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Three-dimensional topological insulators support gapless Dirac fermion surface states whose rich topological
properties result from the interplay of symmetries and dimensionality. Their topological properties have been
extensively studied in systems of integer spatial dimension but the prospect of these surface electrons arranging
into structures of noninteger dimension like fractals remains unexplored. In this work, we investigate a class
of states arising from the coupling of surface Dirac fermions to a time-reversal symmetric fractal potential,
which breaks translation symmetry while retaining self-similarity. Employing large-scale exact diagonalization,
scaling analysis of the inverse participation ratio, and the box-counting method, we establish the onset of self-
similar Dirac fermions with fractal dimension for a symmetry-preserving surface potential with the geometry of
a Sierpiński carpet fractal with fractal dimension D ≈ 1.89. Dirac fractal surface states open a fruitful avenue
to explore exotic regimes of transport and quantum information storage in topological systems with fractal
dimensionality.

DOI: 10.1103/PhysRevB.108.155430

I. INTRODUCTION

Bloch’s theorem, a cornerstone of our understanding of
solid state behavior, dictates that single particle electronic
states in regular crystals are organized into electronic bands.
Bloch states also encode invaluable topological information
that underlies the classification of free fermion symmetry-
protected topological states [1–3]. Deviations from perfect
crystalline order are naturally present in any material, such
as those produced by disorder and lattice defects. However,
Bloch electrons remain a useful framework to characterize
the low energy properties of weakly correlated materials when
these effects are small [4]. On the other hand, it is fundamental
to inquire what types of novel electronic states could arise
when regular crystalline order is strongly violated, breaking
away from the paradigm of Bloch states. Are there systematic
ways to investigate electronic systems that lack translation
invariance, but nevertheless retain some degree of structure
beyond amorphous materials?

Fractals [5,6] are a rich arena in which to explore this
front. Interestingly, fractal geometries can lack translation
symmetry while retaining self-similarity and point group
symmetries, providing a promising framework to investigate
emerging self-similar quantum states which depart from well-
established properties of Bloch states. There is a long history
of theoretical investigation of transport in fractal geometries,
relating anomalous regimes of classical diffusion to the prop-
erties of the fractal [7–10], such as its fractal dimension.
Furthermore, experimental developments in recent years have
brought renewed interest in the phenomenon of quantum frac-
tality in electronic systems. For instance, the assembly of
Sierpiński gasket fractal networks on copper surfaces via de-
position of CO molecules produce surface states with fractal
dimension [11]. Quantum states with fractal dimensionality
open a venue to explore phenomena outside the realm of in-
teger dimensions, allowing for novel regimes of transport and
correlations [12–24]. Moreover, they provide a rich setting to

pursue new topological phenomena beyond topological Bloch
states.

Motivated by these developments, in this paper we in-
troduce and analyze a fractal system formed on the surface
of three-dimensional (3D) time-reversal invariant topologi-
cal insulators (TIs) [25–27] in order to probe the response
of surface Dirac fermions to a scalar potential with frac-
tal geometry, which respects the two key symmetries of 3D
TIs, namely time-reversal and charge conservation symme-
tries. Unlike Schrödinger electrons, Dirac fermions on the
surface of topological insulators are characterized by anoma-
lous properties such as spin-momentum locking and nontrivial
Berry phase. In this work, we analyze the electrons on the
TI surface subject to a time-reversal invariant scalar potential
V (r) that couples to electron density according to the HV =∑

σ=↑,↓
∫

drV (r) ψ†
σ (r)ψσ (r) and which has a self-similar

fractal structure, as depicted in Fig. 1 for a Sierpiński carpet.
The fractal geometry could be imposed on the surface of

3D TI by atomic/molecular deposition techniques which have
already been achieved on copper surfaces creating unconven-
tional states such as molecular graphene [28] and electrons
in a fractal Sierpiński geometry [11]. Nanopatterning [29–31]
techniques that induce surface potential with fractal geometry
could also open new pathways to design quantum states that
combine topological and fractal properties. As we show in this
work, emergent quantum fractality can be probed via scanning
tunneling microscopy (STM) through distinct features in the
local density of states (LDOS).

