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Quantum Monte Carlo simulations of thermodynamic properties of attractive SU(3) Dirac fermions
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We employ the determinant quantum Monte Carlo method to study the finite-temperature properties of
the half-filled attractive SU(3) Hubbard model on a honeycomb lattice. We calculate the phase diagram in
which the phase boundary separates the disordered phase and the charge density wave (CDW) phase and the
transition temperature Ttr (|U |) varies nonmonotonically with attractive Hubbard interaction |U |. As the Hubbard
|U | increases at constant temperature T < max(Ttr(|U |)), the system first undergoes a transition from thermal
Dirac semimetal phase to CDW phase, and eventually the CDW state is thermally melted at a strong Hubbard
|U | where the system enters a trion liquid phase. In between the two transition points the nonmonotonic |U |
dependence of CDW order strength is strikingly different from the zero-temperature monotonic behavior. In the
trion CDW state where off-site trions arise from quantum fluctuations (a fermion inside an on-site trion hops
to a nearest-neighbor site), the simulated triple occupancy at constant Hubbard |U | surprisingly increases with
temperature, implying that the formation of off-site trions is suppressed by the thermal delocalization of on-site
trions. We have also calculated the entropy-temperature relations for various attractive Hubbrad interactions,
which exhibit the prominent characteristic of the Pomeranchuk effect. Our work has revealed that the formation
of on-site and off-site trions has significant consequences for thermodynamic properties of SU(3) Dirac fermions.
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I. INTRODUCTION

Ultracold fermions provide highly tunable systems for
studying SU(N ) (N > 2) physics which is common in high-
energy context but rare in solids. In the alkaline-earth
fermions that simply carry large hyperfine nuclear spins owing
to closed-shell electronic structure, SU(2N ) symmetry arises
when the interatomic scatterings are spin-independent [1–4].
In alkaline fermions such as 6Li, the SU(3) symmetry arises
when the 6Li atoms have equal populations in the three lowest
energy hyperfine states (often referred to as “colors”) and the
pairwise s-wave scattering lengths between these colors ap-
proach a common value [5,6]. Unlike the classic-like large-S
scenario, the large number of multiple components N can sig-
nificantly enhance quantum fluctuations and thus induces even
richer quantum phases in SU(N ) ultracold fermions compared
to spin-1/2 electronic systems [2,7]. In recent two decades,
the study on novel states of ultracold fermionic atoms with
SU(N ) symmetry has become one of major research foci at the
interdisciplinary frontiers of cold atom physics and condensed
matter physics [8–23].

Among numerous SU(N ) fermionic systems, the attractive
SU(3) Hubbard model has a special standing, most obviously
because of formation of trions bearing resemblance to the
quark matter. In a three-fermion attractive SU(3) Hubbard
model on the square lattice, the exact diagonalization cal-
culation illustrates two configurations of trionic states [24]:
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the on-site trion composed of three fermions at one site, and
the off-site trion consisting of two fermions at one site and
one fermion at the nearest-neighbor site. In many-body sys-
tems, the quantum Monte Carlo (QMC) simulations of the
half-filled attractive SU(3) Hubbard model on a honeycomb
lattice demonstrate the formation of a local bond state of the
off-site trion in the background of the trion charge density
wave (CDW) phase [25]. The variational [26,27], self-energy
functional [28,29], and dynamical mean-field theory [30,31]
studies find that in the attractive SU(3) Hubbard model, a
phase transition between the color superfluid and the on-site
trion phase occurs, which is reminiscent of the transition be-
tween the quark superfluid and the baryonic phase [32–34]. In
an one-dimensional lattice away from half filling, the density
matrix renormalization group studies show that off-site trions
can develop quasi-long-range correlations, when on-site triple
occupancy is prohibited in a SU(3) attractive Hubbard model
[35], or when the attractive interactions are color-dependent
in a three-component Hubbard model with SU(3) symmetry
breaking [36].

