
PHYSICAL REVIEW B 108, 155437 (2023)

Theory of electromagnetic line waves
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Whereas electromagnetic surface waves are confined to a planar interface between two media, line waves
exist at the one-dimensional interface between three materials. Here we derive a nonlocal integral equation for
computing the properties of line waves, valid for surfaces characterized in terms of a general tensorial impedance.
We find a good approximation—in many cases—is to approximate this as a local differential equation, where line
waves are one-dimensional analogs of surface plasmons bound to a spatially dispersive metal. For anisotropic
surfaces we find the oscillating decay of recently discovered “ghost” line waves can be explained in terms of
an effective gauge field induced by the surface anisotropy. These findings are validated using finite-element
simulations.
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I. INTRODUCTION

Between appropriate materials, most waves can become
a surface wave: a mode trapped at a planar interface be-
tween different media. Electromagnetic (EM) surface waves
between bulk media include surface plasmons, magnetoplas-
mons, and Dyakonov waves, which depend on bulk material
properties. Meanwhile, Tamm states can be trapped between
periodically layered media, without the need for negative per-
mittivity, permeability, or anisotropy. For a review of this rich
EM surface-wave taxonomy, see Ref. [1]. Metasurfaces can
be used to control these surface waves, providing a structured
interface that imposes an effective boundary condition, either
confining the wave or modifying its propagation characteris-
tics [2,3]. Similarly, at an interface between elastic materials
there are Rayleigh and Love surface waves [4], which can
be controlled using, e.g., seismic metamaterials [5]. The ex-
istence of both elastic and EM surface waves can be inferred
from topological arguments [6,7], which additionally predict
the appearance of unidirectional surface waves between a
wide range of gyrotropic and bianisotropic materials [8–10].

Despite a wealth of previous work on these two-
dimensional surface waves, their one-dimensional cousins,
line waves, are much less well understood. A schematic ex-
ample is shown in Fig. 1(b), where a line wave occurs at
the common, one-dimensional interface where either the per-
mittivity, permeability, or both change sign. This new type
of excitation was predicted and experimentally confirmed in
Refs. [11] and [12], and further work has examined its rela-
tionship to topology [13] and spin-momentum locking [14],
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and found instances of line waves between non-Hermitian
parity-time symmetric media [15].

To date there have been three approaches to the theory of
line waves: (i) Initially [11] the analysis was restricted to the
asymptotic (electrostatic and magnetostatic) limit, where the
propagation constant k takes a large value k � ω/c, finding
that the mode requires the surface impedance of the lower
two media [see Fig. 1(b)] to be equal and opposite. This
result is analogous to the asymptotic limit of the surface
plasmon/magnon, where the bounding media have equal and
opposite values of the permittivity/permeability. Although
this asymptotic result agrees with numerical simulations, it
gives no indication of the dispersion of the mode or the gen-
eral conditions for its existence. Meanwhile, (ii) in Ref. [12]
the authors found an exact analytical solution, a solution re-
stricted to the case of lower media that are perfect electric
and magnetic conductors, an unusual case where the propa-
gation constant becomes independent of frequency. Finally,
(iii) in Ref. [16] the authors used Sommerfeld-Malyuzhinets
diffraction theory to find a general exact solution. Although
exact, it requires the numerical evaluation of the Malyuzhinets
function (expressed as an exponential of a numerical integral),
and to determine, e.g., the propagation constant we must nu-
merically find a combination of these functions that vanishes.
So far it has been challenging to generalize this exact solu-
tion to other types of waves where the Malyuzhinets solution
does not apply (e.g., elastic waves, or more general types of
electromagnetic media), and as a result most authors resort to
finite-element simulations [17].

The aim here is to derive a simple, approximate, yet ac-
curate theory of line waves, allowing us to build an intuitive
theory that can be generalized to other kinds of bounding
media and wave types. The difficulty of deriving this theory
compared to, say, the characteristics of the surface plasmon
lies in the difference in the dimensionality of the wave prop-
agation and three-dimensional space. For a surface wave both
the frequency, ω, and the two-component in-plane wave vec-
tor, k||, are conserved, meaning that the remaining decay
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FIG. 1. Surface versus line waves. (a) Two-dimensional surface
waves (plasmons or magnetoplasmons) are bound to the interface
between an ordinary dielectric (e.g., air or glass) and a material
with either negative permittivity, ε, or permeability, μ. (b) One-
dimensional line waves are bound to the interface between three
materials: an ordinary dielectric (y > 0), a negative-permittivity
material (y < 0, x > 0), and a negative-permeability material (y <

0, x < 0).

constant away from the surface can be written entirely in terms
of these three conserved quantities via the dispersion relation.
All that remains of the problem is to then find the values of ω

and k|| such that the boundary conditions are satisfied.
By contrast a line wave only has two conserved quantities,

the frequency and the wave-vector component kz, directed
along the common interface [see Fig. 1(b)]. These conserved
quantities do not provide enough information to determine the
form of the field in, e.g., the x-y plane, and we must therefore
find both the field distribution and the values of the conserved
quantities such that the boundary conditions are satisfied.

Here we sidestep this difficulty through writing an effective
wave equation for the field on the surface alone. Interestingly
this equation is very similar to the two-dimensional vector
Helmholtz equation that would hold for the surface magnetic
field H || in strictly two-dimensional space, with the surface
impedance playing the role of the permeability. The third
dimension is encoded in a nonlocal integral kernel, which
serves to “blur” this two-dimensional equation. As we shall
show, it is simple to apply and approximate this effective
surface-wave equation to analyze the properties of line waves
and understand new results such as the oscillatory decay of
“ghost” line waves [17].

