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Seebeck and Nernst effects of pseudospin-1 fermions in the α − T3 model under magnetic fields
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We numerically study the Seebeck and Nernst effects of pseudospin-1 fermions in the α − T3 model under
magnetic fields by combining the nonequilibrium Green’s function and the Landauer-Büttiker formalism with
the Stréda formula. In the α = 0 limit under strong magnetic fields, our results are in good agreement with
theoretical results of graphene. Distinguishing from the case of α = 0, we find three characteristic features and
discuss them in detail analytically for α > 0: (i) The inverse of the peak height of the Seebeck coefficient is

−e
ln 2kB

[np + sign(np)δ], with δ = 1/2 for α > 0 while δ = 0 for α = 0, where np denotes the npth peak near
the Dirac point. We show that δ is determined by the Hall plateau series. (ii) The highest peak of the Seebeck
coefficient is much higher than other peaks. This highest peak is ascribed to the vanishing of the Hall conductivity
due to the energy gap between the flat band and lowest Landau level. (iii) There exists a negative peak near the
Dirac point. We relate this unique behavior to the vanishing of the Hall conductivity near the Dirac point and the
isolated flat band. Meanwhile, the peak of the Nernst coefficient for α = 0 splits into double peaks by increasing
α and the height is enhanced. Additionally, the effects of temperatures, disorders, the strength of magnetic field,
and edge patterns are also investigated. These findings provide theoretical foundation for future experimental
studies on the thermoelectric properties based on the α − T3 materials.
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I. INTRODUCTION

After the experimental fabrication of graphene monolayer
in 2004 [1], relativistic materials have attracted extensive
attention due to their unique physical properties as well as
promising potential applications, such as the surface states
of topological insulators [2,3], Dirac, and Weyl semimetals
[4]. At low energy, the relativistic materials are described
effectively by Dirac-Weyl Hamiltonians with pseudospin-1/2
and have linear energy-momentum relations as particles in
high-energy physics which are constrained by the Poincaré
symmetry and the spin-statistics theorem. Recently, due to the
less restrictive symmetries in condensed matter systems, more
sophisticated low-energy fermionic excitations with gen-
eral pseudospins-S = 1, 3/2, 2, ... were proposed in lattices
with special space groups and point-symmetry groups [5].
These high pseudospin fermions have been studied widely,
especially for pseudospin S = 1 systems [6–9]. One of the
remarkable features of pseudospin S = 1 systems is the flat
band which could be realized in the dice lattice, Lieb lattice,
and kagome lattice [9]. On the other hand, the correlated
insulator and superconductivity in twisted bilayer graphene
rejuvenated the interest of condensed matter physicists to flat
or nearly flat bands [10,11]. As an adjustment of the dice
lattice, the α − T3 model provides an excellent platform to
study both the pseudospin-1/2 and pseudospin-1 quasipar-
ticles in a single model by varying the structure parameter
α which is associated with a continuously variable Berry
phase [12].

*duanwy@pku.edu.cn

As illustrated in Fig. 1(a), the α − T3 lattice has three
atomic sites per unit cell (A, B, and C). The rim sites A
and B form the graphene-type honeycomb lattice, and an
additional hub site C is at the center of the hexagon. The
hopping amplitudes of A − B and B − C sites are t cos ϕ and
t sin ϕ, respectively. The structure parameter α = tan ϕ is the
ratio between B − C and A − B hopping amplitudes, and the
hopping between A and C sites is forbidden. By varying the
structure parameter α continuously, this α − T3 lattice can
be modulated between graphene (α = 0) and the dice lattice
(α = 1), continuously. As shown in Fig. 1(b), the low-energy
band structure of the α − T3 model is comprised of a linear
Dirac cone and an additional flat band at the band center.
Experimentally, the pseudospin-1 systems and α − T3 model
have been proposed to be realized in various achievable sys-
tems, such as trilayers of the face-centred cubic lattice in the
[111] direction (for instance, SrTiO3/SrIrO3/SrTiO3) [7,13]
and cold atoms confined to an optical [12,14,15]. Recently,
Hg1−xCdxTe quantum wells at a critical doping have been re-
ported to map onto the α − T3 model with α = 1/

√
3 [16,17].

Due to the unique band structure with a flat band and
the α-dependent Berry phase, the α − T3 model exhibits un-
usual physical properties such as orbital susceptibility [12],
super-Klein tunneling [18–20], the super Andreev reflection
[21–23], linear and nonlinear optical response [8,24,25], dc
conductivity [26–28], unique topological phases [13,29–32],
Zitterbewegung [33], and Ruderman-Kittel-Kasuya-Yosida
interaction [34,35]. Furthermore, a series of investigations
has exploited the Floquet irradiated α − T3 lattices [30,36–
40]. Accordingly, valley-dependent transport properties have
been explored [41–46], making the α − T3 lattice promis-
ing for potential valleytronics applications. Especially in the
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FIG. 1. (a) The lattice structure of the α − T3 model, where A
(green circle), B (red circle), and C (blue circle) represent the three
sublattices. The hopping energy of A − B (orange solid line) is t cos ϕ

and of B − C (dashed blue line) is t sin ϕ. (b) The low-energy band
structure of the α − T3 model at a single valley. (c), (d) Schematic
diagrams for the four-terminal α − T3 devices with zigzag and arm-
chair edges of the lead-1,3 and the central region, respectively. The
dashed black rectangle denotes the central scattering region.