It has been found that the on-site and off-site trions coexist
in the ordered phase of the one-dimensional three-component
Hubbard model with color-dependent interactions away from
half filling [36] and the honeycomb-lattice SU(3) Hubbard
model at half filling [25]. However the research on exploring
the physical effects of the interplay between on-site and off-
site trions in a two-dimensional spatial model is still at the
very early stage. In this work, we propose to investigate the
thermodynamic properties of the half-filled attractive SU(3)
Hubbard model on a honeycomb lattice, by performing the
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sign-problem-free determinant QMC (DQMC) simulations.
We shall focus on the formation of trion states at finite tem-
peratures, through which we can investigate how the on-site
and off-site trions affect the thermal phase transition, triple
occupancy, entropy-temperature relation, and density com-
pressibility.

The rest of this paper is organized as follows. In Sec. II,
the model Hamiltonian and parameters of DQMC simu-
lations are introduced. In Sec. III, the phase diagram is
obtained from DQMC simulations. In Sec. IV, formation
of trion states is studied via DQMC simulations of triple
occupancy and density correlation function. In Sec. V, the
entropy-temperature relations are calculated and analyzed.
Subsequently, in Sec. VI, the density compressibility is inves-
tigated. The conclusions are drawn in Sec. VII.

II. MODEL AND METHOD

The half-filled attractive SU(3) Hubbard model on the hon-
eycomb lattice takes the form

H =−t
∑
〈i j〉,α

(c†
iαc jα + H.c.) + U

∑
i,α<β

(
niα − 1

2

)(
niβ − 1

2

)
,

(1)
where 〈i j〉 denotes the nearest-neighbor sites; α and β are
the color indices running from 1 to 3; the nearest-neighbor
hopping amplitude t is set as energy unit in our simulations;
niα = c†

iαciα is the particle number operator for color α at
site i; U < 0 describes the attractive Hubbard interaction. The
chemical potential vanishes at half filling.

The DQMC simulation of the half-filled attractive SU(3)
Hubbard model in a bipartite lattice is sign-problem-free
when the Hubbard-Stratonovich (H-S) decomposition in the
color-flip channel is employed [25,37]. We shall adopt a
mathematically rigorous H-S decomposition revised from
Ref. [25], as presented in Appendix A. In our DQMC sim-
ulations, the Suzuki-Trotter discretization �τ is set between
1

12 and 1
8 . The 2×L×L honeycomb lattices with L = 3, 6,

9, and 12 are simulated under the periodic boundary condi-
tion which preserves the translational symmetry. For a typical
data point, 300–500 warmup steps and 300–500 measure-
ments are used in QMC bins. Unless specifically stated,
the temperature T and the Hubbard U are given in the
unit of t .

III. THE PHASE DIAGRAM

The projector QMC simulation demonstrates that the half-
filled SU(3) Hubbard model on a honeycomb lattice can
undergo a continuous quantum phase transition between the
semimetal and the CDW phase at the quantum critical point
Uc = −1.52 [25]. Since the CDW ordering on the honeycomb
lattice breaks the discrete symmetry of lattice inversion, it
can survive at low temperatures. In this section, we shall
investigate the thermal phase transitions of attractive SU(3)
Dirac fermions.

(a)

(c)

(b)

(d)

FIG. 1. The finite-size extrapolations of the CDW order param-
eter for various Hubbard |U |: (a) |U | = 2, (b) 3, (c) 4.5, and (d) 6.
The quadratic polynomial fitting is used.

