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Dynamical effects on photoluminescence spectra from first principles:
A many-body Green’s function approach
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Coupling of excitations, arising from electronic correlation or electron-phonon interaction, leads to intriguing
effects on the spectra of materials. Current approximations to calculate photoluminescence spectra most often
describe this coupling insufficiently. Starting from basic equations of many-body perturbation theory, we derive
a cumulant formulation for photoluminescence spectra that contains excitonic effects and the coupling between
excitons and other degrees of freedom such as plasmons and phonons. The cumulant approach allows us to
include dynamical effects arising from the electronic correlation and electron-phonon coupling in a simple and
intuitive way. It can be implemented as a postprocessing of state-of-the-art out-of-equilibrium Bethe-Salpeter
calculations of excitonic states.
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I. INTRODUCTION

Photoluminescence (PL) spectroscopy is a widely-used
technique for characterization of the optical and electronic
properties of semiconductors and molecules. The technique
itself is fast, contactless, and nondestructive. Moreover it
requires minimal sample preparation and allows pinpoint-
ing very small features (micron scale) on ultrathin samples
(<1 nm). This makes PL one of the most used techniques for
the study of two-dimensional systems. Despite all this, a full
ab initio method that allows for prediction of PL spectra in
real materials is still missing.

In the last two decades, the method of Green’s functions,
namely many-body perturbation theory (MBPT) [1–3], has
been successfully applied to the study of the optical prop-
erties of semiconductors. It provides an accurate ab initio
description of both electronic band structures as well as ex-
citonic effects that in this framework are addressed through
the solution of the Bethe-Salpeter equation (BSE) [2,3] for
the electronic polarizability. A rigorous formulation for the
luminescence signal in terms of Green’s functions has been
derived by Hannewald and coworkers [4]. Here the sponta-
neous emission is obtained by explicitly solving the BSE on
the Keldysh contour [5]. This approach treats absorption and
luminescence on equal footing and allows one to calculate the
luminescence spectrum for arbitrary nonthermal distributions.
As a consequence, when combined with modern methods
for the description of photoexcited carriers relaxation [6], it
gives access also to out-of-equilibrium spectroscopies such as
transient absorption and time resolved PL [7,8].

However, although the BSE is formally exact, in state-of-
the-art calculations it is solved in the static approximation;
i.e., taking the first-order expansion of the BSE kernel in
terms of the statically screened Coulomb interaction [3,9].
In this way all dynamical effects associated to the dynam-
ical fluctuations of the electronic charge and the lattice are

completely neglected. As a matter of fact, dynamical effects
are directly related to the explicit frequency dependence of the
effective interaction between particles and are responsible for
shifts and broadening of peaks, as well as additional structures
called satellites [9]. The latter are pure many-body effects
induced by electronic correlation and electron-phonon inter-
action and often dominate the low energy region of the PL
spectra of real materials. An example is represented by the
plasmon satellites observed in the PL spectra of doped 2D
transition metal dichalcogenides [10], or in excitonic systems
coupled with metallic nanoparticles used in plasmonic archi-
tectures [11] or phonon satellites that play a key role in the PL
spectra of polar semiconductors [12], molecular crystals [13],
quantum dots [14], and indirect-gap semiconductors [15–17].

The fully dynamical BSE is extremely complicated to solve
[18,19], and its solution might not be worth the effort. Indeed,
the BSE with a first-order kernel is similar to the Dyson
equation for the one-particle Green’s function with the self-
energy evaluated at the first order in the screened Coulomb (or
electron-phonon) interaction that often fails for satellites [9].
Rather than a scheme based on a Dyson equation, a cumulant
approach for the two-particle polarizability [20,21] reflecting
a picture of coupled bosons, appears more promising. It is
the exact solution for a two-level limiting case [22], and it is
additionally motivated by the success of an increasing number
of ab initio calculations for the one-particle Green’s function
for the description of both plasmonic [22–24] and phononic
[25,26] satellites in the photoemission spectra.

In this article, starting from the recently developed cu-
mulant expansion for the electronic polarizability [20], we
generalize this approach to the out-of-equilibrium conditions
(i.e., in presence of photoexcited carriers). This will al-
low including dynamical effects beyond state-of-the-art BSE
in a systematic way, treating the electronic correlation and
electron-phonon interaction on the same footing. In particular,
following Refs. [20,21], the derivation is done in two main
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steps. First of all, starting from the fully dynamical BSE on
the Keldysh contour we obtain a Dyson-like equation for the
two-time electronic polarizability that represents the exciton
propagator and provides the spectrum of neutral excitations.
This requires the introduction of an exciton self-energy re-
lated to the dynamically screened Coulomb potential and
the electron-phonon interaction. At this point, the cumulant
expression for the exciton propagator comes out naturally.
Indeed, in analogy with the one-particle Green’s function, the
cumulant coefficient is obtained imposing that the first-order
expansion of a cumulant ansatz for the exciton propagator
matches the first-order expansion of the Dyson equation.

The paper is organized as follows: In Sec. II we present
a short overview of the basic theory of PL highlighting
the relation between spectroscopic quantities and correlation
functions while in Sec. III, starting from the perturbation
expansion of the polarizability we derive an approximation for
the exciton self-energy. This will allow a partial resummation
of the perturbation series using a Dyson-like equation as well
as a cumulant expansion. In Sec. IV we derive the the explicit
expression of the cumulant coefficient in the case of exciton-
phonon coupling and in Sec. V the approach will be applied
to a simple model system as an illustrative example. The last
section is devoted to the conclusions.

II. PHOTOLUMINESCENCE SPECTRA
IN THE FRAMEWORK OF MBPT

A rigorous formulation for the luminescence signal in
terms of the Green’s functions has been derived by Hannewald
et al. [4]. It follows the theory on measurement of fluctuating
quantities by Butcher and Ogg [27], where the field ampli-
tudes are passed through a spectral filter and the intensity after
the filter is measured during a time interval of length T , in
the limit T → ∞. As result, the measured signal is propor-
tional to the autocorrelation function of the field amplitudes,
which is directly related to the transverse current density
fluctuations [28],

p(ω) = ω2

4π2

1

�

∫
dr

∫
dr′

∫ +∞

−∞
dteiω(t−t ′ )

× 〈
�ĵT (r, t ) · �ĵT (r′, t ′)

〉
, (1)

where we used atomic units and the superscript T refers to
the transverse current density. The transverse current den-
sity fluctuations are directly related to the lesser component
of the density correlation function L<(rt, r′t ′) that in the
framework of MBPT is obtained from the evaluation of the
two-particle four-point correlation function through the rela-
tion L<(rt, r′t ′) = −iL(rt, r′t ′, rt, r′t ′). For instance, for an
isotropic medium (as in the case of cubic semiconductors),
the transverse current density correlation function for a given
polarization (α) can be written as∫

dr
∫

dr′〈� ĵT
α (r, t ) · � ĵT

α (r′, t ′)
〉

=
∑
cvc′v′

〈φc| p̂α|φv〉〈φv′ | p̂α|φc′ 〉iLcv<
c′v′ (t, t ′), (2)

where p̂α are dipoles operators and we expanded L in the
basis of Bloch states (see Appendix A for the definition of the

matrix elements) with indexes c and v running over the con-
duction and valence bands, respectively. In addition we use
the compact notation i = (i, ki ) to indicate, for a given Bloch
state, the band index i and the corresponding wave vector ki.
Since in Eq. (2) we take the optical limit, the conservation of
Bloch wave vector requires that kc = kv and k′

c = k′
v .