The lack of translation invariance combined with the pres-
ence of anomalous Dirac fermions on the TI surface makes
their theoretical study nontrivial even at the noninteracting
regime, which is the focus of this work. To address this
regime, we perform large-scale exact diagonalization (ED)
using finite element discretization. While lattice discretiza-
tion leads to fermion doubling [32], we show in Sec. II that
the mixing between the extra copies of Dirac fermions is
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FIG. 1. Schematic illustration of the experimental realization of
the surface of a 3D TI coupled with a Sierpiński carpet fractal. The
experimental setup consists (from top to bottom) of a thin film of 3D
TI grown on a substrate, scattering centers deposited on the 3D TI
surface that lead to surface electronic states with Sierpiński carpet
fractal geometry, and STM apparatus to measure the LDOS of the
surface states.

negligible provided the fractal potential is smooth on the scale
of the underlying lattice. This then provides a route to effec-
tively model the response of a single Dirac cone on the TI
surface to a fractal symmetry-preserving potential. Remark-
ably, our analysis uncovers Dirac quantum states that inherit
the fractal dimension of the geometrical fractal deposited on
the TI surface.

The focus of the present analysis of Dirac electrons in
fractal potentials without translation invariance goes beyond
the recent works exploring the interplay of the Dirac fermions
on the surface of 3D TI with a periodic lattice potential
[33,34]. We also stress that this regime is distinct from the
well-explored multifractality studied in the context of local-
ization transition in disordered electronic systems [35–46],
where the disorder induces multifractal scaling in the surface
state wave functions at the localization threshold. Although
disordered systems can support multifractal states that have
a set of fractal dimensions, here we present the possibility
of Dirac surface states exhibiting fractal scaling behavior
with a single scaling exponent that corresponds to a fractal
geometry of choice. Establishing the existence of this class
of Dirac fractals on TI surfaces is the main result of this
work. Additionally, our approach can be extended to 2D Dirac
materials such as monolayer graphene and graphene-based
heterostructures.

This paper is organized as follows. In Sec. II, we introduce
a model of the 3D TI surface coupled with a Sierpínski carpet
fractal potential. In Sec. III, we discuss the results of the exact
diagonalization of the model and then numerically estimate
the fractal dimension of the surface states by studying the scal-
ing of the inverse participation ratio (IPR) with system size.
The fractal dimension we obtain is further confirmed using
the box-counting method. We conclude with a discussion and
outlook in Sec. IV.

II. MODEL

In this section, we introduce a model of the 3D TI surface
imprinted with a Sierpiński carpet fractal geometry, as shown

in Fig. 1. The model consists of the surface Dirac cone of the
3D TI, described by a continuum Dirac Hamiltonian, coupled
with a time-reversal symmetric scalar potential V (r). The
resulting Hamiltonian takes the form

H = h̄vF (σ × p) + V (r)σ0, (1)

where vF is the Fermi velocity, p = (px, py) is the 2D momen-
tum, σ = (σx, σy) are the Pauli matrices, and σ0 is the identity
matrix. Here, the scalar potential V (r), also called the fractal
potential, consists of a network of potential wells of strength
V arranged in a Sierpiński carpet fractal geometry, as depicted
in Fig. 2.

The construction of the Sierpiński carpet fractal starts with
an L f × L f square region that can be considered as the zeroth
generation Sierpiński carpet, denoted G(0). The first gen-
eration carpet G(1) is obtained by dividing G(0) into nine
square subregions of size l1 = L f /3 and removing the central
square, as shown in Fig. 2(a). The second generation carpet
G(2) is then obtained by repeating the procedure on each
of the remaining eight squares: each square is divided into
nine squares of size l2 = L f /32 and the central square is
removed. In general, the G(n) generation carpet is obtained
from the G(n − 1) generation carpet by subdividing the ln−1-
sized squares from the previous step into nine squares of
size ln = L f /3n and removing all the central squares. The
Sierpiński carpet fractal is obtained recursively as the limit of
the sequence of G(n) as n tends to infinity. In practice we can
only consider finite generation carpets as an approximation
of the true fractal (up to n = 4 in our analysis) and take the
potential V (r) to have nonzero strength V < 0 only within the
region G(n), as shown in Fig. 2(b):