In QMC simulations, the CDW ordering can be character-
ized by the CDW structure factor:

SCDW(L, �) = 1

2L2

∑
i, j

(−1)i+ jC(i, j), (2)

where the density-density correlation function C(i, j) =∑
α,β〈niαn jβ〉. Then the CDW order parameter is defined as

D = lim
L→∞

√
1

2L2
SCDW(L, �). (3)

At low temperatures, the finite-size extrapolations of the
CDW order parameters for various Hubbard attractions are
shown in Fig. 1. At constant Hubbard attraction |U |, the
CDW order develops with the decrease of temperature. The
transition temperatures Ttr of the CDW transitions for |U | =
2, 3, 4.5, and 6 are respectively in the small intervals 0.233 <

Ttr < 0.250, 0.323 < Ttr < 0.357, 0.250 < Ttr < 0.270, and
0.233 < Ttr < 0.250. In the phase diagram (Fig. 2), the black
and the blue lines represent the upper and lower boundaries
of the transition temperatures determined by our DQMC sim-
ulations illustrated in Fig. 1. With denser data points, the two
boundaries should merge into one. At T = 0.294, as the Hub-
bard |U | increases, the system first undergoes a transition from
the semimetal phase to the CDW phase and then enters the
trion liquid phase caused by thermal melting of CDW order at
strong coupling. As shown in Fig. 2, the transition tempera-
ture Ttr(|U |) presents nonmonotonic dependence on Hubbard
attraction |U |, which can be understood by the second-order
perturbation theory as follows.

In the attractive SU(3) Hubbard model [Eq. (1)], when |U |
is sufficiently large, one can treat the Hubbard interaction term
as the unperturbed Hamiltonian and the hopping term as the
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FIG. 2. The finite-temperature phase diagram of the half-filled
attractive SU(3) Hubbard model on a honeycomb lattice, SM –
semimetal, TL – trion liquid, CDW – charge density wave. The red
dashed curve represents the isoentropy curve of S/kB = 0.31. The
quantum critical point is extracted from Ref. [25].

perturbation. The second-order effective Hamiltonian can be
derived as

Hrep = t2

2|U |
∑
〈i j〉α

niαn jα, (4)

which describes the effective repulsion between nearest-
neighbor on-site trions [30]. At low temperatures, on-site
trions tend to occupy the same sublattice minimizing the
free energy, which develops CDW order. When T > Ttr(|U |),
the entropy contribution wins over the energy contribution,
and to achieve minimum free energy, on-site trions tend to
distribute randomly on the bipartite lattice, which gives rise
to the thermal melting of the CDW order. The increase of
|U | decreases the energy scale t2

|U | and thus the CDW order
can be thermally melted at even lower trsnsition temperatures.
Hence, the transition temperature Ttr(|U |) decreases with in-
creasing |U | in the strong-coupling regime, from which we
can infer that the thermal CDW state can always be ther-
mally melted into delocalized on-site trions at sufficiently
strong coupling. This also implies the nonmonotonic variation
of the CDW order strength with Hubbard |U | at constant
temperature T < max(Ttr(|U |)). At T = 0.233, the finite-size
extrapolation of the CDW order strength for various Hubbard
|U | are presented in Fig. 3. The thermal fluctuation is the
cause of the nonmonotonic behavior of the CDW ordering
with increasing |U |, while at T = 0 the CDW order strength
increases monotonically with |U |.

IV. TRION FORMATION

On-site trions are basically classical states since they con-
stitute the ground state of the interaction term in Eq. (1), while
off-site trions arising from quantum fluctuations are a direct
consequence of the noncommutation between the hopping
term and the interaction term in Eq. (1). In the SU(2) case,
quantum fluctuations can be reflected by the temperature de-
pendence of double occupancy [38,39], and in experiments the
site-resolved imaging technique can be used to detect the on-

FIG. 3. The CDW order parameter D as a function of Hubbard
|U | at T = 0.233. Error bars are smaller than the data points.

site particle number occupation [40–42]. In this section, we
shall demonstrate the effects of on-site and off-site trions by
simulating the temperature dependence of triple occupancy. In
QMC simulations, the triple occupancy is defined as

P3(T,U ) = 1

2L2

∑
i

〈ni1ni2ni3〉. (5)

In the noninteracting/high-temperature limit, the three-color
correlations can be decoupled and thus limT →∞ P3(T,U ) =
limU→0 P3(T,U ) = 0.125.