II. THE NONLOCAL SURFACE WAVE EQUATION

Rather than consider the bulk media sketched in Fig. 1,
where we would have to consider the wave in the region y < 0,
it is simpler to characterize the materials in the half space
y < 0 in terms of a boundary condition at y = 0: in terms of
a surface impedance. To achieve this on the surface y = 0,

we take the electromagnetic field to satisfy an impedance
boundary condition [18,19],

E || = iη0χ (x)ŷ × H ||, (1)

where χ (x) is the surface reactance (surface impedance, Z =√
μ/ε = iχ ). Our first aim is to rewrite this equation as an

effective wave equation, written entirely in terms of the behav-
ior of the in-plane H field on the y = 0 surface. To eliminate
the in-plane electric field from (1) we apply the Maxwell
equation, ∇ × η0H = −ik0E,

E || = iη0

k0
ŷ ×

(
∂H ||
∂y

− ∇||Hy

)
, (2)

where k0 = ω/c and η0 = √
μ0/ε0.

Although Eqs. (1) and (2) can be combined into a single
equation that describes the components of the magnetic field
on the surface alone, it is not yet the “surface-wave equation”
we want: the equation does not make reference to the behavior
of the field in the plane of the surface alone. We therefore
cannot yet find a solution using data on the surface alone until
we have removed the third dimension entirely, eliminating
both the unknown derivatives normal to the plane, and the
normal field component Hy.

The out-of-plane field components and derivatives can be
eliminated from Eq. (2) through using a Fourier decomposi-
tion of the magnetic field, in terms of Fourier amplitudes H̃ ||.
For instance, ∂H ||/∂y can be written as an in-plane convolu-
tion of H || with a kernel K (x − x′),

∂H ||
∂y

∣∣∣∣
y=0

= −eikzz
∫ ∞

−∞

dk

2π

√
k2 + κ2H̃ ||(k)eikx

=
∫ ∞

−∞
dx′K (x − x′)

(∇′
||

2 + k2
0

)
H ||(x′, z), (3)

where κ = (k2
z − k2

0 )1/2. The integration kernel in Eq. (3) is
proportional to a modified Bessel function of zeroth order
[20],

K (x − x′) =
∫ ∞

−∞

dξ

2π

eiξκ (x−x′ )√
ξ 2 + 1

= 1

π
K0(κ|x − x′|). (4)

In the above we assume kz > k0 so that—via momentum
conservation—the surface wave remains confined, whatever
the inhomogeneity of the surface impedance in x. This as-
sumption leads to the real-valued modified Bessel function
in (4). For kz < k0, the kernel becomes complex valued,
ultimately making our problem non-Hermitian due to the scat-
tering of the wave into the space above the surface.

The basic idea of this section is encapsulated in Eq. (3):
we can reformulate the boundary condition (1) entirely in
terms of the behavior of the magnetic field on the surface
alone. The price is that the resulting equation is nonlocal,
involving an exponentially localized kernel K (x − x′) that in
Eq. (3) averages the Helmholtz equation over the surface (for
the form of the kernel see Fig. 2). The same calculation can
also be performed to eliminate the out-of-plane magnetic field
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FIG. 2. Kernel in the nonlocal Helmholtz equation (6). Defined
in Eq. (4), the integral kernel appearing in the surface Helmholtz
equation (6) becomes increasingly localized as the propagation con-
stant kz/k0 is increased. Dashed lines show the approximation K (1)

given in (16), which becomes increasingly accurate as kz/k0 is
increased.

Hy from (2), using the condition ∇ · H = 0,

Hy =
∫

dx′∇′
|| · H ||(x′)K (x − x′). (5)

Substituting Eqs. (3) and (5) into (1) and (2) then gives us the
final nonlocal equation governing the field on the surface,∫ ∞

−∞
dx′K (x − x′)

(∇′
|| × ∇′

|| × −k2
0

)
H ||(x′) + k0χ (x)H || = 0.

(6)
This is the equation that governs the field on an impedance
boundary, making no reference to the space above the surface.
To some, Eq. (6) might be a pleasing result: it is a gener-
alization of the two-dimensional vector Helmholtz equation
∇|| × ∇|| × H || − k2

0μH || = 0, the free space equation ap-
pearing within the integrand of (6), and the surface reactance
playing a role similar to a magnetic susceptibility. The fact
that there is a third dimension normal to the surface is encoded
in the integral kernel K (x − x′) defined in Eq. (4), which acts
to “blur” the wave operator ∇|| × ∇|| × −k2

0 on the surface.
As shown in Fig. 2, as the propagation constant kz is increased,
this blurring reduces, reflecting the increasing confinement of
the field to the surface.

Example: Propagation on a homogeneous surface

Before applying our integral equation (6) to line waves, the
reader might need convincing that this equation reproduces
known results. For a surface with a uniform impedance it is
simple to solve Eq. (6). Given its Fourier representation (4),
the integral kernel K (x − x′) has plane wave eigenfunctions,∫ ∞

−∞
dx′K (x − x′)eikx′ = eikx

√
k2 + κ2

. (7)

Therefore, writing the in-plane magnetic field as a plane wave
times a constant vector amplitude, H ||(x) = H0 eikx, the inte-
gral equation (6) becomes a simple algebraic equation that is

identical to the dispersion relation for electromagnetic waves
in a magnetic material in two dimensions,[

k × k × +k2
0 μeff (k)

]
H0 = 0, (8)

where k = kx̂ + kz ẑ. The effective permeability in Eq. (8) is
given by

μeff (k) = 1 −
√

k2 + κ2

k0
χ. (9)

Interestingly, unlike the ordinary dispersion relation for
electromagnetic waves in two dimensions, the effective per-
meability for our surface waves (9) depends on the in-plane
wave vector k. Surface waves bound to a uniform impedance
boundary are thus equivalent to two-dimensional electromag-
netic waves in a spatially dispersive magnetic material. There
is a very good physical reason for this: if the effective permit-
tivity (9) was not spatially dispersive, there would only be a
single transverse magnetic (TM) surface mode with disper-
sion relation k2 + k2

z = μeff k2
0 (there is only one transverse

polarization in two dimensions). The fact that the effective
permeability (9) is k dependent means that there are both
longitudinal (TE) and transverse (TM) wave solutions to the
two-dimensional equation (8).