V (r) =
{

V < 0, r ∈ G(n),
0, otherwise (2)

and study the scaling properties of the system as n increases.
A defining characteristic of fractals is that they obey a

scaling law characterized by a noninteger fractal dimension
that remains constant over a range of length scales [5]. In
the simplest cases, the fractal dimension can be found using
a box counting argument by considering the number Nn of
boxes of linear size ln needed to cover a region of total linear
size L f . A two-dimensional L f × L f square, for example, can
be covered with Nn = (L f /ln)2 such boxes, while a three-
dimensional cube can be covered with (L f /ln)3 boxes. In
general, Nn = (L f /ln)D defines the Hausdorff dimension D of
the set. Applying the box-counting method to the generation
n Sierpiński carpet G(n), since by construction G(n) consists
of Nn = 8n squares of width

ln = L f

3n
, (3)

taking Nn = (L f /ln)
D

, gives the Hausdorff dimension of the
Sierpiński carpet fractal as D = ln 8/ ln 3 ≈ 1.893. We ob-
serve that for G(n) with fixed finite n, the fractal scaling
behavior will be seen for boxes of size ln < l < l1 and no
scaling behavior will be seen below the length scale ln.

Since the fractal potential lacks translational invariance,
a representation in terms of Bloch states is impossible. We,
therefore, resort to an ED analysis of the single particle
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FIG. 2. (a) Representation of the construction of the Sierpiński carpet fractal. G(0) is a 2D square that can be subdivided into nine square
units of the same size, from which the central unit is removed to obtain the G(1) unit of the Sierpiński carpet. The same procedure is then
applied to the remaining eight square units of G(1) to generate G(2). Similarly, G(n) can be constructed from G(0) by recursive application of
this procedure. (b) Schematic of the model given in Eq. (1) that couples the surface Dirac cone of 3D TI with the Sierpiński carpet fractal of
fourth generation. Here, the region on the 3D TI surface, shown in a darker color, which is the intersection of all the fractal units of generations
ranging from generations 1 to 4, is defined as the fractal region. It has a linear dimension Lf but has a Hausdorff dimension of 1.893. The
fractal potential V (r) takes a nonzero value V in the fractal region while zero otherwise. In this model, the fractal region is positioned away
from the boundary of the 3D TI surface by a finite distance, d

a = 3.

spectrum of the Hamiltonian Eq. (1), discretizing the Dirac
model on a finite lattice that covers the fractal region. We
chose a 249 × 249 square lattice with lattice constant a = 1,
on which it is simpler to define the Sierpiński carpet fractal.
The Dirac operator is discretized on this lattice using the finite
difference method. With this choice we are constrained to
look only at the first four generations of the Sierpiński carpet,
lying within a square region of linear dimension L f

a = 243
that we refer to as the fractal region below. Obtaining the
full eigenspectrum of this model requires performing ED on
an N × N lattice Hamiltonian matrix where N = 2 × 2492 =
124002 (the factor of 2 accounting for spin). We work with
boundary conditions that terminate the wave function at a
distance d � L f away from the fractal region, as shown in
Fig. 2.

In the absence of the fractal potential and with periodic
boundary conditions, our choice of lattice regularization for
the Dirac fermions leads to the periodic Bloch Hamiltonian

H0 = t[sin(kya)σx − sin(kxa)σy], (4)

where t = h̄vF
a . This Hamiltonian supports four Dirac cones at

momenta {(0, 0), (0, π/a), (π/a, 0), (π/a, π/a)} in the Bril-
louin zone, each of which is described by Eq. (1) with V = 0.
Since the regime of linearly dispersing Dirac fermions occurs
in the energy domain |E | � t , we restrict the analysis of the
effect of the fractal potential onto states within an effective
bandwidth W ∼ 2t . Furthermore, we require that W/V � 1,
so that the fractal potential does not exceed the energy scale
of the 3D TI bulk energy gap.