Finally, following Ref. [4], Eq. (1) can be further simplified
by treating nonresonant transitions associated to crystal local
field effects via a static screening. In other words, we approx-
imate the density correlation function by L ≈ P/ε, where the
polarizability P is the irreducible part of L and ε is the static
dielectric constant. Under these conditions, Eq. (1) becomes

p(ω) = 2ω2

4π2ε

i

�

∑
αcvc′v′

〈φc| p̂α|φv〉〈φv′ | p̂α|φc′ 〉Pcv<
c′v′ (ω′) (3)

where the factor 2 arises from the sum over the spin variable.
Thus the evaluation of the photoluminescence spectrum re-
duces to the evaluation of the polarizability P (t, t ′), which is
directly linked to the four-point polarizability [i.e., P (t, t ′) =
−iP(t, t ′, t, t ′)] and can be treated in the framework of MBPT.

III. DYSON EQUATION FOR THE EXCITON
PROPAGATOR ON THE KELDYSH CONTOUR

In the framework of MBPT the four-point polarizability P
is formally obtained from the solution of the BSE [2,3] that,
expanded on a generic basis set, becomes a matrix equation of
the form

P̂(z1423) = P̂0(z1423) + P̂0(z14̄21̄ )	̂(z1̄4̄2̄3̄ )P̂(z3̄42̄3). (4)

Here zi are time variables on the Keldysh contour and re-
peated indices are integrated over. Moreover, P̂0(z14̄21̄ ) =
Ĝ(z11̄ )Ĝ(z4̄2 ) is the operator associated to the uncorrelated
four-point polarizability (Ĝ denoting the full interacting one
particle propagator) and 	̂ is the kernel that can be ob-
tained from a perturbative expansion in terms of the effective
particle-particle interaction Ŵ tot. The latter is the sum of
the dynamically screened Coulomb interaction (W C) and the
Coulomb interaction screened by lattice vibrations (W ph)
[29,30].

In state-of-the-art calculations, Ĝ is evaluated taking the
COHSEX [31] or quasiparticle GW C approximation [32] for
the electron self-energy (eventually including the electron-
phonon coupling in the Allen-Cardona scheme [33,34]) and
	̂ is evaluated at the first order in the statically screened
Coulomb interaction. In this way dynamical effects induced
by the electronic correlation and the electron-phonon coupling
are completely neglected.

In the following we will refer to this approximation for
Eq. (4) as static Bethe-Salpeter equation (SBSE). In this case,
since 	̂ is time independent, the SBSE can be written as a
Dyson like equation for the two-time polarizability P̂ (z13) =
−iP̂(z1313). In addition, under quasistationary conditions all
the components of the Keldysh functions involved in Eq. (4)
depend only on the time differences [4]. This allows solving
the SBSE in frequency space in analogy with what one does
under equilibrium conditions [4,35].

In the case of the full dynamical BSE, instead, because
of the explicit time dependence of the kernel, Eq. (4) cannot
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FIG. 1. Feynman diagrams associated to the first-order expan-
sion P in terms of W . Diagrams (a)–(d) correspond to the lines one
to four in Eq. (8). Arrows are the one-particle Green’s function Ḡ,
dashed lines denote W C

0 , and wiggly lines correspond to W .

be rewritten in terms of a two-time propagator only and it
is hardly solvable even considering the simplest first-order
expansion for 	̂ in terms of Ŵ tot [18,19]. Nevertheless, the
quantity we are interested into is P̂ and not P̂. This suggests
that it is more convenient looking for an approximate Dyson
like equation for P̂ with the following structure:

P̂ (z13) = ˆ̄P (z13) + ˆ̄P (z11′ )
̂(z13′ )P̂ (z3′3) (5)

without passing through the evaluation of the four time P̂. The
operator P̄ in Eq. (5) represents the two-time polarizability
obtained from the solution of the SBSE and plays the role of
a noninteracting exciton propagator. The operator 
̂, on the
other hand, takes the physical meaning of an effective exciton
self-energy describing all dynamical effects beyond the SBSE
induced by the electronic correlation and the coupling with
lattice vibrations. This equation provides a formally exact
representation for P̂ by virtue of the basic theorems of time-
dependent density functional theory [36,37] and constitutes
the starting point for the cumulant expansion.

In order to find an approximation for 
̂, we start with
the known perturbation expansion of P̂ in terms of Ŵ tot and
the Hartree Green’s function [38]. Then, following Ref. [20],
we split the dynamically screened Coulomb interaction in a
static contribution Ŵ C

s (z12) = Ŵ C (ω = 0)δ(z1 − z2) and a dy-
namical part (�Ŵ C), Ŵ C (z12) = Ŵ C

s (z12) + �Ŵ C (z12). This
also means that we can write the effective particle-particle
interaction as Ŵ tot (z12) = Ŵ C

s (z12) + Ŵ (z12), with the full
dynamical part of the interaction given by the following ex-
pression:

Ŵ (z12) = �Ŵ C (z12) + Ŵ ph(z12). (6)

In particular, when Ŵ is set to zero in the full perturbation
expansion of P̂ and Ŵ C

s is treated in the Tamm-Dancoff ap-
proximation (TDA) [39,40], we recover the SBSE with the
one particle Green’s function evaluated in COHSEX approxi-
mation and the static kernel 	̂s = iŴ C

s [20]. To overcome the
static approximation, we consider corrections to first order
in Ŵ , i.e., we linearize the full perturbation expansion of P̂
respect to Ŵ treating W C

s in TDA. This leads to the series of
Feynman diagrams in Fig. 1 evaluated at all orders in Ŵ C

s .
The corresponding expression for P̂ is given by the following

equation [20,21]:

P̂ (z13) = ˆ̄P (z13) − i ˆ̄P(z12′11′ )K̂(z1′4′2′3′ ) ˆ̄P(z3′34′3), (7)

where the full dynamical kernel K̂ can be directly read from
Fig. 1 [21],

K̂(z1423) = iŴ (z14) ˆ̄P(z142̄3̄ ) ˆ̄G−1(z3̄3 ) ˆ̄G−1(z2̄2 )

+ iŴ (z32) ˆ̄P(z1̄4̄23) ˆ̄G−1(z11̄) ˆ̄G−1(z22̄ )

+ iŴ (z13) ˆ̄P(z14̄2̄3) ˆ̄G−1(z2̄2 ) ˆ̄G−1(z44̄ )

+ iŴ (z42) ˆ̄P(z1̄423̄ ) ˆ̄G−1(z3̄3) ˆ̄G−1(z11̄). (8)

Here ˆ̄P denotes the four-time polarizability obtained from
the solution of the SBSE and ˆ̄G the COHSEX one-particle
Green’s function. An equivalent expression for K̂ can be
obtained taking the functional derivative respect to G of a
GW � one-electron self-energy, where W is assumed to be
independent from G and the vertex � is evaluated in the static
ladder approximation [41].