The longitudinal (TE) surface mode can be derived through
performing an inner product of (8) with k, which reduces
the dispersion relation to the condition μeff (k) = 0, familiar
from the theory of longitudinal modes in spatially dispersive
crystals [21],

μeff (k)(k|| · H0) = [k0 −
√

k2 + κ2χ ](k|| · H0) = 0, (10)

i.e., (k2 + κ2)1/2 = k0/χ . This condition can only be fulfilled
when the surface reactance is positive. Meanwhile, taking
k · H || = 0 in (8) yields the dispersion relation for transverse
(TM) surface modes,

[(k2 + κ2) + k0

√
k2 + κ2χ ]H0 = 0, (11)

i.e., (k2 + κ2)1/2 = −k0χ , which can only be fulfilled when
the surface reactance is negative. Equations (10) and (11)
are the well-known dispersion relations for transverse electric
(TE) and transverse magnetic (TM) surface waves [18,22],
here derived as a special case of the nonlocal surface
Helmholtz equation (6).

III. LINE WAVES ON ISOTROPIC SURFACES

We now apply the nonlocal surface-wave equation (6)
to the central problem of this paper: electromagnetic line
waves confined to the x = 0 interface between two impedance
boundaries. To set up this problem we write the surface re-
actance distribution representing the materials sketched in
Fig. 1(b) in terms of the average reactance χb and the
contrast 
χ ,

χ (x) = χb + 
χ

2
sgn(x). (12)
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FIG. 3. Line mode dispersion and field profiles. (a) Dispersion relation (χb as a function of kz, for a fixed reactance contrast 
χ = 2.309)
numerically calculated using exact integral equation (14), the two approximations given in (16) and (17), and analytic relation (24). The
800 × 800 discrete Fourier transform matrix was constructed using spatial periodicity L = 8λ. Red crosses show calculated values of kz/k0

computed using the COMSOL Multiphysics eigenvalue solver. Note that the results of Eqs. (17) (cyan) and (24) (red dashed) are identical.
(b) Comparison of in-plane magnetic field profiles H || calculated from the exact integral equation (14) and from COMSOL Multiphysics.
(c) Field profiles calculated using approximations (16) and (17).

With this identification, the surface integral equation (6) be-
comes an eigenvalue problem for the average reactance χb,

− 1

k0

∫ ∞

−∞
dx′K (x − x′)(∇′

|| × ∇′
|| × −k2

0 )H ||(x′)

− 1

2

χ sgn(x)H || = χ

(0)
b H ||. (13)

The superscript “(0)” has been added to the average reactance
to indicate that this is the eigenvalue of the equation without
approximations. We thus determine the line mode disper-
sion relation through specifying the wave number k0, the kz

wave-vector component, and the reactance contrast 
χ . The
eigenvalue of the integral equation (13) then gives the average
surface reactance required such that the given mode H || is
supported for these values of k0, kz, and 
χ .

Numerically it is simplest to solve (13) in the Fourier
domain where using the eigenfunctions of the kernel (7) the
integral operator becomes a simple multiplication, and the
term proportional to 
χ becomes a principal value integral

1

k0

(
k × k × +k2

0√
k2 + κ2

)
· H̃ ||(k) + i
χ

2

1

π
P

∫ ∞

−∞

H̃ ||(k′)
k − k′ dk′

= χ
(0)
b H̃ ||(k), (14)

where H̃ || is the Fourier transform of the in-plane magnetic
field, and “P” indicates the principal part of the integral, which
itself is a Hilbert transform [23]. The appearance of a Hilbert
transform is expected in this problem: its eigenfunctions are
the functions of k that are analytic in either the upper or
lower half of the complex k plane, which represent real-space
functions that are confined to either side of the x = 0 line,
where the reactance takes a fixed value.

Equation (14) can be solved using the Wiener-Hopf method
[24], although we do not pursue this here. It is also straight-
forward to solve this equation numerically. To do this we
discretize both the x axis and k space into N points and
write the left-hand side of Eq. (14) as a 2N × 2N matrix with

the Hilbert transform written as Ĥ = −iF̂−1 diag[sgn(xn)]F̂
implemented in terms of the discrete Fourier transform matrix
F̂nm = exp(−iknxm). When written in this matrix form it is
evident that for real 
χ the left-hand side of (14) is a Her-
mitian operator with corresponding real eigenvalues, χ (0)

b . For
purely imaginary 
χ the system is PT symmetric, and the
operator on the left of (14) is equivalent to a real-valued but
non-Hermitian matrix with eigenvalues that are thus real, or in
complex conjugate pairs. This is consistent with the findings
of [15], where it was found that line waves can be supported
on impedance surfaces with balanced loss and gain. The above
eigenvalue problem finds the impedance that supports a wave
with a given propagation constant kz. It is also possible to find
kz for a fixed impedance. We show an example method for
doing this in Appendix C.

As the eigenvectors of the operator (14) include both prop-
agating modes and line waves, numerically we sort them
by the proportion of their norm concentrated in a small
region around x = 0, neglecting all but the most confined
modes. Figures 3(a) and 3(b) show the line-wave disper-
sion relation and field profiles calculated using this method,
which—as shown—agrees with the same calculation car-
ried out using commercial finite-element software (COMSOL
Multiphysics [25]).

A. Approximations to the integral kernel

The numerical results shown in Fig. 3 show that the line
wave has some superficial similarities with an electromag-
netic surface wave. For the surface plasmon/magnon, the
asymptotic limit, kz/k0 → ∞, requires two bulk media with
zero average permittivity/permeability. Equivalently Fig. 3(a)
shows that for line waves, the average surface reactance
tends to zero in the same limit. This similarity was also
discussed in the asymptotic analysis of Ref. [11]. More-
over the field profiles shown in Fig. 3(b) suggest that we
might make an exponential approximation to the form of
the line wave, equivalent to the exponential localization of
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FIG. 4. Description as in Fig. 3, but for the increased reactance contrast 
χ = 8.309, illustrating in panels (a)–(c) that the approximate
kernels (16) and (17) give reduced accuracy for larger contrast reactance surfaces.

a surface plasmon/magnon around the interface. In this sec-
tion we show that we can develop local approximations to the
integral kernel K (x − x′). The leading-order approximation
then yields a line mode that is the exact two-dimensional
equivalent of the surface plasmon/magnon, with a disper-
sion relation that closely matches the numerical solution to
Eq. (14).

