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Controlling electric and magnetic Purcell effects in phosphorene via strain engineering
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We investigate the spontaneous emission lifetime of a quantum emitter near a substrate coated with phos-
phorene under the influence of uniaxial strain. We consider both electric dipole and magnetic dipole-mediated
spontaneous transitions from the excited to the ground state. The modeling of phosphorene is achieved by
employing a tight-binding model that goes beyond the usual low-energy description. We demonstrate that both
electric and magnetic decay rates can be widely tuned by the application of uniform strain, ranging from a
near-total suppression of the Purcell effect to a remarkable enhancement of more than 1300%, all due to
the high flexibility associated with the puckered lattice structure of phosphorene. We also unveil the use of
strain as a mechanism to tailor the most probable decay pathways of the emitted quanta. Our results show that
uniaxially strained phosphorene is an efficient and versatile material platform for the active control of light-matter
interactions thanks to its extraordinary optomechanical properties.
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I. INTRODUCTION

In a pioneering work, Purcell demonstrated that the
surrounding environment could drastically modify the spon-
taneous emission (SE) rate of an excited quantum system [1].
This effect occurs due to the modification of the local elec-
tromagnetic density of states and, consequently, the number
of available decay channels for the deexcitation of the emit-
ter. The engineering of the SE via the Purcell effect is an
accessible tool for probing the optical density of states, lead-
ing to a plethora of applications that run from the design
of efficient scintillators [2] and light-emitting diodes [3,4] to
single-photon sources [5,6]. The study of the Purcell effect
remains an active topic in nanophotonics and has been inves-
tigated for emitters near structures of distinct geometries and
materials [7–18].

Quantum emitters are confined systems with discrete elec-
tronic spectra subjected to radiative optical transitions. They
can either be atoms, molecules, nanoparticles, or even quan-
tum dots. For most quantum emitters, the decay from an
excited state to the ground one occurs via the electric dipole
(ED) transition [19]. There are, for example, a variety of
quantum dots that emit via ED transitions in wavelengths
ranging from 0.3 to 4.1 μm [20]. Nevertheless, the SE may
also occur due to magnetic dipole (MD) transitions [17]. Most
often, the MD contribution to the SE is weaker than the ED
one by a factor of α = 1/137 [19], so the electric Purcell
effect has usually been much more investigated in photonics
than its magnetic counterpart. However, recent progress in
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nanofabrication techniques has allowed for the design of new
nanostructures that enhance the MD contribution in relation
to the ED [21,22]. In addition, the SE of rare-earth ions [23]
and some suitably designed quantum dots [24] can also be
dominated by MD transitions. Depending on the emitter,
the wavelength of the MD transition may vary from 0.5 to
500 μm [22,24]. Recent studies on the magnetic Purcell effect
include emitters close to dielectric nanostructures [25], anti-
ferromagnets [26], and parity-time symmetric potentials [27],
but its full potential for applications is still largely unexplored.

The advent of two-dimensional (2D) materials, triggered
by the synthesis of graphene nearly two decades ago, has un-
locked a new venue in tailoring light-matter interactions down
to the nanoscale. In contrast to the usual three-dimensional
materials used in photonics, 2D materials possess an elec-
tronic structure that can be highly modified by external stimuli
with weak or moderate intensities, enabling unprecedented
control of light-matter interactions. For instance, the possibil-
ity of applying electromagnetic fields to control Casimir and
Casimir-Polder interactions on graphene and graphene-family
materials has been theoretically explored [28–34]. Similar
studies on the Purcell effect [35], near-field radiative heat
transfer [36,37], photonic spin Hall effect [38,39], and res-
onance energy transfer [40] have also been performed and,
despite the great level of tunability predicted in all these cases,
the application of strong external electromagnetic fields may
present practical difficulties. Furthermore, 2D materials are
experimentally used in nanophotonics [41–44], prompting the
search for novel methods to control their interaction with light.

