefer OX,
the matrix element for creating two holes on TM is very
small. We thus only consider positive �. At zero hole doping,
the �crit/t ∼ 1 and increases linearly with hole doping, up
to about slightly less than 75% band filling. Beyond that, as
discussed for n � 0.75 above, there is a drastic redistribution
of spectral weight in the local two-hole spectral function,
destabilizing the L2HR for any �, while for n > 0.75, two-
hole resonance can be stabilized for � > �crit .

(v) Relevance for L2HR in AES. As Sec. I mentions, the
core-valence-valence AES, a core hole, decays into two final
state holes in the valence band and an Auger electron. If the
interaction between two final state holes is weak, the holes
delocalize over the lattice screened from each other, with
the AES or the two-hole spectral function closely resembling
the convolution of two holes. In this case, the AES signal
is proportional to the two-hole convolution. In the strongly
correlated limit, the strong interaction can localize the elec-
trons at the atomic site where they were created, shifting
the energy higher than the screened two-hole energy by the
Coulomb correlation. This fact is central to the Cini-Sawatzky
theory for analyzing the AES experiments. They calculated
the two-hole local Green’s function for holes added to a filled
d band exactly in terms of the one-hole Green’s function. The
approach shows that a split-off resonance with d8 multiplet
structure is generated whose energy location is Udd , from the
energy where two holes are on different sites or the band part
of the spectrum. This theory captures the experimental spectra
for filled 3d band systems such as Cu and Zn quite well.
However, the major drawback of the theory is that the exact
result holds when the one-hole Green’s functions are known.
For example, even for Ni, which is 3d8, the one-hole Green’s
function added in a partially filled 3d band is nontrivial and
direct input for x-ray photoelectron spectroscopy (XPS) is
needed [41].

As in the Cini-Sawatzky theory, impurity calculations [30]
in the filled limit shows a satellite peak separated from the
bandlike features by the local correlation strength. In this
limit, the impurity results also show a simple linear relation
of the satellite’s location with U . However, adding small-hole
doping before the Auger two-hole insertion strongly distorts
the picture, even when core-hole effects are not considered.
The linear dependence of the satellite peak is lost and the
satellite shifts towards the bandlike part with increasing U .
Finally, the effects of � have not been systematically explored
at partial filling within the impurity studies to the best of our
knowledge.

From Fig. 5(a), we already see that the L2HR, or the AES
satellite, is stable beyond a filling-dependent �crit . We briefly
comment on the � dependence of the energy location of
L2HR at large U . In the inset in Fig. 5(b), we see that for
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hole doping of less than 25%, (n > 0.75), the L2HR location
exhibits a simple linear dependence of −U − 2� for large
fixed U (= 6) for n < 1. This is representative of the behavior
for all n > 0.75 and � greater than the n-dependent critical
value. This is analogous to the linear dependence on U in the
literature previously reported in the undoped case [30]. How-
ever, unlike the impurity approach, retaining the full lattice
symmetry extends the regime where the L2HR has a linear
dependence on U above 75% band filling.

Since � can be determined from x-ray techniques such
as XPS [42], U can be ascertained for the location of the
L2HR. Figure 5(b) shows the filling independence of the en-
ergy location of the L2HR for 0.75 < n � 1. Representative
data are shown for U = 6 and U = 8. We finally note that
all results presented here using the low-memory approach are
benchmarked against Lanczos-based diagonalization. As an
example, in the inset in Fig. 5(b), we show that the Lanczos-
based L2HR peak (crosses) is in excellent agreement with our
method.

We conclude this section with general remarks summariz-
ing the interplay of � and U , expectations in two dimensions,
and spin-full cases. For two spinless holes added in a filled
ground state of our one-dimensional model, we first consider
the noninteracting problem, including nonzero �. When U
crosses the minimum magnitude of the noninteracting two-
hole band, a spectral feature is split from the noninteracting
continuum. However, the split-off feature contains contribu-
tions from states with two holes on a single TM site pair, one
hole each on TM and OX, both holes on OX, and both indi-
vidually occupying two different site pairs. These features are
centered around −2� − U and −� − U , 0, and −2� − 2U ,
as discussed earlier. Thus, to separate the L2HR centered
around −2� − U from the other features, � has to be suitably
chosen. The separation between these features depends on the
feature centroids and the bandwidth of individual features.
Thus, we have employed large U in our paper so that � can
be chosen to isolate the L2HR.