The appearance of an even number of Dirac cones in the
lattice Hamiltonian H0 is a familiar manifestation of fermion
doubling [32]. In order to capture the properties of the TI
surface described by a single component Dirac fermion, we
restrict the fractal potential to have negligible Fourier compo-
nents with |k| � 1

a , which ensures that the coupling between

different Dirac cones is negligible. We verified this condition
for fractal potentials smooth on the scale of the discrete lattice,
i.e., ln � a, as depicted in Fig. 3 that shows that the domi-
nant Fourier components of the fractal potential are peaked
at small momenta |k| � 1

a . In addition, the inversion sym-
metry of the Sierpiński carpet forces the Fourier components
with momenta k ∈ {(0, π/a), (π/a, 0), (π/a, π/a)} to van-
ish, thus further suppressing the coupling between different
Dirac cones.

FIG. 3. Fourier components (Vk), in units of t , of the G(4) fractal
potential given in Eq. (2) with V = −0.25 t , plotted in the first
Brillouin zone of a 2D square lattice with lattice constant a. The
dominating contribution comes from modes near zero momentum,
with the largest red peak of height Vk=0 = 0.14 t , shown in red. Note
that the z axis of the plot is cut off at |Vk| = 0.06 t in order to display
the details of the smaller peaks. The smallest length scale of G(4)
considered in this case is l4 = 3a.
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FIG. 4. (a) DOS plotted vs energy, measured in units of t = h̄v f

a , for a G(4) fractal potential of strength V = −0.25 t . The DOS vanishes
at ED = −0.14 t and the considered energy window is centered around E = ED with a width of W = 2t . (b) The q = 2 moment of IPR (P2)
of each individual state, as given by Eq. (5), plotted against energy, measured in units of t = h̄v f

a , for G(4) fractal potential of strengths
V = −0.25 t (blue) and V = 0 (red). The LDOS maps of the states corresponding to V = −0.25 t , that lie within an energy window of width
�E = 0.01 t , around E = 0.1 t > ED and E = −0.53 t < ED, as indicated by the arrows, are shown on the right.

III. METHODS AND RESULTS

In this section, we discuss the results of the ED analysis
of the model given in Eq. (1) and investigate the emergence
of the Dirac surface states with fractal dimensionality in the
presence of the potential V (r). We identify the dimension of
the states using two complementary approaches. In Sec. III A
the fractal scaling behavior of the surface states is numerically
established by analyzing the distribution of the IPR of the
single particle states and in Sec. III B we confirm these results
using the standard box counting applied to the local density
of states. In both approaches, we numerically observe the
occurrence of states with fractal dimension ≈1.89.

As we are regularizing the single Dirac cone using a square
lattice with lattice constant a and hopping parameter t , the
interplay between the fractal potential and kinetic effects is
captured by the dimensionless parameter V/t . The ED anal-
ysis [47] of the model is performed with a fractal potential
of strength V/t = −0.25, which corresponds to 12.5% of the
effective bandwidth W , for each of the first four generations
of the Sierpiński carpet, and the obtained eigenspectra are
studied to seek out the onset of fractality in the Dirac surface
states.

The large-scale diagonalization yields information about
the single particle eigenstates formed in the fractal region
over a wide range of energies. With this dense data, we
perform several lines of inquiry, starting with the analysis
of the density of states (DOS). We observe that the DOS
corresponding to a G(4) fractal potential shown in Fig. 4(a)
vanishes at nonzero energy ED ≈ −0.14t . This implies that
the fractal potential shifts the massless Dirac cone in energy to
ED = Vk=0, while leaving the time-reversal symmetry (TRS)
intact, so that the spectrum is formed by degenerate Kramers
pairs. We numerically confirm that the shift in energy ED is
directly proportional to V such that the Dirac point moves
down (up) in energy as V grows more negative (positive).
Additionally, we note that the particle hole symmetry of the
DOS about ED is broken when the potential is introduced.