presence of external magnetic fields, the unconventional quan-
tum Hall effects [24,46–50] and magneto-optical conductivity
[8,17,24,51–53] have been investigated extensively. More-
over, studies have also been extended to include additional
mass terms [20,48,49,54–60] and strain variations [44,61] in
α − T3 lattices. The enhancement of thermoelectric properties
of a two-terminal α − T3 nanoribbon in the absence of mag-
netic field was recently reported [62]. However, studies on
the Seebeck and Nernst effects of pseudospin-1 fermions in
the α − T3 model under magnetic fields are still lacking. In
recent years, the Seebeck and Nernst coefficients of graphene
under magnetic fields have been widely investigated both
experimentally and theoretically [63–69]. Because of their
sensitivity to the ambipolar behavior of relativistic excitations,
the magnetothermoelectric measurements provide additional
characteristics of graphene, which complement the inade-
quacy of conductivity measurements. In comparison with
graphene, the Landau levels (LLs) of the α − T3 model show
spectral features [24]. Therefore, it is highly desirable to
investigate how the Seebeck and Nernst coefficients change
with α varying from 0 to 1 under a perpendicular magnetic
field. Furthermore, it is interesting to learn the effects of
temperatures, the strength of magnetic fields, and disorders.

In this paper, we study the Seebeck coefficient Sxx and
Nernst coefficient Sxy numerically by combing the nonequilib-
rium Green’s function and the Landauer-Büttiker formalism
with the Stréda formula in four-terminal α − T3 devices under
perpendicular magnetic fields. We perform an extensive study
of their dependence on the structure parameter α, tempera-
tures, the strength of disorders, the strength of magnetic fields,
and edge patterns. In the limit of α = 0, our results of Sxx

and Sxy are in good agreement with theoretical results [67–69]

and experimental observations [64–66] of graphene except
for the abnormal sign change around the zeroth LL of Sxx.
For α > 0, Seebeck coefficient Sxx and Nernst coefficient Sxy

change strikingly and present a general trend as increasing
the structure parameter α. In the quantum limit, we explain
the characteristics analytically. Moreover, our studies may
motivate further experimental investigations on magnetother-
moelectric properties of the α − T3 model.

The reminder of this paper is organized as follows. In
Sec. II, we show the tight-binding Hamiltonian. The See-
beck and Nernst coefficients are derived by combining the
nonequilibrium Green’s function and the Landauer-Büttiker
formalism with the Stréda formula. In Sec. III, the numerical
results of the Seebeck and Nernst coefficients are present,
including both the strong and weak magnetic field cases,
and several interesting features in the numerical results are
discussed analytically. Finally, conclusions are presented in
Sec. IV.

II. HAMILTONIAN AND FORMULA

We investigate four-terminal α − T3 devices as shown in
Figs. 1(c) and 1(d). In the presence of a perpendicular mag-
netic field, the tight-binding Hamiltonian considering only
nearest-neighbor hopping is given by [52]

H =
∑

〈i, j〉〈 j,k〉
(t cos ϕeiφi j c†

i c j + t sin ϕeiφ jk c†
j ck + H.c.)

+
∑

γ

wγ c†
γ cγ , (1)

where γ = i, j, k are the coordinates of sublattices A, B,
and C, respectively. c†

i, j,k (ci, j,k) are creation (annihilation)
operators at sublattices A, B, and C. H.c. is the Hermitian
conjugate. We consider on-site Anderson-type disorders only
in the central scattering regions as denoted by the black
dashed rectangles in Figs. 1(c) and 1(d). The on-site potential
wγ is assumed to distribute randomly between [−W/2,W/2],
with W as the strength of disorders. Due to the perpendic-
ular uniform magnetic field B, an additional phase φi j( jk) =
(2π/φ0)

∫ j(k)
i( j) A·dl is added in the hopping term by the Peierls

substitution with φ0 = h/e being the magnetic flux quantum,
where the vector potential A is described by (0, Bx, 0) in the
lead-1,3 and central scattering region, and by (−By, 0, 0) in
the lead-2,4. After the gauge transformation in the bound-
ary, the magnetic flux per hexagon � = BS0 = φφ0 with S0

the area of a hexagon and φ the strength of the magnetic
field. Here the Zeeman effect is neglected, so the spin is
degenerate.

For the multiterminal α − T3 device, the electric current
and the heat current in lead-n can be calculated from the
Landauer-Büttiker formula [63,70–72]

IC
n = −e

h

∑
m

∫
dETnm(E )[ fn(E ) − fm(E )],

IQ
n = 1

h

∑
m

∫
dE

(
E − En

F

)
Tnm(E )[ fn(E ) − fm(E )], (2)
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where fn(E ) is the Fermi-Dirac distribution function in lead-n
which can be written as

fn
(
E , En

F , Tn
) = 1

e(E−En
F )/kB (Tn+T ) + 1

,

En
F = EF − eVn is the Fermi energy, Vn is the external voltage

bias, and Tn + T is the temperature of lead-n. Under low volt-
age bias and small temperature gradient, it can be expanded to
the linear order in the Fermi energy and the temperature as

fn(E ) = f0(E ) + e
∂ f0

∂E
Vn + ∂ f0

∂T Tn, (3)

where f0 = 1/[e(E−EF )/kBT + 1] is the Fermi-Dirac distribu-
tion under zero voltage bias and zero temperature bias. There-
fore, in the linear response regime, the electric current IC =
(IC

1 , IC
2 , IC

3 , IC
4 )T and the heat current IQ = (IQ

1 , IQ
2 , IQ

3 , IQ
4 )T

can be expressed to linear order in V = (V1,V2,V3,V4)T and
Tn = (T1, T2, T3, T4)T as the Stréda formula [63,70–72],(

IC

IQ

)
=
(

e2L0 −eL1

−eL1 L2

)(
V

Tn/T

)
, (4)

where

Lη,nm = 1

h

∫
dE (E − EF )η

(
−∂ f0

∂E

)
Tnm(E ), η = 0, 1, 2.