The diagrammatic representation of P in Fig. 1 illustrates
that we include the complete series of ladder diagrams in the
static effective Coulomb interaction Ŵ C

s responsible for exci-
tonic effects, whereas dynamical effects are included through
an effective kernel evaluated at the first order in Ŵ . The
comparison between first-order W expansion of Eqs. (7) and
(5) leads the formal expression for first-order 
̂,


̂(z13) = −i ˆ̄P−1(z11̄) ˆ̄P(z1̄2′1̄1′ )K̂(z1′4′2′3′ ) ˆ̄P(z3′3̄4′3̄ ) ˆ̄P−1(z3̄3 ).
(9)

The basic issue in Eq. (9) is the evaluation of the convo-
lution ˆ̄PK̂ ˆ̄P(z1̄2̄ ) on the Keldysh contour that can be traced
back to the two prototypical Feynman diagrams shown in the
left side of Figs. 2(a) and 2(b) evaluated at all orders in Ŵ C

s .
However, expanding on the basis of Bloch states and using
the generalized Langreth rules for multi-argument Keldysh
functions [42], we can derive the following identity:

iRnm

∫
γ

dz1′Ḡn(z11′ )Ḡn′ (z1′2′ )Ḡm(z2′1)W (z3′1′ )

=
∫

γ

dz1′Ḡn(z13′ )Ḡn′ (z3′2′ )Ḡm(z3′1)Ḡm(z2′3)W (z3′1′ )

−
∫

γ

dz1′Ḡn(z12′ )Ḡn(z2′3′ )Ḡn′ (z3′2′ )Ḡm(z21)W (z3′1′ ).

(10)

Here n = (n, kn) denote quasiparticle Bloch states in which ˆ̄G
is diagonal and Rnm = fm − fn are Pauli blocking factors ( fn
being electron occupation number of state n). Equation (10)
allows inserting in each interaction vertex (black dots in
Fig. 2) additional space-spin points that are integrated over
(red dots in Fig. 2). Moreover, their time coordinates on the
Keldysh contour is chosen equal to an already existing time in-
tegration point. In this way each Feynman diagram splits into
four contributions that can be rearranged in the convolution
P̂0F̂P̂0(z13), F being a two-time Keldysh function and P̂0 the
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FIG. 2. [(a), (b)] Prototypical first-order diagrams in W . Here arrows represent Ḡ, the dashed line the SBSE kernel W C
s , and the wiggly

lines stand for W . Red indicates inserts needed to express the result in terms of the two-times P̄ and P0 (see text).

two-time uncorrelated polarizability. This leads the identity

ˆ̄P(z1̄2′1̄1′ )K̂(z1′4′2′3′ ) ˆ̄P(z3′3̄4′3̄ ) = ˆ̄P (z1̄1′ )F̂ (z1′3′ ) ˆ̄P (z3′3̄ ) (11)

that inserted in Eq. (9) allows to identify the exciton self-
energy with F , 
̂(z13) = −iF̂ (z13).

The complete expression of 
̂ is reported in Appendix A.
Here we consider its expression in the limit of small density of
photo-excited carriers that as discussed in Appendix A, is the
sum of a static (s
) and a full dynamical (d
) contribution,

s
cv
c′v′ (z13) = − 1

Rcv

{
1

2
δvv′δ(z13)

[
W cc′

v̄v̄ · iPcv̄
0

]
(z31) + 1

2
δvv′δ(z13)

[
iPc′v̄

0 · W cc′
v̄v̄

]
(z31) + 1

2
δcc′δ(z13)

[
W c̄c̄

v′v · iP c̄v
0

]
(z31)

+ 1

2
δcc′δ(z13)

[
iP c̄v′

0 · W c̄c̄
v′v

]
(z31)

}
1

Rc′v′
, (12)

d
cv
c′v′ (z13) = 1

Rcv

{
iP̄c1v

c2v′ (z13)W cc′
c2c1

(z31) + iP̄cv1
c′v2

(z13)W v1v2
v′v (z31) − iP̄ c̄v

c′v̄(z13)W cv̄
v′ c̄ (z31) − iP̄cv̄

c̄v′ (z13)W v̄c′
c̄v (z31)

} 1

Rc′v′
, (13)

where we use the usual convention that repeated indexes are
summed up. In the following, since s
 causes only a shift of
the exciton energy and does not have any effect on the exciton
lifetime and satellites, we will safely take 
(z13) =d 
(z13)
and include s
 in the definition of the exciton energy.

Once an approximate expression for the exciton self-
energy is found, the inclusion of the dynamical effects beyond
the SBSE reduces to the solution of Eq. (5). A natural way
to address this problem is expanding Eq. (5) on the basis
of excitonic states. However, in this case, in contrast with
the standard Dyson equation for one particle Green’s func-
tion, the noninteracting propagator ˆ̄P is not diagonal. This
is a consequence of the Pauli blocking factor arising from

the presence of photo-excited carriers [16,35]. In order to
avoid all the complications arising from the presence of the
off-diagonal components of the exciton propagator, it is con-
venient working with the symmetrized propagator B̂ instead
of P̂ that in the static limit, as discussed in Appendix B, is
diagonal in the basis of the eigenstates of the symmetrized
excitonic Hamiltonian [43]. In the basis of Bloch states it is
defined in such a way that Pcv

c′v′ (z13) = √
RcvBcv

c′v′ (z13)
√

Rc′v′

and similarly for B̄cv
c′v′ and P̄cv

c′v′ . Thus, when we move in
the basis of the symmetrized excitonic states, B̂ satisfy the
following equation:

Bλλ′ (z13) = B̄λ(z13)δλλ′ + B̄λ(z11′ )
̃λα(z1′3′ )Bαλ′ (z3′3), (14)
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where the Greek indexes label the eigenstates of the sym-
metrized excitonic Hamiltonian and 
̃cv

c′v′ = √
Rcv


cv
c′v′

√
Rc′v′ .

In particular, in the basis of symmetrized excitonic states 
̃

can be written in a more compact way and takes the structure
of the GW self-energy for one-particle excitations with G and
W replaced by B̄ and W , respectively (see Appendix B),


̃λλ′ (z13) = iB̄α(z13)Wλααλ′ (z31). (15)

The effective exciton-exciton interaction W is given by matrix
elements of W appropriately weighted with the Pauli blocking
factor that can be read from Fig. 2 and that are detailed in
Appendix B. Equation (15) reflects a picture of an exciton
coupled with other bosonic-like excitations associated to the
poles of W . In principle they include phonons and, depending
from the degree of approximation used to evaluate �W C ,
plasmons and other excitons.

Equation (15) is the generalization to the out-of-
equilibrium conditions of the exciton self-energy introduced
in Refs. [20,21] and represents the main result of this section.
On one side, it allows including dynamical effects through
Eq. (14), on the other side it is the key quantity for the par-
tial resummation of higher-order terms through the cumulant
expansion.

It is important to note that a Dyson-like equation with
the same structure of the exciton self-energy can be formally
written for L̂ as well. To this end it is enough to use 	̂s =
−2iv̂ + iŴ C

s for the kernel of the SBSE with v̂ denoting the
operator associated to the bare Coulomb potential entering as
an exchange electron-hole interaction. In this way the SBSE
will lead to ˆ̄L instead of ˆ̄P. Repeating step by step the previous
procedure we can derive a Dyson-like equation equivalent to
Eq. (14) for the symmetrized exciton propagator associated
to L̂. This would allow for an explicit treatment of crystal
local fields in Eq. (3). Nevertheless, here for simplicity, we
prefer to work with P̂ and approximate crystal local field
effects renormalizing the spectrum with the dielectric constant
in accordance with Ref. [4].