For inhomogeneous media the difficulty in developing an
algebraically simple solution to the nonlocal equation (13)
can be traced back to the square root denominator in the
Fourier representation of the integral kernel (4). Here the
square root denominator is replaced with a polynomial ankn +
an−1kn−1 + · · · , the inverse of the integral operator would
be a differential operator an(−i∂x )n + an−1(−i∂x )n−1 + · · · ,
meaning that we could rewrite (13) as a differential equation.
However, the branch cuts in the square root denominator make
this simplification impossible. To make progress we recognize
that the Fourier transform of an exponentially localized field
(such as the line waves we are seeking to describe) is centered
around the zero wave vector. We therefore replace the square
root denominator in the Fourier representation of the kernel
(4) with its series expansion. Here we consider two such
approximations,

√
ξ 2 + 1 ∼

{
1 + 1

2ξ 2 (Approximation 1),
1 (Approximation 2).

(15)

These approximations transform the integrand in (4), which
contains two square root branch cuts at ξ = ±i, into a form
that is either an entire function of k, or contains simple poles.
The corresponding approximate expressions for the integral
kernel (4) are then given by

K (1)(x − x′) =
∫ ∞

−∞

dξ

2π

eiξκ (x−x′ )(
1 + 1

2ξ 2
)

= e−√
2κ|x−x′|
√

2
(Approximation 1) (16)

and

K (2)(x − x′) =
∫ ∞

−∞

dξ

2π
eiξκ (x−x′ )

= 1

κ
δ(x − x′) (Approximation 2). (17)

As shown in Fig. 2, the first approximation K (1) closely
matches the exact expression (4), becoming ever more ac-
curate as the value of kz/k0 is increased. The second
approximation (17) only corresponds to the exact kernel in
that it matches the area underneath its curve. The dispersion
relations and field profiles obtained using these two approxi-
mations are compared to the results of the exact equation (14)
in Figs. 3 and 4, illustrating that both approximations provide
a good estimate of the dispersion of line waves. As shown
there, approximation 1 yields fields that have a similar depen-
dence to the exact solution away from the interface, but all
field components are discontinuous across x = 0. Meanwhile
approximation 2 tends to underestimate the localization of the
field.

B. Local line-wave equations

The advantage of the approximations (16) and (17) is
that—as discussed above—they reduce the nonlocal equation
(13) to an ordinary differential equation on the surface: an
equation written entirely in terms of the surface fields and
their in-plane derivatives. For the first approximation (16)
we note that K (1) obeys the inhomogeneous equation (∂2

x −
2κ2)K

(1) = −2κδ(x − x′). Therefore, applying the differential
operator ∂2

x − 2κ2 to Eq. (13) yields a local surface-wave
equation holding on the y = 0 surface,

(∇|| × ∇|| × −k2
0 )H ||(x) − k0

2κ

(
d2

dx2
− 2κ2

)
χ (x)H ||

= 0 (Approximation 1). (18)

Similarly, using the more extreme approximation (17) where
the integral kernel is proportional to a delta function, Eq. (13)
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becomes [
∇|| × ∇|| × −k2

0

(
1 − κ

k0
χ (x)

)]
· H ||(x)

= 0 (Approximation 2). (19)

Note that this equation is equivalent to our earlier one for
propagation on a homogeneous surface (8) but with k = 0,
and the reactance promoted to a position-dependent quantity.
It is also worth noticing that taking the kz/k0 → ∞ limit of
the first approximate equation (18) yields the second approxi-
mation (19).

C. Fields and dispersion relations

From the above two surface-wave equations (18) and (19)
we can find analytic expressions for the field profiles and dis-
persion relations of line waves that closely match the results
of finite-element simulations. In this approximation the field
exponentially decays away from x = 0, and line waves are the
direct one-dimensional analogs of surface waves.

We concentrate on the simplest case, Eq. (19), although
exactly the same argument can be carried out for the more
accurate equation (18) (see Appendix B). Taking the x compo-
nent of Eq. (19) we find that the x component of the magnetic
field is determined by the derivative of Hz,

Hx = − ikz

κ2 + k0κχ (x)

dHz

dx
. (20)

This expression for Hx allows us to write the approximate
surface-wave equation (19) in terms of Hz alone,

d

dx

(
k2

0 − k0κχ (x)

κ2 + k0κχ (x)

)
dHz

dx
− k2

0

(
1 − κ

k0
χ (x)

)
Hz = 0. (21)

Although we are describing the electromagnetic field on a sur-
face, Eq. (21), which governs the cross-sectional form of the
line wave, is equivalent to the familiar Helmholtz equation for
propagation along a single axis in a bulk electromagnetic
material where the effective permittivity is given by

εeff = −
(

κ
k0

)2 + κ
k0

χ (x)

1 − κ
k0

χ (x)
(22)

and the effective permeability, μeff , equals (9). By analogy
with bulk electromagnetic waves, we can predict the presence
of line waves. These waves require that the product εeffμeff

be negative on both sides of the interface (for exponential
decay, rather than propagation), in addition to εeff changing
sign across the interface (ensuring the decay constant changes
sign across x = 0).