(5)

At low temperature, the electric contribution to the heat cur-
rent dominates over the contribution of phonons, hence we
neglect the effect of phonons here. Using the nonequilibrium
Green’s function method, we get the transmission coefficient
Tnm(E ) = Tr[�nGr�mGa] from lead-m to lead-n in Eqs. (2)
and (5), where the linewidth functions �n(E ) = i[�r

n(E ) −
�a

n(E )]. In addition, the retarded Green’s function is Gr (E ) =
[Ga(E )]† = [EI − HC − ∑

n �r
n(E )]−1, where HC is the

Hamiltonian matrix in the central scattering region and I is the
identity matrix with the dimension equal to HC . The retarded
self-energy function �r

n(E ) = [�a
n(E )]† can be calculated by

�r
n(E ) = HC,ngr

n(E )Hn,C , where HC,n (Hn,C) is the coupling
from the central region (lead-n) to lead-n (central region) and
gr

n(E ) is the surface retarded Green’s function of the semi-
infinite lead-n which can be obtained by the recursive method
[73–76].

The transport coefficients measured in experiments are un-
der the condition IC = 0 [70], so we have

V = L−1
0 L1Tn/eT . (6)

As shown in Figs. 1(c) and 1(d), a temperature gradient �T
is applied between the longitudinal lead-1 and lead-3, i.e.,
T1/3 = T ± �T /2. This longitudinal temperature gradient in-
duces a longitudinal bias V1/3 and a transverse bias V2/4 by the
Lorentz force under a perpendicular magnetic field. Then the
Seebeck coefficient is defined as [77]

Sxx = − lim
�T →0

V1 − V3

�T

∣∣∣∣
IC=0

(7)

and the Nernst coefficient is defined as [77]

Sxy = − lim
�T →0

V2 − V4

�T

∣∣∣∣
IC=0

. (8)

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results of Seebeck
coefficient Sxx and Nernst coefficient Sxy as functions of the
Fermi energy EF for different structure parameters α. In the
numerical calculations, the energy is measured in the unit
of the hopping energy t . The widths of the zigzag α − T3

nanoribbon 3a0nz and that of armchair α − T3 nanoribbon√
3a0na are described by integers nz and na, respectively, with

a0 being the bond length. In the schematic diagram of the
four-terminal α − T3 device of Fig. 1(c), nz = 2 and na = 5.
In Fig. 1(d), na = 3 and nz = 3. The zigzag and armchair four-
terminal α − T3 devices are defined by the edge patterns along
the x direction, i.e., by the lead-1,3 and the central region.
Therefore, the four-terminal α − T3 devices in Figs. 1(c) and
1(d) are zigzag and armchair, respectively.

A. The influence of the structure parameter α

First, we study the influence of the structure parameter α

on the Seebeck and Nernst coefficients in the vicinity of the
Dirac point under a strong magnetic field. In this case, LLs
form. Seebeck and Nernst coefficients are independent of the
edge pattern of the nanoribbon, as will be proved later in this
section. Hence, there’s no harm to choose the four-terminal
zigzag device as shown in Fig. 1(c) to study the Seebeck and
Nernst effects. Figure 2 shows the Seebeck coefficient Sxx and
Nernst coefficient Sxy as functions of EF at different tempera-
tures kBT = 0.003t, 0.005t, and 0.007t for different structure
parameters α. For clarity, in Figs. 2(a1)–2(a4), the energy
bands are shown as background by the dashed gray line.
Generally, we can see in Fig. 2 that Sxx is odd, i.e., Sxx(EF ) =
−Sxx(−EF ) and Sxy is even, i.e., Sxy(EF ) = −Sxy(EF ). There-
fore, unless otherwise specifically stated, we mainly focus on
the regime of EF � 0 in the following.

For α = 0, the Nernst coefficient Sxy(EF ) shows peaks near
EF = 0 as displayed in Fig. 2(c1). Meanwhile, as shown in
Fig. 2(a1), our results of Sxx are in good agreement with
other theoretical results [67–69] and experimental observa-
tions [64–66] of graphene for both holes and electrons. That
is, Sxx shows positive (negative) peaks as Fermi energy EF

crossing the LLs on the hole (electron) side. However, our
results of the zeroth LL, consistent with other theoretical re-
sults [67–69], are different from the experimental observation
[64–66]. Similarly, with the higher LLs as shown in Fig. 2(a1),
the theoretical results of Sxx show positive (negative) peak
as Fermi energy EF < (>)0 and decrease when EF passes
the Dirac point increasingly [67–69]. On the contrary, in the
experimental observation, Sxx shows a negative (positive) peak
as Fermi energy EF < (>)0 and increases when EF passes the
Dirac point [64–66]. This pair of Sxx peaks near the zeroth LL
shows an opposite sign between the theoretical results [67–69]
and experimental observations [64–66].