Phosphorene is a monolayer of black phosphorus, first
synthesized in 2014 [45,46]. This atomically thin material has
emerged as an appealing platform for application in optics,
among other reasons, due to its anisotropic band structure
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and direct electronic energy gap [47–50]. Indeed, it was
shown that this anisotropy may cause nontrivial changes in
the sign of the Casimir-Lifshitz torque [51]. Some studies on
the ED SE close to phosphorene have also been carried out,
analyzing the behavior of emission with layer stacking and
twisting [52–55]. In addition, the anisotropic energy transfer
between quantum emitters in layered black phosphorus has
been investigated [56]. In contrast to some 2D materials, the
puckered lattice of phosphorene makes its electronic struc-
ture very sensible to strain [57–59], and its flexibility allows
for sustaining high-strain levels up to 30% [60,61]. When
subjected to uniaxial strain, which is usually implemented in
experiments [62,63], the energy band gap in phosphorene and
the Fermi velocity of the carriers are altered, which modifies
the anisotropic character of the material and results in a mod-
ification of its optical response and plasmonic properties [64].
Other 2D materials, such as graphene, possess a rigid band
structure that responds to uniform strain only at high threshold
values [65], hampering strain engineering for nanophotonic
applications. In view of this scenario, for these applica-
tions, phosphorene is singled out from other 2D materials,
hence motivating and justifying our choice for this particular
material.

By means of a more sophisticated tight-binding model that
goes beyond the low-energy description commonly used in
the framework of nanophotonics to model phosphorene lay-
ers [52,53,55], we are able to describe the modifications in
the material properties due to the application of a uniform
strain field. Indeed, we demonstrate that this methodological
progress, when applied in the context of nanophotonics, is
able to not only successfully describe the optomechanical
properties of phosphorene, but also unveil unknown optical
functionalities so far. Based on such a model, we demonstrate
that uniaxially strained phosphorene may affect the SE of
electric and magnetic dipole emitters, leading to a remarkable
suppression of almost 100% and enhancements of more than
1300% of the Purcell effect. We discuss the situations in which
the dipole moment is aligned parallel to the x (armchair),
y (zigzag), and z (perpendicular) directions, and confirm that
the intrinsic anisotropy of the phosphorene lattice implies the
dependence of the decay rate on the orientation of the electric
and magnetic dipoles. Finally, our findings attest that strain
can be employed to tailor the probabilities associated with the
different decay channels into which the photon can be emitted,
demonstrating the impact of the extraordinary optomechanical
properties of phosphorene in light-emission engineering.

II. THEORETICAL MODEL AND RESULTS

We use the tight-binding model for phosphorene devel-
oped in Refs. [48,50]. This model has been successfully
applied in the context of condensed matter physics to de-
scribe many of phosphorene’s remarkable properties, such
as its topological characteristics [57], the anisotropic nature
of its optical response [66,67], the quantum transport prop-
erties in the presence of disorder [68], and its mesoscopic
physics [69]. Using Harrison’s prescription, one can also in-
clude the effect of a uniform strain field in the model [57].
Previous studies on phosphorene applied to nanophoton-
ics used a low-energy description [70], simply including a

FIG. 1. Quantum emitter at distance d above a phosphorene
sheet grown on top of a substrate with permittivity εs(ω). The phos-
phorene sheet is under uniaxial strain (applied along the x direction,
in this figure) controlled by the substrate.

direction-dependent Fermi velocity [52,53,55], which cap-
tures the phosphorene’s anisotropic optical nature. Neverthe-
less, these models are insufficient to explore phosphorene’s
strain engineering, one of the prominent characteristics of the
material. The tight-binding model for strained phosphorene is
reviewed in Appendix A. As we discuss in the following, the
application of this tight-biding model allows for a successful
description of the optomechanical properties of phosphorene
and unveils the unique quantum emission functionalities that
can be harnessed by the presence of strain.