IV. EXCITON-PHONON COUPLING AND PHONON
ASSISTED PHOTOLUMINESCENCE

A. Exciton-phonon self-energy

In the remaining part of the article we will focus on
the effect of the electron-phonon coupling treating electronic
correlations in a quasistatic approximation. To this end, we
include the contribution of �W C in the single-particle self-
energy that is evaluated in standard GW C instead of COHSEX
approximation. As a consequence, according with the pertur-
bative GW C scheme [44,45], Ḡ is the Kohn-Sham Green’s
function with Kohn-Sham energy shifted by the quasiparticle
corrections evaluated in G0W0 approximation. Moreover, we
take W = W ph with the phonon frequencies and the electron-
phonon matrix elements evaluated in the framework of density
functional perturbation theory (DFPT) [46]. This is consistent
with our treatment of W C and Ḡ [47]. We emphasize that,
being the formulation of this approach completely general
and independent from the approximations used to treat lattice
vibrations, it allows to take into account corrections beyond
standard DFPT as well. They include, for example, dynamical

screening in the evaluation of the electron-phonon matrix
elements [48] or nonadiabatic effects in the evaluation of
the phonon frequencies [49]. In addition, here we take the
assumption that nuclei are fixed at their ground-state positions
even if, in principle upon excitation, they could move modi-
fying the emission spectra (Stokes shift). This effect could be
taken into account combining our approach with the recently
developed constrained DFT scheme for the evaluation of the
atomic positions in the excited state [50].

Writing W ph in terms of the phonon propagator and
electron-phonon matrix elements [30], the diagonal part of the
exciton self-energy can be written as


̃λq(z13) = i

N

∑
αμq̄

∣∣gexc
αλ;μ(qq̄)

∣∣2B̄αq+q̄(z13)Dμq̄(z31), (16)

where D denotes the phonon propagator, gexc the exciton-
phonon matrix elements as detailed in Appendix C, and α(λ)
and μ the exciton and phonon band indexes, respectively. In
principle, in the case of the exciton-phonon interaction, we
should consider also the Debye-Waller contribution to the
exciton self-energy [51]. However, this term is static and can
be included in the definition of the exciton energy.

Under quasistationary conditions and under the assumption
that the self-energy is diagonal in the basis of excitonic states,
Eq. (14) reduces to the following set of coupled equations that
can be solved in the frequency space,

B≶
λq(ω) = BR

λq(ω)
̃≶
λq(ω)BA

λq(ω), (17)

BR/A
λq (ω) = B̄R/A

λq (ω) + BR/A
λq (ω)
̃R/A

λq (ω)BR/A
λq (ω). (18)

At this point it is important to note that, although the Dyson
equation with a first-order self-energy [as in Eq. (14)] can give
in principle an accurate description of the QP properties such
as QP energy and lifetime, it does not correctly reproduce
the position of the satellites. Indeed, several calculations of
the one-particle G demonstrated that satellites associated to
one-plasmon [52–58] or one-phonon [25,26] scattering pro-
cesses are better described through a second-order expansion
in terms of the particle-boson coupling in which the starting
Green’s function already contains QP effects rather than a full
iterative scheme starting from noninteracting Green’s function
such as in Eq. (14). In the following, in order to provide
an adequate treatment of both QP and one-phonon satellites,
we extend the approach developed by Bechstedt et al. [58]
for the description of plasmonic satellites in the context of
one-particle excitations to the case of the exciton propagator.
First of all, we cut the exciton self-energy in two parts: a QP
contribution 
̃

R/A
λq (EQP

λq ) evaluated at the exciton QP energy

(EQP
λq ), and a dynamical contribution �
̃λq(ω) = 
̃λq(ω) −


̃
R/A
λq (EQP

λq ). Thus by definition �
̃
≶
λq(ω) ≈ 
̃

≶
λq(ω). Then we

expand B at the first order in �
̃,

B≶
λq(ω) = BQP≶

λq (ω) + BQP≶
λq (ω)�
̃A

λq(ω)BQPA
λq (ω)

+BQPR
λq (ω)
̃≶

λq(ω)BQPA
λq (ω)

+BQPR
λq (ω)�
̃R

λq(ω)BQP≶
λq (ω), (19)
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BQP being the QP exciton propagator defined by the following
equation:

BQPR/A
λq (ω) = B̄R/A

λq (ω) + B̄R/A
λq (ω)
̃R/A

λq

(
EQP

λq

)
BQPR/A

λq (ω).
(20)

In practice, BQP is obtained replacing Eλq with EQP
λq in the

expression of B̄. The QP energy, according to Eq. (20), is
obtained through the self-consistent relation EQP

λq = Eλq +
Re
̃R/A

λq (EQP
λq ). Finally inserting the explicit expression of the

exciton and phonon Green’s functions in Eq. (19), the lesser
part of B that gives direct access to the photoluminescence
spectra can be written as

B<
λq=0(ω) = −2iπ

[
fλq=0(1 − Rλq=0)δ

(
ω − EQP

λq=0

)

+ 1

N

∑
αμq̄

fαq̄(Nμq̄ + 1)
∣∣gexc

αλ;μ(0q̄)
∣∣2

[
EQP

λq=0 − �−
αμ(q̄)

]2 δ(ω − �−
αμ(q̄))

+ 1

N

∑
αμq̄

fαq̄Nμq̄
∣∣gexc

αλ;μ(0q̄)
∣∣2

[
EQP

λq=0 − �+
αμ(q̄)

]2 δ(ω − �+
αμ(q̄))

]
,

(21)

where we introduced the quantity �±
αμ(q̄) = Eαq̄ ± �μq̄ with

�μq denoting the phonon frequencies, Nμq the phonon oc-
cupation numbers and fλq the exciton occupation numbers
defined in Appendix B. The quantity Rλq indicates the renor-
malization factor

Rλq = − ∂

∂ω
Re
̃R/A

λq (ω)|ω=EQP
λq

(22)

and allows to quantify the amount of spectral weight trans-
ferred from the QP peak [first term in Eq. (21)] to the
satellites. The latter are associated to optical transitions ac-
companied by the emission or absorption of a phonon and
are described by the second and third term of Eq. (21), re-
spectively. For simplicity, in Eq. (21) we neglect the finite
linewidth (or exciton lifetime) induced by the exciton-phonon
coupling. Nevertheless, this quantity can be directly ob-
tained from the exciton self-energy through the relation �λq =
∓Im
̃

R/A
λq (ω)|ω=EQP

λq
.

The expression of the satellite structures in Eq. (21) is
similar to that obtained with a phenomenological approach
in previous papers [16,17]. The basic difference is that here
we take into account QP energy corrections and the renor-
malization factor that are missing in previous approaches.
In this way we treat QP excitations and satellites on the
same footing. In addition, the present approach can be ap-
plied for arbitrary nonthermal distribution involving also high
density of photo-excited carriers characterized by inversion
of population. However, in this case one should consider
the full expression of the exciton self-energy as detailed in
Appendix A.