The temperature dependence of triple occupancy P3 for
various Hubbard |U | are plotted in Fig. 4. At very small |U | =
0.01, P3 is almost equal to the constant 0.125, as expected.
When |U | = 1.5, unbound fermions dominate, but they tend
to form trions for low temperatures T < t so that formation of
trions results in a reduction of the free energy. For T > t trions
break up into unbound fermions since maximizing entropy
can lead to a minimum free energy. Thus the nonmonotonic
temperature dependence of P3 for |U | = 1.5 reflects the roles
for the energy and the entropy to minimize the free energy
as the temperature varies. When |U | = 2, the minimum of
P3 at T = 0.25 indicates the point where the trions start to

FIG. 4. Triple occupancy P3 as a function of temperature T for
various Hubbard |U |. The lattice size is L = 9.
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FIG. 5. (a) The hopping process in the trion CDW state.
(b) When on-site trions distribute randomly, a considerable percent-
age of such hopping processes are forbbiden by the Pauli exclusion.

replace the dominant role of unbound fermions as the temper-
ature varies. When |U | = 3, 4.5 and 6, each triple occupancy
P3 becomes a nonmonotonic function of T and achieves a
peak at the temperatures T ∗ which is slightly higher than the
transition temperature Ttr. When T > T ∗, P3 decreases with
increasing temperature and converges at the high-temperature
limit 0.125, regardless of the values of Hubbard |U |.

The nonmonotonic temperature dependence of P3 for
|U | = 3, 4.5, and 6 can be explained as follows. When the
system is in the trion CDW states, as illustrated in Fig. 5(a),
one fermion in each on-site trion can hop to three nearest-
neighbor sites due to quantum fluctuations, which transforms
an on-site trion into an off-site trion. This process reduces
the triple occupancy P3 to below 0.5. At T = T ∗, the CDW
order has been thermally melted and on-site trions distribute
randomly on the lattice. In this case, the nearest-neighbor
sites of an on-site trion may be occupied by other on-site
trions. Hence, the Pauli exclusion principle may freeze some
channels of the nearest-neighbor hopping process, as shown
in Fig. 5(b). As a result, the formation of off-site trions is sup-
pressed by the random distribution of on-site trions, leading to
the maximum of triple occupancy P3(T ∗) > P3(T → 0). With
further increase of the temperature, trions start to break up into
unbound fermions, so that P3 decreases and reaches to 0.125
in the high-temperature limit.

The finite-temperature CDW transition is accompanied
with the formation of trions and breaking of lattice inversion
symmetry, which can also be manifested by the correlation
function [24,25,35,43],

T (i, j) = 〈ni1ni2n j3〉. (6)

It measures the correlation between the color-3 fermion at site
j and the color-1,2 fermions at site i. When ri j = |�ri − �r j |
is sufficiently large, T (i, j) depends on which sublattice the
lattice sites i and j belong to, irrelevant to the length of
ri j , owing to the density uniformity within a sublattice. For
convenience, T (i, j) with i, j being on the same sublattice and
on different sublattices are respectively denoted by T A(i, j)
and T AB(i, j).

In Fig. 6(a), the variation of T (i, j) with ri j for various
temperatures illustrates the thermal CDW phase transition
at |U | = 4.5. For T < 0.294, T A(i, j) is much larger than
T AB(i, j), which manifests the lattice inversion symmetry
breaking of the solidlike CDW phase. At T = 0.4, T A(i, j)
and T AB(i, j) converge to a common value 0.236, reflect-
ing the lattice inversion symmetry of the trion liquid phase.
Note that the converged value 0.236 is slightly smaller than

FIG. 6. T (i, j) as a function of |�ri − �r j |. (a) Varying temperature
T at constant Hubbard |U | = 4.5. (b) Varying Hubbard |U | at con-
stant temperature T = 0.294. The solid and dashed curves represent
respectively T A(i, j) and T AB(i, j). The lattice size is L = 9.