Increasing α from zero, the Berry phase changes continu-
ously [12] and the valley-pseudospin degeneracies of LLs are
removed, which are shown clearly in the spectra by dashed
gray lines in Figs. 2(a2)–2(a4). When α = 1, the LLs of two
valley pseudospins are doubly degenerated again. Therefore,
as shown in Figs. 2(a2)–2(a4), when α increases from zero,
the peaks of the Seebeck coefficient Sxx split into two due to
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FIG. 2. (a1)–(a4) Seebeck coefficient Sxx , energy bands (dashed gray lines), and ±Ec (dash-dotted light blue lines). (c1)–(c4) Nernst
coefficient Sxy as functions of EF for α = 0, 0.5, 0.8, 1, which is noted on the right of each column in the four-terminal zigzag device [see
Fig. 1(c)]. Different curves are for different temperatures kBT = 0.003t, 0.005t, and 0.007t , respectively, as shown in the legend. (b1)–
(b4) Zoom-in of panels (a1)–(a4), respectively. The dash-dotted black lines in (b1)–(b4) and (c1)–(c4) are plotted by analytical results at
kBT = 0.007t . Other parameters are φ = 0.01, W = 0, and nz = na = 60.

the valley-pseudospin degeneracy being removed. The series
of peaks of one valley pseudospin shifts right and the series of
peaks of the other valley pseudospin moves to left. When α =
1, two adjacent peaks combine into a single peak again. That
is, similar to α = 0, when α > 0 the Seebeck coefficient Sxx

displays a series of positive (negative) peaks as Fermi energy
EF < (>)0 at the LLs as shown in Figs. 2(a2)–2(a4). On the
other hand, the peak of Sxy for α = 0 splits into double peaks
near the lowest LLs for α > 0 and the height is enhanced.

Interestingly, there exhibit three distinctive features for
α > 0 which are not present in the case of α = 0. First,
we investigate the regime of |EF | > Ec with Ec = (1 +
α)E0/

√
2(1 + α2), where E0 =

√
2
√

3φt . ±Ec are plotted by
dash-dotted light blue lines in Figs. 2(a1)–2(a4). Figure 3
shows the inverse of the peak height of Seebeck coefficient
Sxx (1/Speak

xx ) as a function of the peak number np with the
different structure parameters α = 0, 0.5, and 1, respectively.
The data points are obtained from the curves of kBT = 0.003t
in Figs. 2(a1)–2(a4). Here the peak number np denotes the
npth peak near the Dirac point in the regime of |EF | > Ec. We
can see that for α = 1 the inverse of the peak height of Sxx

is −e
ln 2kB

[np + sign(np)δ] with δ = 1/2 and sign(np) = 1 for
np > 0 and −1 for np < 0. This is similar to that in the con-
ventional metal [70]. On the other hand, for α = 0 the inverse
of the peak height of Sxx is −e

ln 2kB
[np + sign(np)δ] with δ = 0,

which is in a good agreement with the result of graphene in
Refs. [63,64]. It was considered that the pseudospin-related

Berry phase introduced the additional phase shift which in-
duced δ from 1/2 in the conventional metal to 0 in graphene
[63,64]. As is well-known that a characteristic feature of the
α − T3 model is that the Berry phase changes continuously
from π to 0 as increasing α from 0 to 1, it is natural to
ask how δ changes for intermediate value α between 0 and
1. Interestingly, Fig. 3 shows that for α = 0.5 the inverse of
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FIG. 3. The inverse of peak height of the Seebeck coefficients Sxx

as a function of the peak number np. These data points are obtained
from the curves of kBT = 0.003t in Fig. 2. The blue line is −e

kB
np/ ln 2

and the dashed black lines are −e
kB

[np + sign(np)/2]/ ln 2.
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the peak height of Sxx is −e
ln 2kB

[np + sign(np)δ] with δ = 1/2,
which is the same with α = 1 and independent of the variable
Berry phase.

Second, for lower Fermi energy, i.e.,Ec � |EF | � 0, we
can see the highest positive (negative) peak of Sxx as Fermi
energy EF < (>)0 in Figs. 2(b2)–2(b4), which is much higher
than other peaks in Figs. 2(a2)–2(a4). The enhancement of the
highest positive (negative) peak can be understood as being
due to the appearance of the bulk energy gap between the flat
band and lowest LL when α > 0. In other words, a large bias
is needed to balance the thermal forces on the charge carriers
in the bulk energy gap, therefore high Sxx is induced.

Finally, when close to the Dirac point, i.e., |EF | ∼ 0, the
sign of the peak near the flat band is opposite that of the
higher LLs peaks. That is, Sxx displays a negative (positive)
peak as Fermi energy EF < (>)0 near the flat band. As will be
illustrated analytically in the following, this opposite sign of
peaks of Sxx near the Dirac point is mainly due to the isolated
flat band, which was also noted by Ref. [62] in the absence of
magnetic field.

In the following subsection, we will present analytical dis-
cussions to explain these unique features in the α − T3 model
for α > 0.

B. Analytic discussion

To further investigate the characteristic signatures of the
α − T3 model for α > 0, we calculate Seebeck and Nernst
coefficients analytically by the low-energy effective Hamilto-
nian in the clean limit under strong magnetic field. In this limit
case, the distance between LLs is greater than the temperature
broadening, which is greater than the impurity broadening.
We consider a simple case in which the impurity scattering
rate � is constant. In the linear response regime, Seebeck and
Nernst coefficients can be given by the Kube-Stréda formula
[67]

S = σ̂−1α̂ =
⎛
⎝ σxxαxx+σxyαxy

σ 2
xx+σ 2

xy

σxxαxy−σxyαxx

σ 2
xx+σ 2

xy

σxyαxx−σxxαxy

σ 2
xx+σ 2

xy

σxxαxx+σxyαxy

σ 2
xx+σ 2

xy

⎞
⎠, (9)

where σ̂ is the electrical conductivity tensor and σ ji(EF , T ) =∫
dεσ ji(ε)(− ∂ f0(ε)

∂ε
), α̂ is the thermoelectric conductivity ten-

sor, and α ji(EF , T ) = −1
eT

∫
dεσ ji(ε)(ε − EF )(− ∂ f0(ε)

∂ε
). Con-

sidering the energy ε → 0, the longitudinal conductivity is

σxx(ε) = CA
F

�2

ε2 + �2
. (10)

CA
F is a constant and details about our calculations can be

found in the Appendixes. In the clean limit and T = 0, the
Hall conductivity in our systems is [24]

σxy(ε) =−sign(ε)2e2

h

(⌊
ε2

E2
0

+ 1

1 + α2

⌋
+
⌊

ε2

E2
0

+ α2

1 + α2

⌋)
.