The optical conductivity of strained phosphorene mono-
layer can be computed from the tight-binding Hamiltonian
[Eq. (A1)], employing linear response theory [67,71]. Here
we neglect spatial dispersion, as supported by previous nu-
merical calculations using different 2D materials which shows
that this approximation accurately describes the Purcell effect
for the distance scales we are interested in this work [72].
Within these assumptions, one can write the constitutive
equation J(r, ω) = ←→

σ (ω, εμ) · E(r, ω), where E(r, ω) is the
amplitude of the oscillating electric field, J(r, ω) is the ampli-
tude of the induced oscillating charge current, and

←→
σ (ω, εμ) =

[
σxx(ω, εμ) 0

0 σyy(ω, εμ)

]
(1)

is the optical conductivity tensor of strained phosphorene.
In this expression, εμ (μ = x, y, z) is the uniform strain in
phosphorene applied along the μ direction. The tight-binding
model for phosphorene used here captures the behavior
of the optical properties within the frequency range h̄ω ∈
[0, 3.5] eV [73], which covers all emitter’s transition frequen-
cies that will be analyzed in what follows. In Appendix B,
we compute the optical conductivity of strained phosphorene
in different situations and provide more details on its validity
regime.

A. Electric dipole emission

We consider the system depicted in Fig. 1. The half space
z < 0 is composed of a homogeneous, isotropic, and non-
magnetic dielectric with permittivity εs(ω). On top of this
substrate (z = 0), a phosphorene sheet is placed. The substrate
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FIG. 2. Electric dipole Purcell factors as functions of the distance between the emitter and the phosphorene/SiC substrate. We considered
the uniaxial strain in the y direction with intensities εy = −20, −10, 0, 10, 20%. The emitter’s transition wavelengths are (a)–(c) 1.5 μm,
(d)–(f) 4.1 μm, and (g)–(i) 10 μm.

permits the mechanical application of uniaxial strain in the
phosphorene layer. We assume the upper medium z > 0 to
be vacuum, and an excited quantum emitter is located at
r0 = (0, 0, d ).

We first consider the quantum emitter as a two-level system
with an ED transition between the excited |e〉 and ground
|g〉 states with energy difference Ee − Eg = h̄ω0 = h̄k0c. The
electric Purcell factor (PF) is the modification in the SE rate
due to the presence of neighboring objects and can be written
as [74]

�(e)(r)

�
(e)
0

= 6πc

ω0
Im[ p̂ · G(e)(r, r, ω0) · p̂], (2)

where �
(e)
0 = |p|2ω3

0/3π h̄ε0c3 is the free-space SE rate of an
ED emitter, p is the emitter’s transition ED moment, p̂ =
p/|p|, and G(e)(r, r′, ω) is the electric dyadic Green function
of the system. One can evaluate the PF writing G(e)(r, r, ω)
in terms of the diagonal part of the reflection matrices [35].
With the knowledge of the optical conductivity of phospho-
rene and the electric permittivity of the substrate, one can
calculate the desired reflection coefficients by solving the
Maxwell equations with the appropriate boundary conditions
(see Appendix C). The expressions of the electric PFs, i.e.,
�(e)

x /�
(e)
0 , �(e)

y /�
(e)
0 , and �(e)

z /�
(e)
0 , for the cases of transition

ED moments parallel to the x (armchair), y (zigzag), and
z (perpendicular) directions, respectively, can be cast as [53]

�(e)
x

�
(e)
0

= 1 + 3

4πk0
Im

⎡
⎢⎣i

∫
d2k‖

e2i
√

k2
0−k2

‖ d

k2
‖
√

k2
0 − k2

‖

(
k2

y rss − k2
x

(
k2

0 − k2
‖
)

k2
0

rpp

)⎤
⎥⎦, (3)

�(e)
y

�
(e)
0

= 1 + 3

4πk0
Im

⎡
⎢⎣i

∫
d2k‖

e2i
√

k2
0−k2

‖ d

k2
‖
√

k2
0 − k2

‖

(
k2

x rss − k2
y

(
k2

0 − k2
‖
)

k2
0

rpp

)⎤
⎥⎦, (4)

�(e)
z

�
(e)
0

= 1 + 3

4πk3
0

Im

⎡
⎢⎣i

∫
d2k‖

k2
‖ e2i

√
k2

0−k2
‖ d√

k2
0 − k2

‖
rpp

⎤
⎥⎦, (5)

where rss and rpp are diagonal reflection coefficients (see
Appendix C) and k‖ = |k‖| = |kxx̂ + kyŷ|. Due to the

anisotropic nature of phosphorene, we obtain �(e)
x 	= �(e)

y .
Throughout this paper, we consider a silicon carbide (SiC)
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substrate and, in all results of the main text, we set the Fermi
energy of phosphorene at EF = 0.7 eV. The control of the
carrier’s density to keep the Fermi energy fixed can be done
by tuning the back-gate voltage [75].