B. Multiphonon processes from a Cumulant expansion

The analysis done so far has shown how dynamical effects
on the spectra of neutral excitations can be included solving
an approximate one-particle Dyson equation for the exciton
propagator where dynamical effects beyond the SBSE are
taken into account through an effective exciton self-energy.
The latter is evaluated at the first order in the dynamical
exciton-exciton interaction (W) and reflects a picture of an ef-
fective particle (the exciton) coupled with an effective bosonic
field in analogy with the GW (or GWph) self-energy in the
case of one-electron Green’s function. As a matter of fact
the GW approximation for the one-electron Green’s func-
tion represents the leading-order solution of a particle-boson
Hamiltonian. In the present case the particle is represented by
the exciton instead of the electron. In the case of one-electron
Green’s function, a well-established scheme to deal with this
problem beyond the GW approximation is the linked-cluster
(or cumulant) expansion of G [59]. Here we assume that the
standard series expansion of G in terms of W obtained from
the Feynman diagrams can be regrouped as an exponential
power series in W , G = G0eC with C = ∑

i Ci. Ci being the
cumulant coefficients evaluated at the ith order in W and G0

the noninteracting one-electron Green’s function. The coeffi-
cients Ci are found by equating terms with like powers of W
in the standard series expansions of G. Although, in principle,
they can be evaluated at any order, in practice we truncate C at
the first order in W (i.e., we take C = C1). This approximation
gives an accurate description of both plasmon and phonon
satellites in the photoemission spectra. Originally formulated
for the time-ordered G [60–62], the cumulant approach has
been extended to other correlation functions involving the
retarded G [63,64] as well as the nonequilibrium Green’s
functions on the Keldysh contour [65].

Thus, following the analogy with the one-electron Green’s
function, a natural way to treat dynamical effects beyond
the first-order W in the spectra of neutral excitations, is to
perform a cumulant expansion for the exciton propagator. To
this end, we take the assumption that 
̃ is diagonal in the basis
of the excitonic states and we consider the following ansatz for
the symmetrized exciton propagator:

B≶
λq(t ) = BQP≶

λq (t )eC≶
λq (t ) (23)

where C≶
λq(t ) is evaluated at the first order in W . Finally,

comparison of the first-order C expansion of Eq. (23) with
Eq. (19) leads an explicit expression of the cumulant coeffi-
cient in terms of the exciton self-energy,

C≶
λq(t ) = Rλq + C̃≶

λq(t ), (24)

where Rλq is the renormalization factor given by Eq. (22) and

C̃≶
λq(t ) describes the satellite structures as

C̃≶
λq(t ) = i

f ≶λq

∫ ∞

−∞

dω

2π


̃
≶
λq

(
ω + EQP

λq

)
ω2 + η2

eiωt , (25)

with f <
λq = fλq and f >

λq = 1 + fλq. Equation (23) together
with Eqs. (24) and (25) is formally exact in the limiting
case of a single exciton with infinite mass coupled with a
nondispersive boson and represents the generalization to the
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out-of-equilibrium conditions of the standard cumulant for the
time-ordered exciton propagator [20,21].

V. APPLICATION TO A SIMPLE MODEL SYSTEM

Below, as an illustrative example, we consider a simple
model system consisting of a single Wannier exciton cou-
pled with an Einstein-like longitudinal optical (LO) phonon
of frequency �0 and a longitudinal acoustic (LA) phonon
with linear dispersion. Moreover, we model the coupling with
the LO phonon through a long-range Fröhlich-like electron-
phonon interaction [66] while for the LA phonon we use a
short-range coupling linear in the phonon wave vector q [67].
Under these conditions the exciton-phonon matrix elements
in Eq. (16) have a simple analytical expression in terms of the
exciton Bohr radius (a) and the electron and hole masses (see
Appendix C),∣∣gexc

LO(q = 0, q̄)
∣∣2 = αLO�2

0
[Ic(|q̄|) − Iv (|q̄|)]2

|q|2 , (26)∣∣gexc
LA (q = 0, q̄)

∣∣2 = αLA�2
D|q̄|[Ic(|q̄|) − Iv (|q̄|)]2, (27)

with

Ic(v)(q) = 1[
1 + (mc(v)

M
|q̄|a

2

)2]2 . (28)

Here αLO and αLA are dimensionless constants, |q̄| is ex-
pressed in unit of the Debye wave vector qD, �D is the
Debye frequency, mc(v) are the effective mass of the con-
duction and valence band, respectively, and M = mc + mv

the exciton mass. In addition we take the assumption that
the system is in a quasi-equilibrium configuration so that the
exciton occupation numbers are Bose-Einstein distributions
with chemical potential μexc = μc − μv . The quantities μc

and μv are the chemical potentials for electrons and holes in
the conduction and valence band, respectively and for a given
temperature (T ) they are set by the density of photo excited
carriers.

The resulting exciton self-energy has the following expres-
sion:


̃<
q=0(ω) = −6π i

∑
μ

∫ 1

0
dq̄q̄2

∣∣gexc
μ (q = 0, q̄)

∣∣2
fq̄

× [(Nμq̄ + 1)δ(ω − Eq̄ + �μq̄)

+ Nμq̄δ(ω − Eq̄ − �μq̄)], (29)

where μ runs over the LA and LO branches, �LOq̄ = �0, and
�LAq̄ = �Dq̄. Finally under the assumption that the density
of photo-excited carriers is small enough, we can neglect the
effect of the Pauli blocking factor (Rcv ≈ 1) and safely take
P<

λλ′ = B<
λ δλλ′ .

In Fig. 3 we show the exciton self-energy as a function
of the frequency with the origin set to the value of the
direct exciton energy (Eq̄=0). The coupling with the nondis-
persive LO phonon gives rise to two well-defined peaks
located at ω = ±�0 that dominate the behavior of the ex-
citon self-energy due to the long-range nature of gexc

LO. On
the other hand, the coupling with the LA phonon is in gen-
eral weaker due to the excitonic effect that, through the
factor Ic(v), kills the exciton-phonon coupling at q 
 2π

a .
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m

eV
)

LO phonon contribution
LA phonon contribution

FIG. 3. Lesser component of the exciton self-energy evaluated
a T = 300 K. The gray region defines the full spectrum while the
red and blue lines the contributions of the LO and LA phonons,
respectively.

In this way only the small long-range part of the electron-
phonon interaction contribute to build gexc

LA . The dominant
contribution of the long-range part of the exciton-phonon
coupling also justifies the use of the Einstein and Debye
models for the LO and LA phonons, respectively, making
this simple model a reliable picture of the basic phenomenol-
ogy of polar crystals. Moreover, at variance with the LO
phonon, the coupling with the LA phonon does not lead to
well-defined peaks in the spectrum of 
<(ω) but it only
induces a small shoulder close to the exciton energy. This
is strictly related to the linear dispersion of the acoustic
phonon. From this analysis of the exciton self-energy we can
conclude that in this model system only the coupling with
LO phonon can induce satellites in the PL spectra. On the
other hand, since the contributions of the LO and the LA
phonons to the exciton self-energy remain finite at the exci-
ton energy, both phonon branches contribute to the exciton
linewidth.

Insertion of Eq. (29) into Eq. (25) allows to evaluate the
cumulant coefficient and through the Fourier transform of
Eq. (23), the PL spectra. Our results are summarized in Fig. 4
where we show the PL spectra (blue line) for different tem-
peratures. The coupling with the LO phonon gives rise to two
main effects: the appearance of a series of satellites at energies
EQP ± n�0 with integer n, and a weight transfer from the QP
peak to the satellites that is quantified by the renormalization
factor appearing in the definition of the cumulant coefficient.
The structure of the satellite features can be qualitatively
understood in the limiting case of an exciton with infinite
mass coupled through a q-independent exciton-phonon cou-
pling constant g. In this case the integral in Eq. (25) can be
performed analytically leading to the following expression
for B<(ω):

B<(ω) = −2π ie−R
∞∑

n,m=0

βmnδ(ω − Em + n�0), (30)

where R = ( g
�0

)2(2N + 1) is the renormalization factor, Em =
E0 + m�0 (E0 being the exciton energy), and the coefficient
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FIG. 4. Model PL spectra renormalized to the strength of the QP
peaks evaluated in different approximations.