(11)

Here, 	x
 is the integer part of x, which counts levels crossed
by ε. In the limiting case α = 0, the Hall plateaus are
1,3,5,7,. . . in units of −2e2/h, which are the same with rel-
ativistic graphene. In the other limiting case α = 1, the Hall

series is 0,2,4,6,. . ., again in units of −2e2/h. Intermediately,
for 0 < α < 1, the Hall series in units of −2e2/h is 0,1,2,3,. . .

In the regime of |EF | > Ec, because the conductivity σxy

plateaus and σxx vanishes, the contribution of σxy and αxy to
thermoelectric power is dominated. The Seebeck coefficient
in Eq. (9) is simplified to Sxx = αxy/σxy and the Nernst coeffi-
cient vanishes. When the Fermi energy is located at a LL, we
have σxy(ε) = σ<

xy for ε < EF and σxy(ε) = σ>
xy for ε > EF ,

where σ<(>)
xy are constants and could be obtained in Eq. (11).

Thus, the peak value of Sxx = −2 ln 2kB
e

σ>
xy−σ<

xy

σ>
xy+σ<

xy
is obtained by an-

alytical calculations. σxy, the inverse of the npth peak height of
Sxx, and the peak number np are shown in Table I. The function
relation between the inverse of the peak height of Sxx and the
peak number np, i.e., 1

Speak
xx

= −e
ln 2kB

[np + sign(np)δ] with δ = 0
for α = 0 and δ = 1/2 for α > 0, could be obtained again
analytically. Therefore, δ is dominated by the Hall plateau
series. As long as the temperature is low enough to remove the
valley-pseudospin degeneracy, δ is 1/2 for intermediate value
α between 0 and 1 as shown for α = 0.5 in Fig. 3. However,
because of the influence of temperatures [see Fig. 2(a3) for
α = 0.8 ], some peaks of Sxx may be valley-pseudospin dou-
ble degeneracy and some are not degenerated. Both the peak
height and peak number may be irregular. Hence, the inverse
of the peak height of Seebeck coefficient Sxx would not sat-
isfy the relation of −e

ln 2kB
[np + sign(np)δ]. We hope our results

could help to motivate further experimental observations and
clear up unnecessary controversies.

In the limit regime |EF | ∼ 0, because of the particular
LLs for α > 0 in α − T3 model, we have σxy(EF , T ) = 0
and αxy(EF , T ) = 0. Therefore, the Seebeck coefficient in
Eq. (9) is simplified to Sxx = αxx/σxx and the Nernst coeffi-
cient vanishes. On the other hand, due to the flat band for
α > 0 in the α − T3 model, considering the energy ε → 0,
the longitudinal conductivity is (details of calculation is in
Appendix C)

σxx(ε) = CA
F

�2

ε2 + �2
. (12)

As shown schematically by the dashed orange lines in
Figs. 4(a)–4(c), the negative (positive) peak of Sxx as Fermi
energy EF < (>)0 is due to the negative (positive) peak of
αxx. Comparing with the solid light blue line which is calcu-
lated by Eq. (9) confirms that αxx/σxx dominates in this limit
regime. Therefore, we find that the negative (positive) peak
of Sxx as Fermi energy EF < (>)0 is induced by both the
nonzero longitudinal conductivity because of the flat band and
σxy(EF , T ) = 0 for EF near the Dirac point.

In regime 0 � |EF | � Ec, due to the thermal broaden-
ing, σxy(EF , T ) vanishes faster than αxy(EF , T ) for α = 0.5
at kBT = 0.007t and φ = 0.01 as shown by the dotted yel-
low lines in Figs. 4(c)–4(e). This is the key point which
induces the huge positive peak of Sxx. As shown in Fig. 4(c),
the good agreement between the dotted yellow line and the
solid light blue line implies that αxy/σxy dominates in this
regime. In the mediate regime, Eq. (9) is necessary due to
both approximations αxx/σxx and αxy/σxy failing. The an-
alytical results by Eq. (9) are shown by the dash-dotted
black lines in Figs. 3(b1)–3(b4) and 3(c1)–3(c4) at kBT =
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TABLE I. The inverse of peak height of Sxx for α = 0, 0.5, 1 in the regime of EF > Ec, where Ec = (1 + α)E0/
√

2(1 + α2) and E0 =√
2
√

3φt .

σxy[−2e2/h] 1 3 5 7 . . .

α
=

0

1/Speak
xx [ −e

2 ln 2kB
] 2 4 6 . . . 1

Speak
xx

= −enp

ln 2kB

peak number np 1 2 3 . . .

σxy[−2e2/h] 2 4 6 8 . . .

α
=

1

1/Speak
xx [ −e

2 ln 2kB
] 3 5 7 . . . 1

Speak
xx

= −e(np+1/2)
ln 2kB

peak number np 1 2 3 . . .

σxy[−2e2/h] 1 2 3 4 . . .

1/Speak
xx [ −e

2 ln 2kB
] 3 5 7 . . . 1

Speak
xx

= −e(np+1/2)
ln 2kB

α
=

0.
5

peak number np 1 2 3 . . .

0.007t . For Sxx, the numerical results and analytical results
have good agreement. For Sxy, the results are consistent
qualitatively.