In Fig. 2, we show the PFs as functions of the dis-
tance d between the emitter and the phosphorene/SiC
medium for different values of uniaxial strain: εy = −
20,−10, 0, 10, 20%. We consider emitters with ED tran-
sitions at three distinct wavelengths λ0 = 2πc/ω0, to wit,
1.5 μm, 4.1 μm, and 10 μm, with the first two values lying in
the near to mid-IR range reached by a wide variety of quantum
dots [20]. Emitters with longer wavelengths have already been
experimentally explored in the context of SE [76]. Comparing
the results corresponding to relaxed phosphorene sheets, one
can see that the longer the transition wavelengths, the more
pronounced the changes in the SE rates are, with the PFs
reaching values in excess of 105 when d = 10 nm. When
strain comes into play, the PFs may be dramatically modified,
particularly at small distances. As discussed in Appendix B,
the compressive uniaxial strain (εy < 0) enhances the Drude
weight and, consequently, the intraband contribution to the
optical conductivity. The opposite occurs in the case of tensile
strain (εy > 0), which decreases the Drude weight and the in-
traband contribution. In most frequency ranges, the interband
contribution presents the same behavior. It should be noticed
that for λ0 = 1.5 μm and λ0 = 4.1 μm, these patterns with
εy are also followed by the PFs: The electric PF increases
(decreases) with compressive (tensile) strain. The exception
occurs in the case of λ0 = 10 μm, in which the PFs reveal a
nonmonotonic behavior with strain εy. It is worth mentioning
that for εy = 20%, the bottom of the conduction band of phos-
phorene surpasses the value of 0.7 eV, and the Fermi energy
used in Fig. 2 becomes located inside the energy band gap. In
such a situation, the intraband term of the optical conductivity
disappears, thereby surviving only the interband contribution,
which produces abrupt reductions in the PFs. Finally, note
that all SE rates tend to the free-space value at large dis-
tances, and the associated PFs are barely affected by strain, as
expected.

To quantify the degree of control of the SE, we define


�(e)
ν =

�(e)
ν

∣∣
εx,y 	=0 − �(e)

ν

∣∣
εx,y=0

�
(e)
ν

∣∣
εx,y=0

, (6)

where �(e)
ν |εx,y 	=0 (�(e)

ν |εx,y=0) is the decay rate of the emitter
aligned parallel to the ν direction near the strained (relaxed)
phosphorene/SiC half space. The percentage variation in the
SE rates of the three emitters induced by strain applied in
the y direction for εy = ±20% as a function of separation
between the emitter and the phosphorene/SiC half space is
illustrated in Figs. 3(a)–3(c). We also show in Figs. 3(d)–3(f)
the percentage deviations as a function of εy for illustrative
fixed distances d , highlighting how versatile the application
of strain is in terms of controlling quantum emission in phos-
phorene. Indeed, these results unveil how the PFs behave as
the εy crosses over from a scenario where the intraband contri-
bution to optical conductivity dominates (uniaxial strain εy <

11.8%) to one in which the interband contribution dominates
(uniaxial strain εy > 11.8%). From these results, the signature
of the anisotropic nature of phosphorene becomes evident

FIG. 3. (a)–(c) Percentage variation in the electric PFs gener-
ated by the uniaxial strain along the y direction as a function of
the distance between the emitter and the phosphorene/SiC sub-
strate. (d)–(f) Percentage variation in the electric PFs as a function
of uniaxial strain along the y direction for different distances. (g)
Distance dmax at which the compressive strain εy = −20% has the
maximum effect on the electric PF as a function of its transition
wavelength λ0.