βmn are defined as

βmn =
[( g

�0

)2
N

]m

m!

[( g
�0

)2
(N + 1)

]n

n!
. (31)

The phonon side bands with m = 0 define the Stokes lines
(SLs) of the spectrum. Their intensity relative to the zero
phonon line at E0 follows a Poisson distribution as predicted
by the Huang-Rhys theory [68,69]. Indeed, the quantity in
Eq. (31) taken at m = 0 is just the Huang-Rhys factor that
in state-of-the-art ab initio calculations can be also evalu-
ated combining configuration coordinate models and DFT
[70]. In a polaronic picture, where Em have the physical
meaning of exciton-polaron energy levels, the SLs correspond
to the components with n LO phonons of the ground-state
exciton-polaron (m = 0). Furthermore, the excited exciton-
polaron states (configurations with m > 0), which are not
handled in the Huang-Rhys theory, can produce anti-Stokes
lines (ASLs) by their components with phonon number n <

m. Other components with n � m will intensify the zero
phonon line and corresponding SLs. All these effects are
correctly described by the cumulant according with the po-
laronic model that in this limit is formally exact and is
often used to describe phonon assisted PL spectra aris-
ing from excitons bound to impurities [71–73]. The effect
of exciton dispersion, as can be inferred from Fig. 4, is
to change the shape of the phonon side bands inducing
a broadening of the corresponding peak, which depends
from the details of the exciton and phonon band structure
as well as the behavior of the exciton-phonon matrix ele-
ments.

It is important to note that beside satellites, the cumulant
expansion takes into account the finite exciton lifetime as
well, as can be inferred from Fig. 4, where the QP peak
progressively broadens as T increases. This can be directly
understood from the definition of the cumulant coefficient.
Indeed taking the QP approximation in Eq. (25), i.e., keeping

< at the corresponding value of the exciton QP energy over

all the integration region, we obtain C̃λq(t ) = − i
<
λq (EQP

λq )

2 fλq
|t |.

From the definition of 
<
λq(ω) we can verify that in the limit

of small density of photo-excited carriers
i
<

λq (EQP
λq )

2 fλq
≈ �λq (�λq

being the exciton linewidth defined in the previous section).
Finally, in Fig. 4 we make a comparison with the PL spec-

tra evaluated in the QP approximation (dashed red line). They
are obtained from the SBSE spectra corrected with exciton
linewidth, i.e., taking for B<

λq(ω) the following expression:

B<
λq(ω) = − 2i�λq

(ω − Eλq)2 + �2
λq

. (32)

Interestingly, as T increases, the QP peak obtained in
the cumulant approximation progressively depart from the
Lorentzian shape of Eq. (32) displaying a transfer of spectral
weight towards the right side of the QP energy. This behavior
is tightly linked to the presence of a low-energy shoulder in
spectrum of the exciton self-energy (see blue-line in Fig. 3)
induced by the coupling with the LA phonon. As T increases,
this feature becomes more pronounced due to the higher
phonon population and the asymmetry of the QP peak is en-
hanced. We emphasize that this effect becomes more evident
as the shoulder moves away from the QP energy. This could
happen in multivalley semiconductors, where higher energy
acoustic phonons can mediate intervalley exciton scattering,
as recently observed in the PL spectra of monolayer transition
metal dichalcogenides [74,75].

VI. CONCLUSIONS

In conclusion, starting from basic equations of MBPT, we
have generalized the cumulant formulation for neutral ex-
citation spectra to the calculation of the out-of-equilibrium
polarizability that gives direct access to the PL spectra. The
cumulant approach allows us to include dynamical effects
arising from the electronic correlation and electron-phonon
coupling in a simple and intuitive way. It can be imple-
mented as a postprocessing of a standard out-of-equilibrium
BSE calculation of excitonic states and real-time relaxation of
photo-excited carriers.
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APPENDIX A: EXCITON SELF-ENERGY IN THE BASIS
OF BLOCH STATES

Here, skipping the intermediate steps of elementary al-
gebra, we report the explicit expression of the exciton
self-energy in the basis of Bloch states that can be directly
read from the right side of Fig. 2. It is the sum of a static (s
)
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and a full dynamical (d
) contribution as detailed below:

s
cv
c′v′ (z13) = − 1

Rcv

{
1

2
δvv′δ(z13)

[
W cc′

ii · iPci
0

]
(z31) + 1

2
δvv′δ(z13)

[
iPc′i

0 · W cc′
ii

]
(z31)

+ 1

2
δcc′δ(z13)

[
W jj

v′v · iP jv
0

]
(z31) + 1

2
δcc′δ(z13)

[
iP jv′

0 · W jj
v′v

]
(z31)

}
1

Rc′v′
, (A1)

d
cv
c′v′ (z13) = 1

Rcv

{
iP̄ iv

jv′ (z13)W cc′
ji (z31) + iP̄ lv1

mv2
(z13)	iv

slv1

[
iPc′j

0 · W cc′
ji · iPci

0

]
(z31)	mv2

sjv′

− iP̄ lv̄
jv′ (z13)	iv

slv̄

[
W cc′

ji · iPci
0

]
(z31) − iP̄ iv

lv̄ (z13)
[
iPc′j

0 · W cc′
ji

]
(z31)	lv̄

sjv′

− iP̄ c̄v
c′v̄(z13)W cv̄

v′ c̄ (z31) − iP̄c1v1
c2v2

(z13)	c̄v
sc1v1

[
iP v̄v′

0 · W cv̄
v′ c̄ · iPcc̄

0

]
(z31)	c2v2

sc′v̄

+ iP̄c1v1
c′v̄ (z13)	c̄v

sc1v1

[
W cv̄

v′ c̄ · iPcc̄
0

]
(z31) + iP̄ c̄v

c1v1
(z13)

[
iP v̄v′

0 · W cv̄
v′ c̄

]
(z31)	c1v1

sc′v̄

+ iP̄ci
c′j(z13)W ij

v′v(z31) + iP̄c1l
c2m(z13)	ci

sc1l

[
iP jv′

0 · W ij
v′v · iP iv

0

]
(z31)	c2m

sc′j

− iP̄ c̄l
c′j(z13)	ci

sc̄l

[
W ij

v′v · iP iv
0

]
(z31) − iP̄ci

c̄l (z13)
[
iP jv′

0 · W ij
v′v

]
(z31)	c̄l

sc′j

− iP̄cv̄
c̄v′ (z13)W v̄c′

c̄v (z31) − iP̄c1v1
c2v2

(z13)	cv̄
sc1v1

[
iPc′ c̄

0 · W v̄c′
c̄v · iP v̄v

0

]
(z31)	c2v2

sc̄v′

+ iP̄c1v1
c̄v′ (z13)	cv̄

sc1v1

[
W v̄c′

c̄v · iP v̄v
0

]
(z31) + iP̄cv̄

c1v1
(z13)

[
iPc′ c̄

0 · W v̄c′
c̄v

]
(z31)	c1v1

sc̄v′
} 1

Rc′v′
, (A2)

with the following definition of the matrix elements between Bloch states of the correlation functions and effective interactions:

P ij
lm(z13) =

∫
dr1423φ

∗
i (r1)φ∗

m(r4)P (r1z1, r4z3, r2z1, r3z3)φl(r3)φj(r2), (A3)

W ij
lm(z31) =

∫
dr13φ

∗
i (r1)φ∗

l (r3)W (r3z3, r1z1)φj(r3)φm(r1), (A4)

	
ij
slm =

∫
dr1423φ

∗
i (r1)φ∗

m(r4)	s(r1, r4, r2, r3)φl(r3)φj(r2), (A5)

and similarly for P ij
0 (z13) = P ij

0lm(z13)δilδjm.