C. Effects of temperatures and disorders

Next, we explore the effect of temperatures. With the in-
crease of temperature, the amplitude of the highest positive
peak and the negative peak of Sxx with α > 0 decreases as
shown in Figs. 2(b2)–2(b4). Nevertheless, the other peaks
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(b)
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/e
] (c)
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1
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 [2
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e/

h]

(d)

-0.1 -0.05 0 0.05 0.1
E

F
[t] 

-2

0

2

xy
 [2

e2 /h
] 

(e)

FIG. 4. Analytical results in clean limit for α = 0.5 at kBT =
0.007t and φ = 0.01. (a) αxx , (b) σxx , (c) Sxx , (d) αxy, and (d) σxy.
The dashed orange line in (c) is calculated by αxx/σxx . The dotted
yellow line in (c) is calculated by αxy/σxy. The solid light blue line is
calculated by (σxxαxx + σxyαxy )/(σ 2

xx + σ 2
xy ).

only broaden and roughly remain unchanged in height, so
the valleys between the adjacent peaks rise in the regime of
EF < 0. By increasing the temperature kBT to exceed the
nearest LL spacing, the nearest peaks of Sxx overlap with
each other and finally merge together to form a larger peak as
shown in Fig. 2(a3). Meanwhile, in the case of α = 0, the tem-
perature effect on Nernst coefficient Sxy shown in Fig. 2(c1) is
similar to Sxx. In the case of α > 0, Figs. 2(c2)–2(c4) show
that the positions of the double peaks of Sxy shift towards the
Dirac point.

In addition, let us investigate the effect of disorders. Fig-
ure 5 shows the Seebeck coefficient Sxx and Nernst coefficient
Sxy as functions of EF for α = 0, 0.5, 1 with disorder strength
W = 0.1t, 0.3t, 0.5t, 0.8t in the four-terminal zigzag device
under strong magnetic field φ = 0.01. The results are calcu-
lated by averaging up to 500 random disorder configurations.
For α = 0, we can see from Fig. 5(a1) that the Seebeck coeffi-
cient Sxx is robust to disorders because of the existence of LLs,
except that the peak height is slightly decreased near the Dirac
point. On the other hand, as shown in Fig. 5(b1), disorders

-0.5

0

0.5

S
xx

 [2
k B

/e
]

=0
(a1)

-0.2 0 0.2
E

F
 [t]

0

0.5

1

1.5

S
xy

 [2
k B

/e
] (b1)

=0.5
(a2)

-0.2 0 0.2
E

F
 [t]

(b2)
w=0.1t
w=0.3t
w=0.5t
w=0.8t

=1
(a3)

-0.2 0 0.2
E

F
 [t]

(b3)

FIG. 5. (a1)–(a3) Seebeck coefficient Sxx and (b1)–(b3) Nernst
coefficient Sxy as functions of EF for α = 0, 0.5, 1 with disorder
strength W = 0.1t, 0.3t, 0.5t, 0.8t in the four-terminal zigzag device
[see Fig. 1(c)]. The insets in (a2) and (a3) are the zoom-in of (a2)
and (a3). The results are averaged over up to 500 random disorder
configurations. Other parameters are φ = 0.01, kBT = 0.003t , and
nz = na = 40.
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FIG. 6. Seebeck coefficient Sxx and Nernst coefficient Sxy as functions of EF for (a1)–(a3) α = 0, (b1)–(b3) α = 0.5, and (c1)–(c3) α = 1
under different magnetic fields φ = 0.0002, 0.002, 0.01 in the four-terminal zigzag device [see Fig. 1(c)]. The dashed gray lines are energy
bands. (d1-d3) and (e1)–(e3) are the zoom-in of (b1)–(b3) and (c1)–(c3), respectively. Other parameters are kBT = 0.003t , W = 0, and
nz = na = 60.

induce oscillations of the Nernst coefficient Sxy at each LL
energy except that the peak height is slightly decreased near
the Dirac point. This result of Sxy is in good agreement with
the theoretical results [67–69] and experimental observations
[64–66] of the Nernst coefficient in graphene. For α > 0,
the peak height of Sxx and the oscillation amplitude of Sxy

are decreased by increasing the strength of the disorder [see
Figs. 5(a2)–5(a3), 5(b2), and 5(b3)]. Especially, the highest
positive peak of Sxx and the double peaks near the Dirac point
of Sxy are suppressed obviously [see the insets of Figs. 5(a2),
5(a3), 5(b2), and 5(b3)]. It reveals that the bigger value α is,
the less robust the Seebeck and Nernst effect are.

D. Effects of the magnetic field strength φ and edge patterns

Finally, we examine the influence of the magnetic field
strength φ and edge patterns on the Seebeck coefficient Sxx

and Nernst coefficient Sxy. In Figs. 6 and 7, we plot Sxx and Sxy

as functions of EF under different magnetic fields for different
structure parameters α in zigzag and armchair devices, respec-
tively. For clarity, the energy bands are shown as background
by dashed gray lines for each α and φ. In the weak magnetic
field, because of the different band structures for the zigzag
and armchair nanoribbons, the Seebeck coefficient Sxx and
Nernst coefficient Sxy strongly depend on the edge patterns.
When EF < 0, the positive peaks of Sxx are irregular for the
armchair device while are still regularly distributed for the
zigzag device. On the other hand, Sxy oscillates around zero
differently for both the zigzag and armchair devices near the
Dirac point. When EF is far from the Dirac point, both Sxx

and Sxy tend to zero. By increasing the magnetic field, the
LLs are gradually formed from the Dirac point to the high EF .
As shown in the spectra of Figs. 6(a3), 6(b3), 6(c3), 7(a3),
7(b3), and 7(c3) under the high magnetic field φ = 0.01,

the LLs are completely formed for |EF | < 0.4. The Seebeck
and Nernst coefficients for zigzag and armchair devices are
independent of the edge patterns, although the spectra at the
edges dependent on the edge patterns. As shown in panels
(d1)–(d3) and (e1)–(e3) in both Figs. 6 and 7, the highest
positive peak and the negative peak near the Dirac point of
Sxx when EF < 0 for α > 0 exist even under weak magnetic
field because of the isolated flat band and the bulk energy gap
regardless of the edge pattern of the device. The amplitude of
the highest positive peak and negative peak of Sxx increases
when the magnetic field increases from weak to strong due to
the increasing of the band gap.