since 
�(e)
x 	= 
�(e)

y . We highlight that the electric PFs for
λ0 = 4.1 μm can be enhanced up to 1300% by compressive
strain εy = −20%. An inspection of Figs. 3(b) and 3(c) re-
veals that an ideal distance dmax between the emitter and the
phosphorene surface exists at which the strain εy = −20% has
a stronger impact on the electric PF, which increases with the
ED transition wavelength, as illustrated in Fig. 3(g). It is worth
mentioning that in Fig. 3(a), this optimal distance also exists,
but for separations dmax < 10 nm. However, this is not shown
in the plots because, at such short distances, spatial dispersion
can impact the optical conductivity [72], making the local
approximation in Eq. (1) not valid. In the case of tensile strain
εy = 20%, for which Fermi energy EF = 0.7 eV lies inside the
insulating gap, the PFs are reduced by a striking factor close to
100%, being nearly suppressed. In this situation, phosphorene
becomes invisible to the emitter, demonstrating that strain can
switch quantum emission on and off on demand. A residual
Purcell effect still occurs due to the presence of the SiC
substrate.
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FIG. 4. Magnetic dipole Purcell factors as functions of the distance between the emitter and the phosphorene/SiC substrate medium.
We considered the uniaxial strain in the y direction with intensities εy = −20, −10, 0, 10, 20%. The emitter’s transition wavelengths are
(a)–(c) 10 μm, (d)–(f) 150 μm, and (g)–(i) 300 μm.

Despite the inherent anisotropic character of phosphorene,
the effects of uniaxial strain along the x direction are qual-
itatively similar when compared to the previous ones. By
using an expression equivalent to Eq. (6), we can estimate the
relative modification in the SE generated by strain applied in
the x direction, as presented in Appendix D.

B. Magnetic dipole emission

We now discuss the magnetic Purcell effect. The setup is
similar to the one considered in Fig. 1. The difference is that
the emitter decays to the ground state mediated by an MD

transition. The magnetic PF can be obtained from [74]

�(m)(r)

�
(m)
0

= 6πc3

ω3
0

Im[m̂ · G(m)(r, r, ω0) · m̂]. (7)

In the previous relation, �
(m)
0 = μ0ω

3
0|m|2/3π h̄c3 is the free-

space SE rate of an MD emitter, m is the emitter’s transition
MD moment, m̂ = m/|m|, and G(m)(r, r′, ω0) is the magnetic
Green dyadic. Analogously to the electric case, one can also
express the magnetic PFs in terms of the diagonal part of the
reflection matrices, and the formulas corresponding to the MD
moments parallel to the x, y, and z directions are

�(m)
x

�
(m)
0

= 1 + 3

4πk0
Im

⎡
⎢⎣i

∫
d2k‖

e2i
√

k2
0−k2

‖ d

k2
‖
√

k2
0 − k2

‖

(
k2

y rpp − k2
x

(
k2

0 − k2
‖
)

k2
0
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)⎤
⎥⎦, (8)

�(m)
y

�
(m)
0

= 1 + 3

4πk0
Im

⎡
⎢⎣i

∫
d2k‖

e2i
√

k2
0−k2

‖ d

k2
‖
√

k2
0 − k2

‖

(
k2

x rpp − k2
y

(
k2

0 − k2
‖
)

k2
0

rss

)⎤
⎥⎦, (9)

�(m)
z

�
(m)
0

= 1 + 3

4πk3
0

Im

⎡
⎢⎣i

∫
d2k‖

k2
‖ e2i

√
k2

0−k2
‖ d√

k2
0 − k2

‖
rss

⎤
⎥⎦. (10)

Note that the final expressions for the magnetic PFs are very
similar to the electric ones, given in Eqs. (3)–(5), only requir-
ing the exchange rss ↔ rpp [27]. Likewise, �(m)

x 	= �(m)
y due

to the anisotropy of phosphorene.

In Fig. 4, we display the magnetic PFs as functions of
the distance between the emitter and the phosphorene/SiC
half space for different values of uniaxial strain, εy =
−20,−10, 0, 10, 20%, applied along the y direction. We
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FIG. 5. (a)–(c) Percentage variation in magnetic PFs generated
by the uniaxial strain along the y direction as a function of the
distance between the emitter and the phosphorene/SiC substrate.
(d)–(f) Percentage variation in the magnetic PFs as a function of
uniaxial strain along the y direction for different distances.