Here we use the compact notation i = (i, ki ) to indicate, for
a given Bloch state, the band index i and the correspond-
ing wave vector ki and the usual convention that repeated
indexes are summed up. Moreover the indexes i, j, l, and
m in Eq. (A2) run over conduction and valence states with
the constrain that they always belong to the same subset
of states. This is a consequence of the TDA used for the
solution of the SBSE. In particular, the first two lines of
Eq. (A2), where W enters as a hole-hole interaction, corre-
spond to the diagrams on the right side of Fig. 2(a) while
line three and four correspond to the right side of Fig. 2(b)
where W enters as an electron-hole interaction. The remain-
ing terms are associated to complementary diagrams (not
shown) involving electron-electron and hole-electron inter-
action, respectively. The static part of the self-energy, on
the other hand, is related to the diagrams on right side of
Fig. 2(a) and their counterpart involving electron-electron
scattering processes evaluated at the zero order in the static
interaction 	s.

A first look to Eqs. (A1) and (A2) reveals how the
different contributions to the exciton self-energy can be
grouped in two classes: (i) excitonic contributions, which

can be expressed solely in terms of exciton propagators
as P̄W -like products; (ii) nonexcitonic contributions that
cannot be expressed in terms of excitonic propagators. In-
deed, while in the excitonic contributions the interaction
is set by W , in the nonexcitonic contributions it is related
to convolutions involving W and P0 (i.e., the indepen-
dent particle two-time polarizability). We emphasize that
the presence of nonexcitonic terms arises from the def-
inition of the kernel K in Eq. (8) where W enters as
test-particle-test-particle interaction. As a matter of fact the
inclusion of vertex corrections (treated at the SBSE level)
would lead to an expression of the exciton self-energy
formally equivalent to Eqs. (A1) and (A2) but with P0 re-
placed by P̄ . However, this goes beyond the aim of the
present paper.

It is important to note that both quantities P̄ and P0 in
Eqs. (A1) and (A2) involve pairs of electrons and holes be-
longing to the conduction and valence bands, respectively
as well as electron-hole pairs belonging to the conduction
or valence sub-bands. The latter are absent under equilib-
rium conditions and in general give a minor contribution
as long as the density of photo-excited carriers is small
enough. In the following we take the assumption that this
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is the case and we neglect contributions arising from sub-
band electron-hole pairs. Under these conditions Eq. (A2)

simplifies and reduces to the sum of excitonic contributions
only,

d
cv
c′v′ (z13) = 1

Rcv

{
iP̄c1v

c2v′ (z13)W cc′
c2c1

(z31) + iP̄cv1
c′v2

(z13)W v1v2
v′v (z31) − iP̄ c̄v

c′v̄(z13)W cv̄
v′ c̄ (z31) − iP̄cv̄

c̄v′ (z13)W v̄c′
c̄v (z31)

} 1

Rc′v′
. (A6)

Nonexcitonic terms appear only in s
 that in the limit of
small photo excited carrier density is obtained from Eq. (A1)
restricting the sum on the i and j indexes over the valence and
conduction bands, respectively. In addition, since s
 causes
only a shift of the exciton energy and does not have any
effect on the exciton lifetime and satellites, we can safely
take 
(z13) =d 
(z13) and include s
 in the definition of the
exciton energy.

APPENDIX B: SYMMETRIZED EXCITON PROPAGATOR
AND EXCITON SELF-ENERGY

Before addressing the problem of Eq. (5), we will present
a short overview of the out-of-equilibrium SBSE and its so-
lution, which is an essential preliminary step to treat the full
dynamical problem.

Since in the static limit 	 is time independent, in anal-
ogy with the equilibrium case, Eq. (4) can be written as a
Dyson like equation for the two-time polarizability ˆ̄P (z13) =
−i ˆ̄P(z1313) that in the following we will refer to as noninter-
acting exciton propagator. Thus, Eq. (4) becomes

ˆ̄P (z13) = P̂0(z13) + P̂0(z11′ )i	̂sδ(z1′3′ ) ˆ̄P (z3′3) (B1)

where P̂0(z13) = −iP̂0(z1313) indicates the matrix associated
to the uncorrelated two-time polarizability and 	̂s = iŴ C

s .
Moreover under quasistationary conditions all the compo-
nents of the Keldysh functions involved in Eq. (B1) depend
only on the time differences. This allows solving Eq. (B1)
in frequency space in analogy with what one does under
equilibrium conditions [4]. In particular, Eq. (B1) can be
straightforwardly treated working with a symmetrized prop-
agator B̄ instead of P̄ . In the basis of Bloch states, where
P̂0 is diagonal, it is defined in such a way that P̄cv

c′v′ (z13) =√
RcvB̄cv

c′v′ (z13)
√

Rc′v′ and similarly for B0. Here Rcv = fv −
fc, R<

cv = fc(1 − fv), and R>
cv = (1 − fc ) fv [ fc(v) being the

occupation numbers for conduction (valence) states]. By
definition, the propagator B̄ satisfies a SBSE equivalent
to Eq. (B1) with the new symmetrized kernel 	̃cv

sc′v′ =√
Rcv	

cv
sc′v′

√
Rc′v′ . Its solution leads to the following ex-

pression for the corresponding lesser (<) and greater (>)
components [16,35]:

B̄≶
λqλ′q(ω) = −2iη

1

ω − Eλq + iη

∑
cv

Acv
λq

R≶
cv

Rcv
Acv∗

λ′q

× 1

ω − Eλ′q − iη
, (B2)

where Eλq and Acv
λq are the exciton energies and the corre-

sponding eigenstates with band index λ and wave vector q
obtained from the diagonalization of the symmetrized ex-
citonic Hamiltonian [43]. In the TDA [39,40] it takes the

following structure:

Ĥ = (εc − εv)δcc′δvv′ + i	̃cv
sc′v′ . (B3)

We emphasize that the Hamiltonian in Eq. (B3) is Hermitian
and it is actually what is implemented in standard MBPT
based codes [35]. In addition, in state-of-the-art calculations
we neglect off-diagonal contributions in Eq. (B2) (i.e., we
take the assumption that λ = λ′). Under these conditions B̄
is diagonal in the excitonic basis and the corresponding < and
> components in real time become

B̄<
λq(t13) = −i fλqeiEλq (t3−t1 ), (B4)

B̄>
λq(t13) = −i(1 + fλq)eiEλq (t3−t1 ), (B5)

where we have introduced the quantity fλq = ∑
cv |Acv

λq|2 R≶
cv

Rcv
and we used the identity R>

cv = R<
cv + Rcv. Now we can clearly

recognize in these equations the < and > components of the
propagator of a free boson with energy Eλq and occupation
number fλq. Moreover through the definition of B̄ we can
obtain the explicit expression of the noninteracting exciton
propagator in the basis of excitonic states

P̄λλ′ (z13) =
∑

α

FλαB̄α(z13)F ∗
λ′α (B6)

with Fλα = ∑
cv Acv∗

λ

√
RcvAcv

α and λ = (λ, q).
Under equilibrium conditions (i.e., in absence of popula-

tion) Rcv = 1 and Fλα = δλα so that the exciton behaves as
an ideal boson (i.e., P̄λλ′ = B̄λδλλ′). On the other hand, out-
of-equilibrium the exciton can scatter between two excitonic
states even in absence of interaction. In other words it cannot
be described as an ideal boson [76]. This is strictly related to
the composite nature of the exciton that consists of electron-
hole pairs that always follow the Pauli exclusion principle also
when bound in the excitonic state. As a consequence, when
an exciton propagates in presence of an exciton population it
can scatter between different states through the exchange of
electrons and holes with the other excitons. The amplitude of
these scattering processes is set by Fλα.