With this understanding, we can consider the two-
dimensional extension of our spinless fermion model with
2 × 2 plaquettes of TM and OX. Since the two-hole band-
width is larger in two dimensions, the critical U (for a fixed
�) to create split-off features is expected to be larger than
in one dimension. Similarly, since the individual features will
have more delocalization paths in two dimensions, their band-
widths are expected to be larger. Thus, for the same fixed large
U in one and two dimensions, the �crit needed to separate
the L2HR is expected to be greater in two dimensions. The
same trend should also hold for two holes added in partially
filled ground states. Moreover, due to the 2 × 2 plaquette
structure, the two-hole spectral function is expected to have
a substructure even if two holes are spatially localized on
a single plaquette. Thus, the occupation of a TM plaquette
by two holes will reduce the energy from the filled ground
state by −4U − 2� for holes occupying diagonal sites of the
plaquette, followed by −3U − 2� when the two holes occupy
adjacent sites on a TM plaquette. For one hole on OX, the
energy reduction is −2U − �, and 0 for both holes on OX.
A careful analysis would be needed to determine the critical
� at large U beyond the above general expectations, for the
feature centroids.

The most straightforward material realistic extension of
the model can be done by considering the well-known ionic
Hubbard model [43,44] with a spin-full fermion in two di-
mensions. The model consists of TM and OX sites (to use
the language in the paper) and can be studied in the case with
on-site Hubbard U and � on TM sites (which can be occupied
by two electrons of opposite spins) and noninteracting OX
sites with zero on-site potential. The model is of relevance
to strongly correlated double perovskites [45]. The Ucrit for
two holes added in a filled band will be approximately U �√

�2 + 64t2, twice the noninteracting one-hole bandwidth. U
set to be much larger than this critical value will allow adjust-
ing � to separate an on-site TM local two-hole resonance.

V. CONCLUSIONS

We have investigated the impact of strong correlation and
charge transfer effects on the stability of a local two-hole
spectral function in partially filled ground states using exact
numerical techniques retaining full lattice symmetry. We have
established that in contrast to only NN repulsive interaction,
in the model with the TM and OX motif, both interaction and
charge transfer energy are necessary for stabilizing a two-hole
resonance with vanishing small bandwidth even in a filled
ground state. For strong correlations, we have uncovered a
charge transfer regime where the L2HR is stable for a wide
regime of partially filled ground states, from filled to about
75% filling. At 75% band filling, the local two-hole spectral
function shows an abrupt and dramatic spectral weight redis-
tribution, destabilizing the signature of the L2HR in the local
two-hole spectral function. For n � 0.75, the L2HR cannot be
recovered for any U and �, unlike for n > 0.75. Finally, we
have shown that the location of the L2HR has a linear relation
of both � and U , for � > �crit . In this regime, one could
use the energy location of the L2HR to extract the value of
TM interaction strength, which is an extension of the Cini-
Sawatzky-type approach for ascertaining correlation strength
from L2HR to partial band filling. Further, since our result
produces the exact two-hole spectral function, the approach
provides a way to fit the relevant experimental data in any
parameter regime. Our numerical scheme can also handle
the inclusion of core holes and can handle local multiplet
structures and, in the future, will allow us to make a realistic
comparison with AES experiments.
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APPENDIX

1. Many-fermion formalism

For two holes created on a pair of lattice sites (I, J ) in
a N -fermion ground state |ψN

0 〉 and subsequently destroyed
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at a later time from the same site pair, the two-hole retarded
Green’s function, in the frequency domain, is given by

G(2h)
IJ;IJ (ω) =

∑
jN , j′N

〈
ψN

0

∣∣ jN
〉 〈

j′N
∣∣ψN

0

〉

× 〈 jN | c†
I c†

J [(ω + iη)I − H]−1cI cJ | j′N 〉 .

(A1)

In the above, we have inserted a complete set of N -fermion
real-space basis sets {| jN 〉} and {| j′N 〉}. The two-hole spectral
function is obtained from the imaginary part of the above
expression. We first provide a way to obtain the prefactors
〈ψN

0 | | jN 〉 〈 j′N | |ψN
0 〉 and extract the factors in Eq. (A1) from

the N -fermion Green’s function introduced in Sec. III. For
this, we note that from the imaginary part of the N fermion,
the Green’s function in the Lehmann representation can be
expressed as