Although the above derivation holds for any spatially vary-
ing reactance χ (x), we consider the special case of the step
change in impedance given by (12). From a cursory inspection
of Eq. (21) we see that in order that Hz be a well-defined
solution, both Hz and ε−1

eff ∂xHz must be continuous across the
impedance interface at x = 0. Given that the impedance is
homogeneous everywhere except at x = 0, we can thus write
the solution to Eq. (21) as a piecewise function

Hz = H0

{
eβLx (x < 0),
e−βRx (x > 0),

(23)

where, from substitution into (21), we determine the decay
constants to be given by βL,R =

√
κ2 + k0κχ (L,R). In this ap-

proximation the existence of the line wave thus requires the
positivity of κ2 + k0κχ (L,R) on either side of the x = 0 inter-
face. Applying the second condition for continuity of ε−1

eff ∂xHz

then yields the line-wave dispersion relation(
1 − κ

k0
χ (L)

)√
κ

k0
+ χ (R) +

(
1 − κ

k0
χ (R)

)√
κ

k0
+ χ (L) = 0,

(24)

which—as shown in Figs. 3 and 4—provides a good estimate
of the numerically determined dispersion relation calculated
from the exact Eq. (14), and using finite-element simulations.
From (24) we can see that, as kz → ∞, the dispersion relation
reduces to

kz → ∞ : χ (L) + χ (R) = 0, (25)

in agreement with the asymptotic analysis given in [11]. For
complex reactances, this condition implies a PT-symmetric
surface with balanced loss and gain, as found in [15]. We
can therefore see that, despite the apparently complicated
mathematical properties of line waves, they can be reasonably
approximated as exponentially decaying fields on the surface,
obeying the two-dimensional equation (19), which could have
been anticipated from boldly promoting the dispersion rela-
tion on a homogeneous surface to a wave equation (8).

IV. ANISOTROPIC SURFACES: EFFECTIVE GAUGE
FIELDS AND GHOST WAVES

Finally, having derived this simple theory for isotropic
impedance boundaries we can explore some extensions to
more exotic surfaces. The most obvious generalization is to
anisotropic impedance boundaries. These were very recently
discussed in Ref. [17], where primarily using finite-element
simulations, one-dimensional “ghost line waves” were dis-
covered: confined waves on a lossless surface that oscillate
as they decay. Here we shall show that this hybrid behavior
can be straightforwardly explained using the local approxima-
tion to our integral equation described above. Put simply, the
anisotropy acts as an effective gauge field on the surface, and
just as for an electron subject to a magnetic vector potential
[26], this induces extra oscillations in the surface field.

To treat anisotropic impedance boundaries, we assume
the anisotropic generalization of the surface reactance profile
given in Eq. (12),

χ(x) = χb12 + χa + 
χ

2
sgn(x), (26)

where 
χ is the tensorial difference in the reactance between
the two surfaces, a Hermitian matrix in the case of lossless
surfaces. The matrix χa is a constant matrix representing the
zero-trace part of the average reactance of the two surfaces,
whereas χb is an overall shift to the diagonal elements of
the surface reactance required to support the surface wave.
With this reactance profile the integral equation (14) is simply
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generalized to(
1

k0

k × k × +k2
0√

k2 + κ2
− χa

)
· H̃ ||(k)

+ 
χ·
2

i

π
P

∫ ∞

−∞

H̃ ||(k′)
k − k′ dk′ = χ

(0)
b H̃ ||(k). (27)

This remains a Hermitian operator for Hermitian 
χ and χa,
indicating eigenmodes are still supported for real values of the
diagonal reactance components, χ

(0)
b .

By an identical argument to that presented in Sec. III B, the
more extreme of the two local approximations to this integral
equation is also a straightforward generalization of our sur-
face vector Helmholtz equation (19), where the reactance is
replaced with a 2 × 2 matrix,

(∇|| × ∇|| × −k2
0 )H ||(x) + κk0χ · H || = 0

→ Hx = − 1

κ2 + k0κχxx

(
ikz

d

dx
+ k0κχxz

)
Hz. (28)

The second line follows from taking the x component of the
Helmholtz equation, which determines the component of the
magnetic field orthogonal to the propagation axis. Interest-
ingly, a comparison with our earlier Eq. (20) shows that the
off-diagonal element χxz induces an effective gauge potential
in (28), modifying the derivative to ∂x − ik−1

z k0κχxz. The ap-
pearance of an effective gauge field in the line-wave equation
due to the anisotropy is confirmed after substituting Eq. (28)
into the preceding vector Helmholtz equation, where we are
left with a second-order equation for the field component Hz,(

d

dx
− iA

)
1

εeff

(
d

dx
− iA

)
Hz + k2

0μeffHz = 0. (29)

Here we have assumed a symmetric reactance χxz = χzx

which is equivalent to assuming time-reversal symmetry of
the surface [for a Hermitian reactance, both A and its com-
plex conjugate appear in (29)]. In this case the effective
gauge potential is given by A = σkzκk−1

0 χxz, where σ =
[1 − (κ/k0)χxx]−1. Meanwhile the effective permeability and
permittivity are generalized from the earlier expressions (9)
and (22) to μeff = σ [1 − (κ/k0) Tr(χ) + (κ/k0)2 det(χ)] and
εeff = −σ [(κ/k0)2 + (κ/k0)χxx].

The Helmholtz equation (29) takes the form of the one-
dimensional Schrödinger equation for a charged particle in a
magnetic gauge potential A with a mass proportional to εeff

and a scalar potential proportional to μeff [26]. The effect
of the anisotropy on the surface field thus both modifies the
dispersion relation (24) due to the generalized forms of εeff

and μeff , as well as introducing field oscillations along the x
axis. These oscillations due to the gauge field can be isolated
through making the substitution, Hz = exp[i

∫ x
0 A(x′)dx′]hz.