0.25, which implies coexistence of majority on-site trions and
minority off-site trions. The minimum of T (i, j) appears at
ri j = 1, which follows the behavior of T (i, j) in the large-|U |
limit due to the effective nearest-neighbor repulsion between
on-site trions described by Eq. (4).

In Fig. 6(b), the interaction-induced phase transition is
illustrated at T = 0.294. With increasing |U |, T A(i, j) and
T AB(i, j) first converge to 0.17 at |U | = 2, and then have
different values for 2 < |U | < 6, and eventually converge to
0.24 at |U | = 6. This suggests that with increasing |U |, the
system undergoes phase transitions from the semimetal phase
to the CDW phase and thence to the trion liquid phase, which
is consistent with the phase diagram (Fig. 2). At |U | = 2, the
converged value 0.17 is larger than 0.125 and much smaller
than 0.25, which manifests that a small number of unbound
fermions form trions and thus the liquidlike phase consists of
randomly distributed minority trions and majority unbound
fermions. At |U | = 6, the converged value 0.24 is slightly
lower than 0.25, implying that the liquid-like phase consists
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FIG. 7. The entropy per particle S as a function of temperature
T for various Hubbard |U | (lattice size L = 9). The entropy-
temperature relation of the trionic Ising model (TIM) is calculated
by classical Monte Carlo simulations.

of randomly distributed majority on-site trions and minority
off-site trions.

V. ENTROPY-TEMPERATURE RELATION

We shall demonstrate how on-site trions and off-site trions
affect the specific entropy, which is directly measurable in
ultracold atom experiments [44]. In QMC simulations, the
entropy per particle can be calculated by using the following
formula [12]:

S(T )

kB
= S(∞)

kB
+ E (T )

T
−

∫ ∞

T
dT ′ E (T ′)

T ′2 , (7)

where E (T ) is the total energy per particle and S(∞) is the en-
tropy per particle in the high-temperature limit. In our SU(3)
model, there are eight possible states on each site in the high-
temperature limit and thus S(∞)

kB
= ln 8

1.5 = 2 ln 2. In Eq. (7),

when T ′ < 1, the numerical errors of E (T ′) is amplified 1
T ′2

times in the integral. Alternatively one can change the variable
and obtain

S(T )

kB
= S(∞)

kB
+ βE (β ) −

∫ 1
T

0
dβ ′ E (β ′) (8)

with inverse temperature β = 1
T . When T < 1, the numerical

error in Eq. (8) is amplified β times which is smaller than
that in Eq. (7). Nevertheless, when |U | > 4, the calculated
values of S(T ) are reliable only for β � 4.3, as discussed in
Appendix B. Therefore, when plotting the temperature varia-
tion of specific entropy, specific entropies are only calculated
for T � 0.23 when |U | > 4.

Figure 7 shows that the small curve-crossing area char-
acterizes the separation between low-temperature and high-
temperature regions, and at low temperatures specific entropy
S increases monotonically with Hubbard |U |. We now analyze
the |U | dependence of the specific entropy at low temperatures
and the resulting consequence. At strong coupling where the
system is in the trion CDW phase, the entropy S is mainly
contributed by the degrees of freedom of on-site trions. With
increasing |U |, since the effective nearest-neighbor repulsion

FIG. 8. (a) The hopping process of on-site trions in the trionic
Ising model. (b) In the attractive SU(3) Hubbard model, the off-site
trion blocks some hopping channels of on-site trions due to the Pauli
exclusion.

between on-site trions decreases, on-site trions tend to be
highly delocalized and then the system becomes less ordered
(entropy increase). At weak coupling, the system is in the
semimetal state, the entropy of which is mainly contributed by
fermions near Dirac points and thus is small due to the van-
ishing density of states at half filling. Consequently the CDW
state is less ordered than the thermal Dirac semimetal. The
specific entropy of the system therefore increases with |U | at
low temperatures. As a consequence, the SU(3) fermions can
be driven to lower temperatures by adiabatically increasing
the strength of the attractive Hubbard interaction, exhibiting
the Pomeranchuk effect. In the phase diagram (Fig. 2), the
isoentropy curve of S/kB = 0.31 intersects the phase bound-
ary, manifesting a possible scenario for the experimental
realization of CDW states of attractive SU(3) Dirac fermions
via Pomeranchuk cooling.