To probe the localization properties of eigenstates ψ (r),
we employ the inverse participation ratio [48] IPRq =∑

i |ψ (ri )|2q, where i is summed over all the lattice points of

the system and q ∈ R. A uniform state has an IPR2 = 1/N ,
where N is the total number of sites, and in general 1/IPR2

can be considered as an effective number of sites Nf to which
the wave function is localized. For a state with an effective
fractal dimension, we expect the same scaling for Nf as for
the number of boxes needed to cover the fractal, i.e., Nf ∼
(L f /l )D, where l is the lattice constant. However, as discussed
in Sec. II, for a finite generation approximation of the fractal
G(n) the fractal scaling persists only for boxes of size ln
and above. To take this into account, we consider a coarse-
grained IPR obtained by averaging the wave function over the
length scale ln, dividing the L f sized square region shown in
Fig. 2(a) into ln-sized regions Ai, each of which is treated as
a coarse-grained lattice site. The coarse-grained probability
distribution is then defined as |ψ̄i|2 = ∑

j∈Ai
|ψ (r j )|2 and the

corresponding coarse-grained IPR is given by

Pq =
∑

i

|ψ̄i|2q, (5)

where the index i runs over all the the ln-sized regions denoted
by Ai. Wave function normalization ensures Pq=1 = 1, and
henceforth we focus on q > 1 modes.

In Fig. 4(b), we display the second moment of the IPR
(P2) numerically calculated for each of the eigenstates corre-
sponding to the G(4) fractal potential. The spectrum consists
of Kramers pairs of localized states characterized by high
IPR peaks in an energy window of width W = 2t around
ED. A striking feature is the appearance of two classes of
states separated by the scale ED. The manifold of states with
E > ED exhibits a characteristic LDOS distribution consistent
with the fractal, as shown in the top right LDOS map of
Fig. 4(b), where the probability of finding electrons outside
the fractal region, though nonzero, is very small. Importantly,
not all the individual eigenstates belonging to this class of
states above ED exhibit this characteristic LDOS distribution
with very small support from outside the fractal region. As
the wide range of heights shown by their corresponding IPR
peaks in Fig. 4(b) indicates, the individual eigenstates have
different IPR values and thereby different spatial distributions
of the LDOS. But interestingly, when we consider the LDOS
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map averaged over in energy that corresponds to the states
in an energy window of width �E ∼ 10−2 t , we find the
emergence of the characteristic LDOS profile shown in the
top right LDOS map of Fig. 4(b), which mirrors features
of the Sierpiński carpet fractal. This suggests that most of
the individual eigenstates above ED, in an energy window of
width �E , feature the geometry of the Sierpiński carpet, as
we confirm below.

The states with E < ED, on the other hand, show more
pronounced IPR peaks, with spatial profile shown by the
bottom right LDOS map of Fig. 4(b). These correspond to
electronic configurations with probability dominated by con-
tributions outside the fractal region. Such high IPR peaks
can be attributed to the fact that the area outside the fractal
region is smaller than the area of the fractal region when
approximated by finite generation sets G(n) for n � 4; for
sufficiently large n we, therefore, expect the IPR of states
with E > ED to eventually exceed that of states with E < ED.
Already at n � 4, we observe additional lower IPR peaks for
E < ED, which correspond to more delocalized states that
have a substantial weight in the fractal region in comparison
to the states with higher IPR peaks. In all cases, the states
with E < ED lack self-similarity, indicating the absence of
fractal scaling behavior. Importantly, we have observed the
same pattern described above for all four fractal generations
of the Sierpiński carpet fractal potential that we studied.

While the LDOS maps provide important visual guidance
of the onset of Dirac states with fractal dimension, we confirm
that the states with energy E > ED indeed inherit the scaling
properties of the Sierpiński carpet fractal by calculating their
fractal dimensions through IPR scaling in Sec. III A and box-
counting methods in Sec. III B.

A. Scaling of the IPR logarithm

In this section, we provide numerical evidence that states
with energy E > ED have a fractal dimension, using the
scaling of the coarse-grained IPR distribution. As alluded to
above, the inverse of the second moment IPR P2 ∼ 1/Nf can
be considered as the effective number of coarse-grained sites
occupied by the eigenstate. If the eigenstate is completely
uniform within the fractal region and vanishes outside of it,
the IPR coarse grained over boxes of size ln would then be
given by precisely 1/Nn with Nn being equal to the number
of boxes of size ln needed to cover the fractal region. In that
case, we, therefore, conclude that P2 = (L f /ln)−D, where D is
the fractal dimension of the Sierpiński carpet obtained using
the box-counting method and which can therefore alterna-
tively be obtained by scaling P2 with the generation n.