This substitution transforms the field equation (29) to an equa-
tion for hz that takes the earlier form (21)

d

dx

1

εeff

dhz

dx
+ k2

0μeff hz = 0. (30)

The only difference from our earlier analysis is the modifica-
tions to the functional form of the effective permittivity and
permeability. Assuming εeffμeff < 0, Eq. (30) again admits
confined line-wave solutions hz of the form (23) with decay

constants

βL,R = k0
√−εeffμeff (31)

= k0

√(
κ
k0

)2 + κ
k0

χ
(L,R)
xx∣∣1 − κ

k0
χ

(L,R)
xx

∣∣
×

√
1 − κ

k0
Tr[χ(L,R)] +

(
κ

k0

)2

det[χ(L,R)], (32)

which reduce to those given below Eq. (23) for isotropic sur-
faces where χ (L,R)

xx = χ (L,R)
zz and χ (L,R)

xz = χ (L,R)
zx = 0. Again

demanding the continuity of ε−1
eff ∂xhz yields the corresponding

line-wave dispersion relation(
1 + k0

κ
χ (L)

xx

)(
1 − κ

k0
χ (R)

xx

)
βL

+
(

1 + k0

κ
χ (R)

xx

)(
1 − κ

k0
χ (L)

xx

)
βR = 0. (33)

This is plotted as the red dashed line in Fig. 5(a), where
it is evident that for this range of impedance values, this
approximation closely matches the results of both the exact
integral equation (27) and finite-element simulations [Fig. 5
shows line-wave profiles on an anisotropic surface with 
χ =
(2.5 1.2
1.2 2.5) and χa = 0, as defined in Eq. (27)]. Figures 5(b)

and 5(c) show cross sections of the line-wave field, where—
compared to the isotropic results shown in Figs. 3 and
4—there is the anticipated hybrid of oscillation and decay
away from the x = 0 interface on the surface.

As in the isotropic case discussed above and in Ref. [11],
in the asymptotic limit kz → ∞, the dispersion relation sim-
plifies to a constraint on the material parameters,

χ (R)
xx∣∣χ (L)
xx

∣∣√det[χ(L)] + χ (L)
xx∣∣χ (R)
xx

∣∣√det[χ(R)] = 0, (34)

which reduces to our previous result (25) when the surface
is isotropic. Indeed, for anisotropic surfaces with a reactance
matrix of equal determinant det[χ(L)] = det[χ(R)], Eq. (34)
predicts that the asymptotic limit occurs when the diagonal
elements χ (L,R)

xx are of equal magnitude and opposite sign.

V. SUMMARY AND CONCLUSIONS

Although wedge plasmons and edge waves are well-known
one-dimensional excitations, these are typically confined to
a surface through the effect of surface curvature [27]. On
the other hand, line waves [11,12,15,17] are one-dimensional
waves confined to flat surfaces by the distribution of surface
impedance. Line waves are much more difficult to theo-
retically analyze than surface waves, and to date a simple
understanding of these modes has been lacking.

In this work we have provided a new general theory for
analyzing the behavior of line waves on impedance bound-
aries. In the exact case, the properties of line waves can
be calculated through determining the eigenfunctions of the
integral equation (14), or its generalization to anisotropic sur-
faces (27). To gain further understanding of these waves, this
integral equation can be approximated as a differential equa-
tion using the expansions of the kernel (18) and (19), revealing
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FIG. 5. (a) Dispersion relations obtained using the exact integral equation (27), the two approximations (16) and (17), the analytic
dispersion relation (33), and finite-element simulations (see Appendix A). Panels (b) and (c) show that the mode oscillates as it decays,
characteristic of “ghost” line waves [17], an effect that is still captured by the most extreme approximation to the integral kernel (29).

that the cross section of the line wave obeys a one-dimensional
Helmholtz equation on the surface, with a spatially dispersive
effective permittivity and permeability. From this we have
shown that an approximate line-wave dispersion relation can
be derived exactly as is done for the surface plasmon/magnon,
with the result closely matching the results of finite-element
simulations (see Fig. 3), deviating more when the impedance
contrast is increased to larger values (see Fig. 4).

As we have shown, it is also straightforward to extend
this theory to anisotropic impedance boundaries. In this case
the cross section of the line wave also (approximately) obeys
a one-dimensional Helmholtz equation, with the anisotropy
modifying the effective permittivity and permeability val-
ues, ensuring—for example—that the asymptotic limit of the
dispersion relation no longer requires equal and opposite
reactance values, but the more complicated combination of
material parameters given in Eq. (34). Interestingly, we have
also found that anisotropy of the reactance induces an effec-
tive gauge field on the surface. As we are dealing with an
effective one-dimensional equation, this gauge field cannot
induce, e.g., cyclotron orbits of the surface wave, but instead
is equivalent to the gauge transformation given above Eq. (30)
which leads to oscillations in the field away from the interface.
We have verified this numerically (see Fig. 5) using both
the exact integral equation and finite-element simulations,

providing an explanation for the recently identified “ghost”
line waves [17].

Just as understanding surfaces waves has led to surface-
wave antennas and the field of plasmonics, understanding line
waves could lead to similar applications. They allow—for
instance—electromagnetic energy to be channeled without the
use of a waveguide, and as shown above and in [17] the flow
of this near-field energy can be molded via the anisotropy of
the surface. The theory presented here may provide a frame-
work for a deeper understanding of these waves in a larger
parameter space than has been considered to date.
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APPENDIX A: MODIFICATIONS TO COMSOL

To simulate anisotropic impedance boundaries we modi-
fied the equations of the “impedance boundary” in COMSOL
Multiphysics. This was done for surfaces with surface normal
ŷ by replacing the following expressions,

emw.imp1.Jsx = ((Zzz*(emw.tEx\ensuremath{+}emw.Esx)-Zxz*(emw.tEz\ensuremath{+}emw.Esz))
-plx-sol-plxdZ)-plx-sol-plxZ0
emw.imp1.Jsy = 0
emw.imp1.Jsz = ((Zxx*(emw.tEz\ensuremath{+}emw.Esz)-Zzx*(emw.tEx\ensuremath{+}emw.Esx))
-plx-sol-plxdZ)-plx-sol-plxZ0

where Z0=377 � is the free-space impedance, Zxx, Zxz,
Zzx, and Zzz are the components of the impedance tensor
Z = iχ, and dZ is the determinant of the impedance tensor, all

defined as a set of parameters for each impedance boundary
in the COMSOL model.
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APPENDIX B: THE MORE ACCURATE SOLUTION

In the main text we gave analytic results for the very
simplest approximation to the integral kernel (4). We can
also develop more accurate analytic results for the next-order
approximation, although the formulas are more complicated.
Here we give this more accurate solution for an isotropic
impedance boundary. The approximate surface-wave equa-
tion is given by Eq. (18) in the main text, which we repeat
here:

(∇|| ⊗ ∇|| − ∇2
|| − k2

0 )H ||(x) − k0

2κ

(
d2

dx2
− 2κ2

)
χ (x)H || = 0.