Finally, the full dynamical problem can be treated introduc-
ing the symmetrized full interacting exciton propagator Bαα′ ,

Pλλ′ (z13) =
∑
αα′

FλαBαα′ (z13)F ∗
λ′α′ , (B7)

that is evaluated solving Eq. (14). From Eq. (A6) we can
directly write the expression for 
̃cv

c′v′ = √
Rcv


cv
c′v′

√
Rc′v′ ,

which defines the self-energy in the Dyson equation for B.
In particular, it takes a more compact structure in the basis of
the eigenstates of the symmetrized excitonic Hamiltonian,


̃λqλ′q(z13) = iB̄αq′ (z13)Wλqαq′αq′λ′q(z31), (B8)
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with

Wλqαq′αq′λ′q(z31)

= Ac1v1k1∗
λq Ac2 v̄2k2+q−q′∗

αq′

√
Rc1k1+qv̄1k1+q−q′

Rc1k1+qv1k1

W v̄1k1+q−q′v̄2k2+q−q′
v2k2v1k1

(z31)

√
Rc2k2+qv̄2k2+q−q′

Rc2k2+qv2k2

Ac1v̄1k1+q−q′
αq′ Ac2v2k2

λ′q

+ Ac1v1k1∗
λq Ac̄2v2k2∗

αq′

√
Rc̄1k1+q′v1k1

Rc1k1+qv1k1

W c1k1+qc2k2+q
c̄2k2+q′ c̄1k1+q′ (z31)

√
Rc̄2k2+q′v2k2

Rc2k2+qv2k2

Ac̄1v1k1
αq′ Ac2v2k2

λ′q

− Ac1v1k1∗
λq Ac̄v2k2∗

αq′

√
Rc1k1+qv̄k1+q−q′

Rc1k1+qv1k1

W v̄k1+q−q′c2k2+q
c̄k2+q′v1k1

(z31)

√
Rc̄k2+q′v2k2

Rc2k2+qv2k2

Ac1v̄k1+q−q′
αq′ Ac2v2k2

λ′q

− Ac1v1k1∗
λq Ac2 v̄k2+q−q′∗

αq′

√
Rc̄k1+q′v1k1

Rc1k1+qv1k1

W c1k1+qv̄k2+q−q′
v2k2 c̄k1+q′ (z31)

√
Rc2k2+qv̄k2+q−q′

Rc2k2+qv2k2

Ac̄v1k1
αq′ Ac2v2k2

λ′q , (B9)

where we have taken into account the explicit dependence from the Bloch wave vectors.

APPENDIX C: EXCITON-PHONON MATRIX ELEMENTS

When only the electron-phonon interaction is present, W = W ph, so that, in terms of electron-phonon coupling (g) and the
phonon propagator (D), Eq. (A4) becomes

W
iki jk j

lkl mkm
(z31) = 1

N

∑
μq

g∗
mi,μ(ki, q)Dμq(z31)gl j,μ(k j, q)δkm,ki+qδkl ,k j+q. (C1)

Inserting Eqs. (C1) and (B9) into Eq. (B8) and taking the diagonal part, we obtain the expression in Eq. (16) with the following
definition of the exciton-phonon matrix elements:

gexc
αλ,μ(q, q̄) =

∑
vv̄ck

Acv̄k−q̄∗
αq+q̄

√
Rck+qv̄k−q̄gvv̄,μ(k − q̄, q̄)

√
Rck+qvk√

Rck+qvk
Acvk

λq

−
∑
cc̄vk

Ac̄vk∗
αq+q̄

√
Rc̄k+q+q̄vkgc̄c,μ(k + q, q̄)

√
Rck+qvk√

Rck+qvk
Acvk

λq . (C2)

Now we consider a simple model system consisting of a
Wannier exciton coupled with an Einstein-like LO phonon
of frequency �LO = �0 and LA phonon with linear dis-
persion �LA = ς |q| with ς = �D

qD
(�D and qD being the

Debye frequency and wave vector, respectively). In this case
the lowest exciton energy band and the corresponding wave
functions are

Eq = �QP − μ

2ε2∞
+ q2

2M
, (C3)

Acvk
q = (2a)

3
2

π

1

[1 + (|k + γ q|a)2]2
, (C4)

with ε∞ denoting the dielectric constant of the medium,
μ = mcmv

mc+mv
the reduced mass of the electron-hole pair, M =

mc + mv the exciton mass, a = ε∞
μ

the exciton Bohr radius,
and �QP the quasiparticle band gap. The quantity γ is defined
as γ = mc

mc+mv
. Since we are considering a model involving

a single exciton band, we removed the exciton band index.
Moreover we model the electron-phonon matrix elements in

Eq. (C2) using a Fröhlich-like interaction for the LO phonon
and a Bardeen-Shockley coupling for the LA one,

gLOq = i

|q|
[

4π

V

�0

2

(
1

ε∞
− 1

ε0

)]1/2

, (C5)

gLAq = i

[
1

2ρV ς

]1/2

|q|1/2D, (C6)

where V is the volume of the primitive cell, ρ is the density of
ions, ς the sound velocity, and D is the volume deformation
potential. In this way the electron-phonon matrix elements are
independent from the electron wave vector k and the band
index c(v).

Insertion of Eq. (C4) and Eqs. (C5) and (C6) into Eq. (C2)
leads to the following analytical expression for the square
modulus of the exciton-phonon matrix elements:∣∣gexc

LO(q = 0, q̄)
∣∣2 = αLO�2

0
[Ic(|q̄|) − Iv (|q̄|)]2

|q|2 , (C7)

∣∣gexc
LA (q = 0, q̄)

∣∣2 = αLA�2
D|q̄|[Ic(|q̄|) − Iv (|q̄|)]2, (C8)
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with

Ic(v)(q) = 1[
1 + (mc(v)

M
qa
2

)2]2 , (C9)

and αLO(A) dimensionless constants describing the strength of
the coupling with the LO and LA phonons, respectively, and
|q̄| in unit of qD.

[1] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[2] G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).
[3] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
[4] K. Hannewald, S. Glutsch, and F. Bechstedt, Phys. Rev. B 62,

4519 (2000).
[5] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many

Body Theory of Quantum Systems: A Modern Introduction
(Cambridge University Press, Cambridge, 2013).

[6] D. Sangalli and A. Marini, Europhys. Lett. 110, 47004
(2015).

[7] E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci, Phys.
Rev. B 92, 205304 (2015).

[8] P. M. M. C. de Melo and A. Marini, Phys. Rev. B 93, 155102
(2016).

[9] R. Martin, L. Reining, and D. Ceperley, Interacting Electrons:
Theory and Computational Approaches (Cambridge University
Press, Cambridge, UK, 2016).

[10] D. Van Tuan, B. Scharf, I. Žutić, and H. Dery, Phys. Rev. X 7,
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