IV. CONCLUSION

In conclusion, by combining the nonequilibrium Green’s
function and the Landauer-Büttiker formalism with the Stréda
formula, Seebeck and Nernst effects of pseudospin-1 fermions
in four-terminal α − T3 devices under magnetic fields are
investigated numerically. It is shown that the Seebeck coef-
ficient Sxx is an odd function and Nernst coefficient is an
even function of the Fermi energy EF . Under strong magnetic
field, Sxx shows peaks when EF crosses the LLs and the peak
of Sxy for α = 0 splits into double peaks near the lowest
LLs for α > 0 as expected. What’s more, there show several
characteristic features of Sxx for α > 0. We discuss in detail
these interesting features analytically and their relations with
the corresponding band structures. In the regime |EF | > Ec,
we find that the inverse of the peak height of Sxx is −e

ln 2kB
[np +

sign(np)δ], with δ = 0 for α = 0 and δ = 1/2 for α > 0. We
show that δ is determined by the Hall plateau series. Then, in
the regime 0 � |EF | � Ec, there shows the highest positive
peak of Sxx in Figs. 2(b2)–2(b4), which is much higher than
other peaks in Figs. 2(a2)–2(a4). This highest positive peak
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FIG. 7. Seebeck coefficient Sxx and Nernst coefficient Sxy as functions of EF for (a1)–(a3) α = 0, (b1)–(b3) α = 0.5, (c1)–(c3) α = 1
under different magnetic fields φ = 0.0002, 0.002, 0.01 in the four-terminal armchair device [see in Fig. 1(d)]. The dashed gray lines are
energy bands. (d1-d3) and (e1)–(e3) are the zoom-in of (b1)–(b3) and (c1)–(c3), respectively. Other parameters are kBT = 0.003t , W = 0, and
nz = na = 60.

is ascribed to the vanishing of the Hall conductivity due to
the energy gap between the flat band and lowest LL. In addi-
tion, in the limit regime |EF | ∼ 0, there represents a negative
peak in Figs. 2(a2)–2(a4). We relate this unique behavior to
the vanishing of the Hall conductivity and the isolated flat
band.

By increasing temperature, the amplitude of the highest
positive peak and negative peak of Sxx with α > 0 decreases.
Nevertheless, the other peaks only broaden and roughly
remain unchanged in height. When the temperature kBT ex-
ceeds the nearest LL spacing, the nearest peaks of Sxx overlap
with each other and finally merge together to form a larger
peak. Moreover, we also investigate the effect of disorders
under strong magnetic field. Disorders induce oscillations of
the Nernst coefficient Sxy at higher LL energy. It is found that
by increasing α, the system is more sensitive to disorders.
Apart from the abnormal Seebeck coefficient near EF = 0,
our results for α = 0 are in good agreement with the theo-
retical results [67–69] and experimental observations [64–66]
in graphene.

Finally, we show that the Seebeck coefficient Sxx and
Nernst coefficient Sxy are strongly dependent on the edge
patterns under weak magnetic fields. When the magnetic field
increases from weak to strong, the results of Sxx and Sxy in
zigzag device and armchair devices tend to the same. We
hope these findings would provide a theoretical foundation for
future experimental studies on the thermoelectric properties of
materials based on the α − T3 model.
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APPENDIX A: LANDAU LEVELS AND WAVE FUNCTIONS
OF α − T3 MODEL UNDER STRONG MAGNETIC FIELD

The low-energy effective Hamiltonian of α − T3 under uni-
form magnetic field B = (0, 0, B) is [12]

H = vF

⎛
⎜⎜⎝

0 (sπx − iπy) cos(ϕ) 0

(sπx + iπy) cos(ϕ) 0 (sπx − iπy) sin(ϕ)

0 (sπx + iπy) sin(ϕ) 0

⎞
⎟⎟⎠, (A1)

where π = p + eA, with p being the electron momentum
operator and A the vector potential given by A = (0, Bx, 0)
in the Landau gauge. In general, [πi, π j] = −iεi jk h̄eBk with
i, j, k = (x, y, z). In this case, we have [πx, πy] = −ih̄eB. For

convenience, we define the magnetic length lB =
√

h̄
|eB| and

energy unit E0 =
√

2h̄vF
lB

=
√

2
√

3φt . Then the raising and
lowering ladder operators for the K valley are defined by

155428-8



SEEBECK AND NERNST EFFECTS OF PSEUDOSPIN-1 … PHYSICAL REVIEW B 108, 155428 (2023)

a = lB√
2h̄

(πx − iπy) and a† = lB√
2h̄

(πx + iπy), with [a, a†] = 1.