assume emitters with magnetic transition wavelengths λ0 =
10, 150, 300 μm. Usually, when examining the near-field
regime (d � λ0), the power-law dependence in (λ0/d ) for the
electric PF is different from that of the magnetic PF [74],
thereby requiring the use of magnetic emitters with larger
wavelengths to achieve similar values to those of the elec-
tric PF. The general behavior of the magnetic PFs presents
some similarities when compared to the electric one, showing
huge variations for small d . For larger d , the spontaneous
decay rates tend to the free-space value, as expected. Further-
more, compressive strains (εy < 0) enhance the magnetic PFs,
whereas tensile strains (εy > 0) diminish them. In this case,
however, the magnetic PFs obey the scaling law �(m)

ν /�
(m)
0 ∝

d−2 (ν = x, y, z) for small separations, which can be clearly
noticed in the plots with larger wavelengths (λ0 = 150 μm
and λ0 = 300 μm) and for strain values whose Fermi en-
ergy EF = 0.7 eV crosses the phosphorene bands (εx,y =
−20,−10, 0, 10%). It is noteworthy that for our choices of
ED transitions, we did not find any scaling law in this same
distance regime. We briefly mention that in the case of ED
emitters near graphene, it was shown that larger wavelength
values and small distance regimes also obey a scaling law of
the form �(e)/�

(e)
0 ∝ d−4 [35,77].

To quantify the change in the magnetic PFs produced by
strain, we define the quantity 
�(m)

ν analogous to Eq. (6).
Figure 5(a)–5(c) shows the results for the relative modification
on the magnetic PFs produced by compressive (tensile) strain
εy = −20%(20%). We also show in Figs. 5(d)–5(f) the rela-
tive modification on the magnetic PFs as a function of εy for
different distances d . Similar to the ED case, the magnetic PFs
present distinct behaviors with uniaxial strains for εy < 11.8%

(conductivity dominated by intraband term) and εy > 11.8%
(conductivity dominated by interband term). However, in con-
trast to what occurs in the case of the electric Purcell effect
in Figs. 3(a)–3(c), it can be seen that the peak structure in
Figs. 5(a)–5(c) disappears very fast as one increases the value
of λ0. In Appendix D, we included plots considering strain
along the x direction. In both situations, the tensile strain
may nearly suppress the magnetic PFs for small separations
between the emitter and the phosphorene/SiC medium. The
compressive strain along the two directions strongly enhances
the magnetic PFs for small distances d for the three wave-
lengths considered.

III. DECAY CHANNELS

Results portrayed in Figs. 2–5 demonstrate the potential
of manipulating the electric and magnetic PFs of an emitter
close to phosphorene/SiC by applying strain. To acquire more
physical insights into these results, we analyze the decay
channels of the emitted quanta in the specific case of dipoles
perpendicular to the phosphorene interface with strain applied
in the y direction. The outcome is qualitatively alike when
considering dipoles parallel to the surface and/or strain in the
x direction.

The relaxation process of an emitter in free space is fol-
lowed by a radiative emission into propagating (Prop) modes
detectable in the far field. When close to a given environ-
ment, other channels become accessible, especially in the
near-field regime [35,78]. For instance, the photon can be
emitted into total internal reflection (TIR) modes that show
up for k0 < k‖ < nsk0, where ns = Re[

√
εs/ε0] stands for the

medium refraction index. When losses are negligible, such
modes propagate within the substrate, but are evanescent in
vacuum. Another possibility is the emitter to deexcite by a
nonradiative process in which its energy is transferred directly
to the half space giving origin to lossy surface waves (LSWs).
They emerge when k‖  nsk0, their energy being quickly
damped and converted into heat. From Eq. (5), we can extract
the contributions of each channel to the decay rate as [35,78]

�
(e)
z,Prop

�
(e)
0

� 1 + 3

4πk3
0

∫ k0

0
dk‖

∫ 2π

0
dφ

k3
‖ Re

[
e2i

√
k2

0−k2
‖ d rpp

]
√

k2
0 − k2

‖
,

(11)

�
(e)
z,TIR

�
(e)
0

� 3

4πk3
0

∫ nsk0

k0

dk‖
∫ 2π

0
dφ

k3
‖e−2

√
k2
‖−k2

0 d Im[rpp]√
k2
‖ − k2

0

,

(12)

�
(e)
z,LSW

�
(e)
0

� 3

4πk3
0

∫ ∞

nsk0

dk‖
∫ 2π

0
dφ

k3
‖e−2

√
k2
‖−k2

0 d Im[rpp]√
k2
‖ − k2

0

.