− 1

π
ImGN

jN ; j′N (ω) =
∑
λN

〈 jN | |λN 〉 〈λN || j′N 〉δ(ω − EN
λ

)
,

(A2)

which implies that

− 1

π
ImGN

jN ; j′N

(
ω = EN

0

) = 〈
jN

∣∣ ∣∣ψN
0

〉 〈
ψN

0

∣∣ ∣∣ j′N
〉

= DN
jN ; j′N

(
EN

0

)
(A3)

in the η → 0 limit, where DN
jN ; j′N

(ω) is the N -fermion
spectral function matrix. We note that the above holds for
GN

jN ; j′N
(ω) = GN

j′N ; jN
(ω), which is true for equilibrium many-

fermion problems. The remaining part of Eq. (A1) is matrix
elements of the (N − 2)-fermion spectral function matrix
[DN−2(ω)]. Thus, the two-hole real-space spectral function,
A(2h)

IJ;IJ (ω) ≡ −1/π Im{G(2h)
IJ;IJ (ω)}, can be expressed as

A(2h)
IJ;IJ (ω) =

∑
jN , j′N

DN
jN , j′N

(
EN

0

)
DN−2

jN (IJ )−; j′N (IJ )− (ω). (A4)

While this form is true for any site pair (I, J ), we particularly
focus on the case when I and J are the NN of each other.
In this case, we refer to the two-hole spectral function as
a local two-hole spectral function, A2−hole

IJ;IJ (ω) ≡ A2−hole
L (ω).

From Eq. (A4), we first notice that the calculation of real-
space two-hole spectral function A(2h)

L (ω) involves elements
of the N -fermion spectral function matrix DN

jN , j′N
(ω), evalu-

ated at ω = EN
0 or at the many-fermion ground-state energy.

Different elements of DN
jN , j′N

(ω) are extracted from the

many-fermion Green’s function GR(N )
jN ; j′N

(ω) = 〈 jN |Ĝ(ω)| j′
N

〉,
evaluated between the N -fermion basis elements, (| jN 〉)† and
| j′

N
〉, at ω = EN

0 . The (N − 2)-fermion spectral function ma-
trix elements required in Eq. (A4) are similarly extracted from
[GN−2(ω)]. The jN , j′

N
indices run over all the N -fermion

basis states, while the relation | j′
N

(IJ )−〉 ≡ cI cJ | j′
N

〉 defines
the (N − 2)-fermion basis indices in Eq. (A4). The unprimed
indices refer to the corresponding conjugate states and are
defined analogously.

Finally, we note that two-particle excitations in partially
filled bands can be computed from N - and (N + 2)-fermion

spectral function matrices. Similarly, one (particle/hole) pho-
toemission excitation can be computed from N - and (N +
1/N − 1)-fermion spectral function matrices.

2. Fock-space recursive Green’s function scheme

Here we briefly discuss the Fock-space recursive Green’s
function (F-RGF) scheme [37]. We have a L site chain
with periodic boundary conditions containing N spinless
fermions. We divide the lattice into two halves and label
all N -fermion states by |nl , nr〉. Here, nl (nr) refers to the
number of fermions in the left (right) half. Under nearest-
neighbor hopping, either (nl , nr) is conserved, implying no
hopping between the two halves or a change only by ±1 if the
fermions hop between the two halves. Thus, the N -fermion
Hilbert space can be decomposed into a direct sum of (N + 1)
“Fock-space sectors” with fixed (nl , nr) and hopping matrices
connecting them. The latter connects |nl , nr〉 to |nl ± 1, nr ∓
1〉. We label the Fock-space sector with (nl , nr) occupations
by αnl +1. The Hamiltonian for a particular Fock-space sec-
tor αi is denoted by H (αi ), which contains nl = i − 1 and
nr = N − nl in the left and right halves. The hopping matrices
that connect nearest-neighbor sectors αi and α j are denoted by
[τ ]αi,α j . Since the connections are NN, the Hamiltonian has
a tridiagonal representation in the Fock-space sector repre-
sentation. Due to this, the inverse of the resolvent operator,
ω + iη − H , is also tridiagonal.

The main task is to obtain the resolvent operator or the
N -fermion Green’s function. We will exploit the tridiagonal
form of H and the inverse resolvent ω + iη − H for the in-
version. The tridiagonal representation with NN Fock-space
sector coupling matrices and sector Hamiltonians is similar to
a “matrix-valued” one-dimensional lattice. Due to this, it is
natural to generalize the well-known recursive Green’s func-
tion (RGF) [46–48] to this one-dimensional lattice in the Fock
space. We define a disconnected Green’s function matrix for
a sector αi by [G0]−1

αiαi
(ω) ≡ ω − H (αi ) + iη. As mentioned

above, H (αi ) represents H in the basis elements belonging
only to the sector αi. The dimension of [G0R(N )]−1

αiαi
(ω) and

H (αi ) is L/2Ci−1 ×L/2 CN−i+1. This is because for the αi

sector, we have nl = i − 1 and nr = N − nl . These matrices
contain all interaction and hopping terms connecting the states
that preserve the (nl , nr ) pair. The NN sector connecting ma-
trices, between adjacent αi and αi + 1, denoted by [τ]αi,αi+1 ,
has the dimension (L/2CN−i+1 × L/2Ci ).