(B1)

Splitting this equation into components we obtain two coupled
Helmholtz equations, one for the x component,

k0

2κ

d2

dx2
(χHx ) − (κ2 + k0κχ )Hx − ikz

dHz

dx
= 0, (B2)

and one for the z component,

d2

dx2

(
1 + k0

2κ
χ

)
Hz + k2

0

(
1 − κ

k0
χ

)
Hz − ikz

dHx

dx
= 0.

(B3)

Assuming a junction between two surfaces as in (12) we
can solve (B2) and (B3) by assuming—in the homogeneous
regions—that the field has the form(

Hx

Hz

)
=

(
Ax

Az

)
e±βx (B4)

(β > 0) so that (B2) and (B3) can be written as a single matrix
equation(

k0χ

2κ
β2 − (κ2 + k0κχ ) ∓ikzβ

∓ikzβ
(
1 + k0

2κ
χ

)
β2 + k2

0

(
1 − κ

k0
χ

))
×

(
Ax

Az

)
= 0, (B5)

which requires the matrix to have zero determinant. The zero-
determinant condition yields a fourth-order polynomial in the
decay constant β,[

k0χ

2κ
β2 − (κ2 + k0κχ )

][(
1 + k0

2κ
χ

)
β2 + k2

0

(
1 − κ

k0
χ

)]
+ k2

z β
2 = 0. (B6)

As Eq. (B6) is a quadratic equation in β2 we have four values
of β that form two pairs of solutions with the same magnitude,

β2
1 = 1

2a
[−b +

√
b2 − 4ac],

(B7)

β2
2 = 1

2a
[−b −

√
b2 − 4ac].

To simplify the notation we have introduced three constants,

a = k0χ

2κ

(
1 + k0

2κ
χ

)
,

b = k0χ

2κ
k2

0

(
1 − κ

k0
χ

)
− (κ2 + k0κχ )

(
1 + k0

2κ
χ

)
+ k2

z ,

c = −(κ2 + k0κχ )k2
0

(
1 − κ

k0
χ

)
. (B8)

Therefore, on each side of the interface our field is composed
of a combination of two exponentials with decay constants β1

and β2 given by Eq. (B7). Each of these decaying components
is multiplied by the corresponding zero eigenvector of the
matrix equation (B5) so that on each side of the interface the
surface magnetic field takes the form

x < 0 : H || = c(L)
1 N (L)

1

(
ikzβ

(L)
1

k0χ
(L)

2κ

[
β

(L)
1

]2 − (
κ2 + k0κχ (L)

))eβ
(L)
1 x

+ c(L)
2 N (L)

2

(
ikzβ

(L)
2

k0χ
(L)

2κ

[
β

(L)
2

]2 − (κ2 + k0κχ (L) )

)
eβ

(L)
2 x, (B9)

where N (L,R)
1,2 are the normalization constants defined as

N (L,R)
1,2 = 1√( k0χ (L,R)

2κ

[
β

(L,R)
1,2

]2 − (κ2 + k0κχ (L,R) )
)2 + k2

z

[
β

(L,R)
1,2

]2
. (B10)

The constants c(L,R)
1,2 appearing in Eq. (B9) are yet to be determined and they represent the amplitudes of the two different

exponentially decaying solutions in the region x < 0. The field on the right-hand side of the x = 0 line is similarly expressed in
terms of two decaying solutions,

x > 0 : H || = c(R)
1 N (R)

1

(
−ikzβ

(R)
1

k0χ
(R)

2κ

[
β

(R)
1

]2 − (κ2 + k0κχ (R) )

)
e−β

(R)
1 x + c(R)

2 N (R)
2

(
−ikzβ

(R)
2

k0χ
(R)

2κ

[
β

(R)
2

]2 − (κ2 + k0κχ (R) )

)
e−β

(R)
2 x.

(B11)

To determine the four unknown expansion coefficients in Eqs. (B9)–(B11), plus the dispersion relation, we must apply four
boundary conditions at x = 0. These four boundary conditions are contained in the two coupled differential equations (B2) and
(B3) derived above. For the solution to hold across the line x = 0, all differentiated quantities must be continuous. Therefore,
from examining the second derivatives in Eqs. (B2) and (B3) we can see that the first derivatives they contain will only be well
defined if χ (x)Hx and (1 + k0χ/2κ )Hz are continuous. Similarly, integrating these equations across an infinitesimal interval
containing x = 0 we can also see that ∂x(k0χHx/2κ ) − ikzHz and ∂x(1 + k0χ/2κ )Hz − ikzHx are continuous across the interface.
These are the four conditions we require to determine the dispersion of the line wave to a more accurate approximation.
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Applying these four conditions to the expansions (B9) and (B11) we find the following 4 × 4 matrix representation of the
boundary conditions,⎛⎜⎜⎜⎜⎝

N (L)
1 β

(L)
1 χ (L) N (L)

2 β
(L)
2 χ (L) N (R)

1 β
(R)
1 χ (R) N (R)

2 β
(R)
2 χ (R)

N (L)
1 �

(L)
1 N (L)

2 �
(L)
2 −N (R)

1 �
(R)
1 −N (R)

2 �
(R)
2

−N (L)
1 (κ2 + k0κχ (L) ) −N (L)

2 (κ2 + k0κχ (L) ) N (R)
1 (κ2 + k0κχ (R) ) N (R)

2 (κ2 + k0κχ (R) )