The strong-coupling limit of our model is the trionic Ising
model [30], in which spin up (down) corresponds to an on-
site trion (trionic hole) and the Ising coupling J = t2

2|U | . In
Fig. 7, the specific entropy S of the trionic Ising model in
the low-temperature region is larger than that of our model.
In the trionic Ising model, S is contributed by the degrees of
freedom of on-site trions. However, in our model, due to the
Pauli exclusion off-site trions block some hopping channels
of on-site trions, which reduces entropy contributed by on-site
trions, as illustrated in Fig. 8. This explains that the attractive
SU(3) Hubbard model is more ordered than the trionic Ising
model at low temperatures.

At high temperatures, trions break up into unbound
fermions and thus the specific entropy is mainly contributed
by the degrees of freedom of unbound fermions, which con-
tributes more possible states than on-site trions. Increasing
|U | favors the formation of on-site trions, and thus reduces
the degrees of freedom of unbound fermions. As a result,
the specific entropy decreases with increasing |U | at high
temperatures.

When |U | � 3, a plateau-like regime appears in each
S − T curve and grows with increasing |U |, as shown in
Fig. 7. In fact, the roles of trions and unbound fermions in
entropy production are separated at around the plateau-like
regime. For larger |U |, the melted trions need to be heated
up to an even higher temperature along the plateau until
they break up into unbound fermions, which expands the
plateau-like regime. For sufficiently large |U | (i.e., trionic
Ising model), a plateau of S = (2 ln 2)/3 develops with in-
creasing temperature, due to the full release of trion entropy.
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FIG. 9. The density compressibility κ as a function of temper-
ature T for various Hubbard |U |. The inset plots the peak value
κ∗(|U |) as a function of |U |. The lattice size is L = 9.

VI. THE DENSITY COMPRESSIBILITY

The density compressibility is a physical observable in cold
atom experiments as well. It is related to the global density
fluctuations. In our simulations, the density compressibility is
defined as

κ = β

2L2

⎡
⎣〈(∑

i

ni

)2〉
−

〈∑
i

ni

〉2
⎤
⎦, (9)

where i runs over the entire lattice.
Figure 9 presents the density compressibility κ as a func-

tion of temperature T for various values of Hubbard |U | � 2.
At temperatures lower than the temperature of the curve-
crossing point of |U | = 2 and |U | = 3, the |U | dependence
of κ is obviously nonmonotonic. When 2 � |U | < 3, κ de-
creases with increasing |U |, which manifests that unbound
fermions are driven to form localized trions causing less
compressible (harder) CDW state. When 3 � |U | � 6, κ in-
creases with |U |. This implies that, as discussed in Secs. III
and V, trions tend to be more delocalized and thus charge
fluctuations increase, leading to more compressible (softer)
CDW state. Note that κ for |U | > 3 is significantly larger than
that for |U | < 3, because trions carry triple charge of an un-
bound fermion and enhance density fluctuations. At constant
Hubbard |U | � 2, the temperature dependence of κ is non-
monotonic: at sufficiently low temperatures, κ vanishes due
to the insulating nature of the CDW phase, while at very high
temperatures κ behaves like that of a classical ideal gas, i.e.,
κ (T ) ∼ 1

T because trions break up into unbound fermions.
It is noteworthy that, when |U | � 3 (trion fluctuations dom-
inate), the peaks of the κ-T curves characterizes the melting
temperature of CDW states where trion fluctuations are most
significant and thus κ reaches peak value. For sufficiently
large |U |, as analyzed in Sec. III, the melting temperature is
proportional to 1

|U | and consequently increasing |U | moves the
peak position towards lower temperature and also elevates the
peak value (since κ increases with |U |), leading to the 1/|U |
divergence of κ in the vicinity of zero temperature. This large-
U behavior even holds for |U | � 3, as shown in Fig. 9. In

addition, the peak value of the density compressibility κ∗(|U |)
is nearly linear in |U |.