In general, the wave functions are nonuniform and non-
vanishing, but since Pq remains well defined we can obtain
an effective dimension of the wave functions by considering
how Pq scales with the generation of the fractal. If the wave
functions in a given energy window are scale invariant on a
range of length scales l with a � l � L f , the IPR distribu-
tion P over a set of states has a universal form independent
of system size and box size ln [48–50]. More precisely, the
distribution P[ln(Pq/Ptyp

q )] of the IPR logarithms scaled by a
typical IPR Ptyp

q (which can be taken to be the mean of the
IPR distribution) is independent of L f and ln. The scaling

properties of the IPR are contained in Ptyp
q , which in this

satisfies

Ptyp
q ∝

(
L f

ln

)−Dq (q−1)

, (6)

where Dq is the fractal dimension that can be different for
different q, which signals multifractality [51,52]. If Dq = D
for all q, the system is fractal and there is no multifractality.

To test if this scaling scenario holds for states with E >

ED, as suggested by the characteristic LDOS maps shown in
Fig. 4(b), we plot the ln P2 distribution for the states with
E > ED for the first four generations of the fractal potential,
as displayed at the top of Fig. 5(a). We note that each of
the distributions displays a sharp peak and narrow width,
indicating that most of the states above ED have similar spatial
support. Moreover, the distributions appear similar for all the
fractal generations and we confirm that they largely coincide
upon shifting along the horizontal axis. The same behavior is
also exhibited by P[ln P3].

In Fig. 5(b) we show the scaling of the corresponding
typical values Ptyp

2 (n) (given by the mean value of the dis-
tribution) with the linear dimension L f /ln and extract the
fractal dimension Dq from the scaling exponent according
to Eq. (6) [50,53–55]. From the regression slopes, we de-
termine that the states with E > ED have fractal dimension
D2 = 1.890 ± 0.005, which is very close to the dimension
of the Sierpiński carpet. We also check for possible multi-
fractal behavior [51] by calculating the q = 3 as well as q =
1.5 scaling exponents, which gives the corresponding fractal
dimensions, D3 = 1.86 ± 0.04 and D1.5 = 1.895 ± 0.008, as
shown in the Appendix. We are unable to check the scaling
behavior for q > 3 due to system size limitations. However,
since the fractal dimension of the Sierpiński carpet falls within
the confidence interval of the estimated value of D2, D1.5, and
D3, our findings strongly suggest that, for E > ED, the states
on the surface of the 3D time-reversal invariant topological
insulator are well localized in the fractal, thus inheriting the
fractal dimension of the Sierpiński carpet.

We similarly carry out the same IPR scaling analysis for
states with E < ED. The corresponding ln P2 distributions for
the first four generations of the fractal potential are plotted in
Fig. 5(a). In this case, we do not expect a scaling behavior
for low generations if the wave functions are localized to the
nonfractal region, because the box-counting dimension of the
nonfractal region converges to two only for sufficiently large
generations n � 4, as can be verified by direct computation.
Surprisingly, we nevertheless find that the scaling of the typ-
ical IPR values, again given by the mean of the distribution,
with L f /ln results in a scaling dimension D̄2 = 1.96 ± 0.09,
as shown in Fig. 5(b). This suggests that the typical wave
functions for states with E < ED are close to two dimensional
already for small generations, despite the presence of states
with high IPR peaks located on the tails of the distributions
shown at the bottom of Fig. 5(a), which appear to be localized
to the nonfractal region. This suggests that these typical states
have wave functions that leak considerably into the fractal
region. This additionally implies that although the IPR of the
fractal states with E > ED is on average lower than that of
the nonfractal states with E < ED, as the generation increases
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FIG. 5. (a) Distribution of the IPR logarithm P[ln P2] of the two classes of states separated by ED for each of the first four generations of
the Sierpiński carpet fractal potential of strength V = −0.25 t . The dashed line indicates the mean ln Ptyp

2 of P[ln P2] corresponding to E > ED

for each of the first four fractal generations. (b) The log-log scaling of the typical values ln Ptyp
2 shown in (a), with linear dimension Lf /ln = 3n.