N (L)
1 β

(L)
1

(
�

(L)
1 + k2

z

)
N (L)

2 β
(L)
2

(
�

(L)
2 + k2

z

)
N (R)

1 β
(R)
1

(
�

(R)
1 + k2

z

)
N (R)

2 β
(R)
2

(
�

(R)
2 + k2

z

)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

c(L)
1

c(L)
2

c(R)
1

c(R)
2

⎞⎟⎟⎟⎟⎠ = 0, (B12)

where �
(L,R)
1,2 = (1 + k0χ

(L,R)

2κ
)[ k0χ

(L,R)

2κ
[β (L,R)

1,2 ]2 − (κ2 + k0κχ (L,R) )]. The vanishing determinant of this matrix defines the disper-
sion relation of these modes,

det

⎛⎜⎜⎜⎜⎝
β

(L)
1 N (L)

1 χ (L) β
(L)
2 N (L)

2 χ (L) β
(R)
1 N (R)

1 χ (R) β
(R)
2 N (R)

2 χ (R)

N (L)
1 �

(L)
1 N (L)

2 �
(L)
2 −N (R)

1 �
(R)
1 −N (R)

2 �
(R)
2

−N (L)
1 (κ2 + k0κχ (L) ) −N (L)

2 (κ2 + k0κχ (L) ) N (R)
1 (κ2 + k0κχ (R) ) N (R)

2 (κ2 + k0κχ (R) )

β
(L)
1 N (L)

1

(
�

(L)
1 + k2

z

)
β

(L)
2 N (L)

2

(
�

(L)
2 + k2

z

)
β

(R)
1 N (R)

1

(
�

(R)
1 + k2

z

)
β

(R)
2 N (R)

2

(
�

(R)
2 + k2

z

)

⎞⎟⎟⎟⎟⎠ = 0, (B13)

which is the analytic expression for the more accurate dis-
persion relation shown in Figs. 3 and 4. Figure 6 shows—for
an arbitrarily chosen value of 
χ—that this expression re-
produces the results of the integral equation (13) with the
approximate kernel (16).

APPENDIX C: DETERMINING THE PROPAGATION FOR
A FIXED IMPEDANCE AND FREQUENCY

As discussed above, the theory we have developed is
naturally written as an eigenvalue problem for the average
impedance with the propagation constant kz, frequency k0, and
impedance contrast 
χ fixed. Although we developed this
theory to provide an analytic understanding of the line-wave
dispersion relation, it is also useful as a simple numerical
method to find dispersion relations for surface and line waves
on an arbitrary surface impedance distribution. However, in
many applications of this method it will be preferable to
find the propagation constant with the impedance distribution
fixed, rather than the reverse. There are several ways to solve

FIG. 6. Line-wave dispersion for 
χ = 3.209, with other pa-
rameters as in Fig. 3. The analytic expression (B13) reproduces the
result of using the approximate integral kernel K (1) given in Eq. (16).

this problem and here we give an example of the modifica-
tions necessary to find the propagation constant for a fixed
impedance profile. Our fundamental eigenvalue problem is
given in Eq. (14). As the equation is linear in the constant χ

(0)
b ,

the average impedance is the natural choice of the eigenvalue.
Meanwhile the equation is nonlinear in the propagation con-
stant kz. This makes finding kz for a fixed impedance a more
difficult problem.

Here we start by writing the eigenvalue problem (14) in
block matrix form,

[⎛⎜⎝ k2
0−k2

z

k0

√
k2+k2

z −k2
0

kkz

k0

√
k2+k2

z −k2
0

kkz

k0

√
k2+k2

z −k2
0

k2
0−k2

k0

√
k2+k2

z −k2
0

⎞⎟⎠
−

(
Fχ (x)F−1 0

0 Fχ (x)F−1

)](
H̃x

H̃z

)
= 0, (C1)

where, e.g., k is a diagonal matrix containing the values of the
wave number in the Fourier transform, and F is the discrete
Fourier transform operator. As the impedance and frequency
are fixed, our unknown kz is contained in the nonlinear de-
pendence of the first matrix on the left of (C1). To recast this
as an eigenvalue problem we perform a linear expansion of
the left-hand matrix in (C1) around a fixed value of the wave
vector Kz: kz ∼ Kz + δkz. This linear expansion is given by

1

k0

√
k2 + k2

z − k2
0

(
k2

0 − k2
z kkz

kkz k2
0 − k2

)
∼ m1 + δkzm2,

(C2)
where we have defined the two matrices m1 and m2 as follows:

m1 = 1

k0

√
k2 + K2

z − k2
0

(
k2

0 − K2
z kKz

kKz k2
0 − k2

)
,

m2 = 1

k0
(
k2 + K2

z − k2
0

)3/2

×
(−Kz

(
2k2 + K2

z − k2
0

)
k
(
k2 − k2

0

)
k
(
k2 − k2

0

) −Kz
(
k2

0 − k2
)). (C3)
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FIG. 7. Comparison between dispersion calculations carried out
using the exact eigenvalue problem for the background impedance
(13) and the approximate linearized problem (C4) for the shift
in the propagation constant. The dashed black line indicates the
value of the propagation constant Kz around which we expanded the
matrix.

In terms of these matrices the eigenvalue problem (C1) be-
comes a generalized eigenvalue problem,

(−m1 + X ) · v = δkzm2 · v, (C4)

where the eigenvector is given by vT = (H̃x, H̃z ) and the X
contains the reactance,

X =
(
Fχ (x)F−1 0

0 Fχ (x)F−1

)
. (C5)

Figure 7 shows the value of kz determined from the gener-
alized eigenvalue problem (C4), comparing the results with
those obtained from the method outlined in the main text.
The figure illustrates that there is around a 1% error in the
value of kz within a range of approximately |δkz/k0| < 0.5.
To improve accuracy for eigenvalues far from the expansion
point, a second series of calculations should be performed
where the expansion point is moved. This makes the error in kz

arbitrarily small at the price of a slower numerical calculation.
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