VII. CONCLUSIONS

We have performed DQMC simulations of the ther-
modynamic properties of the half-filled attractive SU(3)
Hubbard model on a honeycomb lattice. We obtain the finite-
temperature phase diagram in which the disordered phase and
the CDW phase are separated by the phase boundary. We have
also investigated the influences of trions on the thermody-
namic properties of the attractive SU(3) Dirac fermions by
simulating the temperature dependence of triple occupancy,
entropy and density compressibility.

When |U | > |Uc| (Uc = −1.52 is the quantum critical
point), lowering temperature can induce thermal CDW transi-
tions. At constant temperature T < max(Ttr(|U |)), increasing
Hubbard |U | induces a semimetal-to-CDW transition at weak
coupling where the density fluctuations of unbound fermions
dominate, and further causes trion CDW state, and ultimately
leads to a transition from the CDW to the trion liquid phase at
sufficiently strong coupling where the density fluctuations of
on-site trions govern. In the trion CDW region, isothermally
increasing Hubbard |U | decreases effective repulsion between
on-site trions and thus enhances the delocalization of on-site
trions, which leads to the increase in entropy (i.e. the Pomer-
anchuk effect) and the melting of the CDW state.

In the trion CDW region, off-site trions arise from quan-
tum fluctuations—one fermion from an on-site trion hops
to the nearest-neighbor site, forming an off-site trion. The
formation of off-site trions and the delocalization of on-site
trions develop in an opposite way due to the Pauli exclusion
principle. Increasing temperature enhances the delocalization
of on-site trions and thus suppress the formation of off-site
trions, leading to the nonmonotonic temperature dependence
of triple occupancy.
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APPENDIX A: THE HUBBARD-STRATONOVICH
DECOMPOSITION

In Ref. [25], the Hubbard-Stratonovich decomposition of
the interaction term in Eq. (1) is written as

e−�τ

∑
α<β Uαβ (nα− 1

2 )(nβ− 1
2 )

=
∏
α<β

e−�τUαβ (nα− 1
2 )(nβ− 1

2 )

≈ 1

8
e− �τ

4 (U12+U13+U23 )
∑

sαβ=±1

e
∑

α<β sαβλαβ (c†
αcβ−c†

βcα ), (A1)

with λαβ = arccos e
�τ Uαβ

2 . This decomposition is not exact
since c†

1c2 − c†
2c1, c†

1c3 − c†
3c1 and c†

2c3 − c†
3c2 do not com-

mute with each other. In our QMC simulations, we adopt the
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exact decomposition below

e−�τ

∑
α<β Uαβ (nα− 1

2 )(nβ− 1
2 )

= 1

8
e− �τ

4 (U12+U13+U23 )
∑

sαβ=±1

∏
α<β

esαβλαβ (c†
αcβ−c†

β cα ).
(A2)

APPENDIX B: THE NUMERICAL ERROR OF THE TOTAL
ENERGY PER PARTICLE AT LOW TEMPERATURES

According to Eq. (8), large inverse temperatures β amplify
the numerical error of the total energy per particle �E . Thus,
�E can not be ignored when we calculate S at low temper-
atures, especially for |U | > 4. In Figs. 10(a) and 10(b), the
numerical error is expressed by β�E (β ) instead of �E (β )
and the relations of the total energy per particle E versus β

are presented for |U | = 4.5 and 6.0, respectively. At large

FIG. 10. The total energy per particle E vs inverse temperature
β at (a) |U | = 4.5 and (b) 6.0, respectively. The numerical errors
�E (β ) are replaced by β�E (β ). The length of the line segments
represents the value of β�E (β ).

β, the amplified numerical errors β�E are so large that the
calculated values of S become unreliable.
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