The fractal dimensions D2 and D̄2 of the set of states with E > ED and E < ED, respectively, are given by the corresponding regression slopes.
(c) Ratio of the typical IPR values (Ptyp) corresponding to E > ED and E < ED, denoted as P f

2 and Pn f
2 , respectively, plotted as a function of

the fractal generation n.

the IPR of the fractal states will eventually exceed that of
the nonfractal states. This trend can be seen by comparing
peaks of the IPR distribution for fractal and nonfractal states,
as shown by vertical dashed lines in Fig. 5(a): the nonfractal
distribution can be seen to shift to the left (towards lower IPR)
faster than the fractal distributions as the generation increases.
This trend is explicitly verified in Fig. 5(c).

We also observe that the IPR distributions for states with
E < ED are broader than for states with E > ED, which re-
flects the wider range of IPR peaks for E < ED shown in
Fig. 4(b). The states localized to the nonfractal region cor-
responding to the highest IPR peaks, which we do not expect
to exhibit two-dimensional scaling at low generations, lie in
the higher tail ends of the IPR distributions, so these are
not typical states. For high generations n � 4, we expect the
dimension of these atypical states to tend to two and their IPR
to decrease as the area outside to the area inside the fractal
grows with n.

B. Box-counting method

In this section, we provide an alternative confirmation of
the fractal dimension of states with energy E > ED using the
box-counting method applied to the LDOS. The method is
based on counting the number N (r) of boxes of size r that

cover the LDOS profile of the wave function, leading to the
Minkowski-Bouligand (or the box-counting) dimension [56]

D = lim
r→0

ln[N (r)]

ln(1/r)
. (7)

To binarize the LDOS map we introduce a threshold α > 0,
such that values of LDOS below (above) α are set to zero
(one) in the binarized map. Varying α allows us to probe
whether the fractal dimension obtained via Eq. (7) is stable
over a range of threshold values. A threshold that is too low
or too high makes the binarized map sensitive to very short
distance features of the LDOS, for instance, due to the lattice
discretization. Additionally, the scaling given by Eq. (7) holds
[57,58] only in a finite range of box sizes r ∈ [rmin, rmax],
as it breaks down when box sizes are either too close to the
linear dimension of the system (this tends to overestimate the
dimension) or too small and pick up spurious short distance
behavior due to noise. Following Ref. [58], we determine this
finite range as follows. We start with all the possible box sizes
r. As we reduce r from the maximum possible box size, we
obtain a regression slope of two until r reaches rmax. Then
rmin is determined as the smallest box size that gives a linear
regression (with a maximum standard deviation of 10−3) in
the range r ∈ [rmin, rmax].
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FIG. 6. (a) Fractal dimension D of the states within an energy
window of width �E = 0.01t around E = 0.1 t , for a G(4) fractal
potential of strength V = −0.25 t , calculated using the box-counting
method, plotted against the binarization threshold α. The plateau
at D = 1.890 ± 0.004 indicates the fractal dimension for threshold
values ranging from 0.3 to 0.85. Note that the error bars of the
plot are smaller in size compared to the scale of the y axis. Inset
shows the log-log plot of N (r) vs 1/r corresponding to the threshold
α = 0.75. Here, rmin and rmax, respectively, denote the minimum and
maximum box sizes chosen to estimate the box-counting dimension
of the states. (b) Fractal dimensions of the states as a function of
the corresponding energy values for a G(4) Sierpiński carpet fractal
potential of strength V = −0.25 t , calculated using the box-counting
method, as shown in (a). The black dashed line in (a) and (b) marks
the fractal dimension of the Sierpiński carpet at D = 1.893.

In Fig. 6(a), we show the Minkowski-Bouligand dimen-
sion for an energy window of width �E = 0.01 t around
E = 0.1 t > ED for a G(4) fractal potential V = −0.25 t , and
for different values of the binarization threshold ranging from
0 to 1, where the LDOS values are rescaled such that their
minimum and maximum values are 0 and 1, respectively.
When the threshold α is set close to zero such that we pick
up contributions from even the shorter LDOS peaks, the
LDOS landscape appears homogeneous, thereby resulting in
a box-counting dimension of two. On increasing α further,
interestingly, we find a range of threshold α ∈ [0.3, 0.85] that
shows the emergence of a set of dominant LDOS peaks spread
across the fractal region, as indicated by the plateau at D =
1.890 ± 0.004, which characterizes the onset of fractal dimen-
sionality in good approximation with that of the Sierpiński

carpet fractal. Importantly, our approach reveals the stability
of the fractal scaling behavior over a considerable range of
threshold values.