We also need to introduce an intermediate, forward-
connected Green’s function matrix, [GF ]αiαi , defined in
Eq. (A5). Below we will show how to obtain retarded Green’s
function blocks [GN ]αiαi , by a forward and backward recur-
sion involving [GF ]αiαi , [G0]−1

αiαi
, and [τ]αi,α j . For notational

brevity, we have suppressed the ω arguments. The recursive
algorithm applied to the Fock-space lattice has the following
steps:

(a) At first, the forward-connected Green’s function is cal-
culated by the recursive equation

[GF ]−1
αiαi

= [G0]−1
αiαi

− [τ]αiαi−1 [GF ]αi−1αi−1 [τ]αi−1αi . (A5)

For a system with periodic or open boundary conditions, we
start with the α1 sector, with (nl = 0, nr = N ). Since there
is no block to its left, from the above equation, [GF ]α1α1 =
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[G0]α1α1 . Starting from this, we obtain all other diagonal
blocks of the forward-connected Green’s function up to
[GF ]αN+1αN+1 , which is the αth

N+1 block. Since there are no fur-
ther blocks, it can be shown that [GF ]αN+1αN+1 = [G]αN+1αN+1 ,
the retarded Green’s function of the αN+1 block [46].

(b) From [G]αN+1αN+1 , all other diagonal blocks of the
retarded Green’s function can be obtained by a backward
recursion equation,

[G]αi−1αi−1 = [GF ]αi−1αi−1 (I + [τ]αi−1αi [G]αiαi [τ]αiαi−1 [GF ]αi−1αi−1).

(c) From the diagonal blocks of the retarded Green’s func-
tion, we can calculate all off-diagonal blocks by the recursive
relation

[G]αiα j |αi<α j = −[GF ]αiαi [τ]αiαi+1 [G]αi+1α j .

We note that matrix inversions are only needed in the
forward recursion, and the largest matrix dimension that needs
to be inverted is for the αN /2 block. As seen from the above
equations, we need two matrices of the dimension of the sector
αi, and αi at the ith step of the recursion. Any matrix mul-
tiplication to obtain [τ]αiαi−1 [GF ]αi−1αi−1 [τ]αi−1αi is calculated
in a manner that the connection matrices and the relevant
Green’s function matrices are not simultaneously allocated
in the memory. Finally, each frequency point is calculated
independently, adding no significant memory overhead.

As detailed in our recent paper [37], due to these features,
i.e., the requirements of F-RGF, the exponential growth of
the Hilbert space is suppressed by (1/L). This leads to the
following major practical advantage. For, say, N = 20 and
half filling, i.e., the current state of the art, this amounts to

a reduction of RAM from 512 Gb to a mere 160 Gb. It shows
that we can perform state-of-the-art calculations at a fractional
memory at other fillings as well, allowing access to large
system sizes with currently available resources.

3. Bandwidth of two-hole bound pair

We estimate the bandwidth of a two-hole bound pair by
constructing an effective Hamiltonian by dividing the basis
vectors into two groups: (i) all states with two holes on NN
sites and (ii) all other states. We separately construct the
Hamiltonian for these two groups, H2h and Hr , respectively.
The full Hamiltonian is a direct sum of these two apart from
the connection terms between them. Thus, H is given by

H =
[

H2h Hc

Hc Hr

]
.

Here, Hc are the hopping terms that connect the states of
H2h and Hr . Using standard manipulations, we can write

H eff
2h (ω) = ω −

[
(ω − H2h) − Hc

1

(ω − Hr )
Hc

]
. (A6)

We set ω = −3U as the potential energy of all states with two
holes on NN sites to obtain the low-energy effective Hamil-
tonian. We note that this procedure is valid only if there is a
clear energy separation between the states of H2h and Hr . The
bandwidth in the inset of Fig. 1 (dashed line) is the bandwidth
of the spectrum obtained by diagonalizing H eff

2h (−3U ). DBW

at large U can also be estimated analytically by the standard
perturbation approach to the order of O(t2/U ) and is found to
be 4t2/U .
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