Their actions on the Fock states |n〉 are a|n〉 = √
n|n − 1〉

and a†|n〉 = √
n + 1|n + 1〉. The Hamiltonian of the K valley

could be written as

H = E0

⎛
⎜⎜⎝

0 a cos(ϕ) 0

a† cos(ϕ) 0 a sin(ϕ)

0 a† sin(ϕ) 0

⎞
⎟⎟⎠. (A2)

Similarly, the Hamiltonian of the K’ valley is obtained through
the substitution a → −a†. In summary, the eigenvalues are

E (n, λ, s, ky ) = λ
√

n + χsE0, (A3)

where n � 0 is the integer, λ = ± denotes the conductance
and valence band, s = ± represents the K/K’ valley, ky is the
good quantum number along y axis, χ+ = sin2(ϕ), and χ− =
cos2(ϕ). The corresponding wave functions are

|n, λ, s = +, ky〉 = eikyy√
Ly

1√
2

⎛
⎜⎜⎜⎝

√
n(1−χ+ )√

n+χ+
|n − 1〉

λ|n〉
√

(n+1)χ+√
n+χ+

|n + 1〉

⎞
⎟⎟⎟⎠ (A4)

and

|n, λ, s = −, ky〉 = eikyy√
Ly

1√
2

⎛
⎜⎜⎜⎝

√
(n+1)χ−√

n+χ−
|n + 1〉

−λ|n〉
√

n(1−χ− )√
n+χ−

|n − 1〉

⎞
⎟⎟⎟⎠. (A5)

For the flat band, the eigenvalues are

E (n, F, s, ky ) = 0. (A6)

The corresponding wave functions are

|n > 0, F, s = +, ky〉 = eikyy√
Ly

⎛
⎜⎜⎜⎝

√
(n+1)χ+√

n+χ+
|n − 1〉

0

−
√

n(1−χ+ )√
n+χ+

|n + 1〉

⎞
⎟⎟⎟⎠, (A7)

|n = 0, F, s = +, ky〉 = eikyy√
Ly

⎛
⎜⎜⎝

0

0

|0〉

⎞
⎟⎟⎠, (A8)

|n > 0, F, s = −, ky〉 = eikyy√
Ly

⎛
⎜⎜⎜⎝

−
√

n(1−χ− )√
n+χ−

|n + 1〉
0

√
(n+1)χ−√

n+χ−
|n − 1〉

⎞
⎟⎟⎟⎠, (A9)

and

|n = 0, F, s = −, ky〉 = eikyy√
Ly

⎛
⎜⎜⎝

|0〉
0

0

⎞
⎟⎟⎠. (A10)

APPENDIX B: MATRIX ELEMENTS
OF VELOCITY OPERATORS

The velocity operators are given by

vx = i

h̄
[H, x] = svF

⎛
⎜⎜⎝

0 cos(ϕ) 0

cos(ϕ) 0 sin(ϕ)

0 sin(ϕ) 0

⎞
⎟⎟⎠. (B1)

The matrix elements of velocity operators are

〈n, λ, s, ky|vx|n′, λ′, s′, k′
y〉 = vF δss′δkyk′

y

2

⎡
⎢⎢⎢⎢⎢⎣

(
λ′(1 − χs)

√
n√

(n + χs)
+ λχs

√
n′ + 1√

(n′ + χs)

)
δn−1,n′

+
(

λ(1 − χs)
√

n′
√

(n′ + χs)
+ λ′χs

√
n + 1√

(n + χs))

)
δn+1,n′

⎤
⎥⎥⎥⎥⎥⎦, (B2)

〈n, λ, s, ky|vx|n′ > 0, F, s′, k′
y〉 = vF δss′δkyk′

y√
2

[
λ
√

(1 − χs)χs
√

n′ + 1√
(n′ + χs)

δn+1,n′ − λ
√

(1 − χs)χs

√
n′

√
(n′ + χs)

δn−1,n′

]
, (B3)

and

〈n, λ, s, ky|vx|n′ = 0, F, s′, k′
y〉 = vF δss′δkyk′

y√
2

[λ
√

χsδn,n′=0]. (B4)

APPENDIX C: CONDUCTIVITY-THE KUBO-STREDA FORMULA

The conductivity can be calculated using the Kubo-Streda formula [78,79]

σxx(EF ) =
∫ +∞

−∞
dε

−df0(ε)

dε
σxx(ε), (C1)

with

σxx(ε) = e2h̄

4πL2
Tr〈vxA(ε)vxA(ε)〉, (C2)
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where A(ε) = i[G(ε + i�) − G(ε − i�)], G(ε ± i�) ≡ 1
ε−H±i� , and � characterize the impurity scattering rate (we assume that

� is constant for simplicity). Calculating the trace with eigenfunctions in Appendix A and matrix elements of velocity operators
in Appendix B, we obtain

σxx(ε) = e2

h
1

8π

2h̄2v2
F

l2
B

⎡
⎢⎢⎢⎣

∑
n�0,λλ′,s

(
λ′(1−χs )

√
n+1√

(n+1+χs )
+ λχs

√
n+1√

(n+χs )

)2
An,λ′,sAn+1,λ,s

+∑
n�0,λF,s

(1−χs )χs (n+2)
(n+1+χs ) An+1,F,sAn,λ,s + ∑

n�1,λF,s
(1−χs )χsn

(n+χs ) An,F,sAn+1,λ,s

+∑
λ,s χsAn′=0,F,sAn=0,λ,s

⎤
⎥⎥⎥⎦, (C3)

where An,λ/F,s(ε) = 2�
(ε−E (n,λ/F,s,ky )/E0 )2+�2 . Considering the energy ε → 0 and n = 0, the result is

σxx(ε) = CA
F

�2

ε2 + �2
, (C4)

where

CA
F = e2

h

1

2π

2h̄2v2
F

l2
B

⎡
⎣4 + ∑

n�0,λF,s
(1−χs )χs (n+2)

(n+1+χs )
1

(λ√
n+χs)2

+∑
n�1,λF,s

(1−χs )χsn
(n+χs )

1

(λ
√

n+1+χs )2

⎤
⎦. (C5)

For analytical calculation, we consider the leading order CA
F = e2

h
2
π

2h̄2v2
F

l2
B

.
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