Moreover, the box-counting method applied to a larger set
of states with E > ED, as shown in Fig. 6(b), reveals that
their fractal dimension is in good agreement with the fractal
dimension of the Sierpiński carpet. Therefore, combined with
the analysis of the IPR scaling discussed in Sec. III A, the
fractal dimension of the TI surface state obtained for the
Minkowski-Bouligand dimension provides strong evidence
that the Dirac surface states can inherit the scaling proper-
ties of the Sierpiński carpet fractal. Furthermore, we have
observed similar fractal dimensions for another value of the
fractal potential with V = −0.5t , suggesting that the observed
fractal character of the states is robust against varying the
strength of the fractal potential.

IV. DISCUSSION AND OUTLOOK

Time-reversal invariant 3D topological insulators are a
large class of symmetry-protected topological states with sur-
face Dirac fermions protected by time-reversal and charge
conservation symmetries, which provide a rich arena to ex-
plore exotic regimes of quantum matter. In this work, we used
large-scale exact diagonalization to study a class of Dirac

FIG. 7. Distribution of the IPR logarithm P[ln Pq] of the class of
states above ED, for each of the first four generations of the Sierpiński
carpet fractal potential of strength V = −0.25 t , for (a) q = 1.5 and
(b) q = 3. The log-log scaling of the corresponding typical values
ln Ptyp

q with the linear dimension Lf /ln = 3n are shown in the inset,
where the scaling dimensions D1.5 and D3 are given by the corre-
sponding regression slopes.
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surface states formed when a symmetry preserving one-body
potential with the geometry of a fractal is superimposed on the
surface of this topological material, opening another direction
to interrogate and explore topological fermionic states with
fractal properties.

The main finding of this study is the onset of Dirac
fractals—gapless Dirac states whose wave function ac-
quires the fractal dimension of the applied potential over a
wide range of energies. These results were obtained for a
symmetry-preserving one-body fractal potential having the
geometry of a Sierpiński carpet fractal. We have employed
two methods based on inverse participation ratio as well as
box counting, which show within numerical accuracy that
Dirac fermions on the TI surface acquire the fractal dimension
of Sierpiński carpet fractal D ≈ 1.89. Furthermore, our analy-
sis does not support the scenario of multifractality. Therefore,
this work presents numerical evidence of time-reversal invari-
ant Dirac surface states of fractal character, which expands the
realm of fractal quantum states beyond time-reversal broken
fractal Hofstadter states [59–61].

This research opens an interesting avenue to search for
exotic fractal quantum orders on the surface of topologi-
cal insulators. A fruitful direction would be to characterize
new regimes of charge and energy transport in such fractal
networks for the Sierpiński carpet and beyond. Moreover,
probing the response of such states’ perturbations that break
time-reversal and/or charge conservation symmetries could
offer new ways to understand fractionalization phenomena in
the fractal setting. Another direction would be to understand
the formation of fractal states in Weyl semimetals and, in this
context, to understand the role of weak disorder on surface
states [62,63]. The advent of new experimental platforms that

could induce a surface potential with fractal geometry using
techniques such as nanopatterning [29–31] and molecular
deposition [11,28], combined with probe techniques such as
scanning tunneling microscopy, offer promising experimental
landscapes to realize and probe Dirac fractals.
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APPENDIX: CONFIRMING THE ABSENCE
OF MULTIFRACTALITY

As shown in Fig. 5, the q = 2 scaling dimension Dq of the
manifold of Dirac surface states above the shifted Dirac point
ED is very close to the fractal dimension of the Sierpiński
carpet. While it strongly suggests that the surface states ex-
hibit fractal scaling behavior for q = 2, it does not rule out
the possibility of multifractality where the scaling exponent
Dq varies with q. Hence we calculate the scaling exponents
for q = 1.5 and q = 3 and we obtain D3 = 1.86 ± 0.04 and
D1.5 = 1.895 ± 0.008, as shown in Fig. 7. We can notice
that D2 ≈ D1.5 ≈ D3, which strongly indicates the absence of
multifractal behavior.
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