(13)

In the case of the magnetic Purcell effect, the decay con-
tributions follow the aforementioned expressions with the
exchange rpp ↔ rss [see Eq. (10)]. The probabilities p(e)

z,Prop,

p(e)
z,TIR, and p(e)

z,Eva of energy emission in the different decay
channels are calculated by the ratio between the partial and
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FIG. 6. Decay channels probabilities of an ED as a function of
(a)–(c) the distance d for strain εy = −10, 0, 10%, and (d)–(f) the
uniaxial strain along the y direction for illustrative fixed distances.

the total rates. Similar decomposition can be done for dipoles
lying parallel to the x and y directions.

In Figs. 6(a)–6(c), we depict the decay probabilities as
functions of the distance d in order to uncover the role of
the different relaxation channels for an ED emitter. Each
plot refers to a transition wavelength (λ0 = 1.5, 4.1, and
10 μm), and different strain intensities along the y direction
(εy = −10, 0, 10%) are shown in each panel. As d increases,
the propagating modes become the dominant decay channel,
minimizing the effects of the interface on SE. This can be
clearly noticed for λ0 = 1.5 μm, in which case the decay via
propagating modes dominates. However, the same behavior
will also occur for the other wavelengths provided d is large
enough. Indeed, as d decreases, the propagating channel gets
progressively suppressed, giving rise to competition between
TIR and LSW modes. Moreover, the probabilities associated
with these decay channels may be highly influenced by strain
to the point where one may tune the relative dominance be-
tween TIR and LSW processes. For the transition wavelength
λ0 = 4.1 μm, this variation in the dominant decay channel
can be achieved for separations 20 � d � 100 nm, while
for λ0 = 10 μm, the corresponding range is 100 � d � 300
nm. Lastly, note that LSWs govern the SE in the near-field
regime (which also holds for λ0 = 1.5 μm in the extreme near
field). In Figs. 7(a)–7(c), we display the different relaxation
channels’ probabilities for the MD case for the transition
wavelengths λ0 = 10, 150, 300 μm. The main aspects of the
discussion follow analogously to the previous case, with the
difference that the distance scales for which each mode is
most relevant comprise larger values. In Figs. 6(d)–6(f) and
Figs. 7(d)–7(f), we show the decay channels’ probabilities of
an ED and an MD, respectively, as a function of uniaxial strain

FIG. 7. Decay channels probabilities of an MD as a function of
(a)–(c) the distance d for strain εy = −10, 0, 10%, and (d)–(f) the
uniaxial strain along the y direction for illustrative fixed distances.

along the y direction for fixed distances. For the two types of
dipoles, the probabilities associated with the TIR and LSW
channels are very tunable by uniaxial strain at the near field.
On the other hand, the Prop channel is slightly tunable for an
ED emitter and remains nearly unaffected in the case of an
MD emitter. Ultimately, Figs. 6 and 7 unveil the possibility
of controlling the preferable pathway of emitted energy in
the decay process via uniform uniaxial strain. It also shows
that at a fixed distance, emitters with larger wavelengths are
more prone to the control of spontaneous emission by strain
in phosphorene.

IV. CONCLUSIONS

In summary, we have applied a tight-binding approach
that goes beyond the low-energy description traditionally
used in nanophotonics to investigate spontaneous emission in
phosphorene layers. With this methodology, we demonstrate
remarkable external control over the electric and magnetic
Purcell effects by applying uniform strain. The application of
strain is also shown to control the different decay pathways
that contribute to SE. The use of high-strain levels is only
possible due to the great flexibility of the phosphorene sheet
that has its origins in its puckered lattice structure. The strain-
based approach to control quantum emission in phosphorene
is within the reach of state-of-the-art techniques [62,63], and
it is a clear advantage when compared to existing proposals
based on electromagnetic fields acting as external agents. We
hope that our results will not only allow for an alternative
method to tune spontaneous emission, but also be relevant in
developing new photonic devices, as the Purcell effect is a
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key mechanism in many quantum-optical applications such as
single-photon sources.
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APPENDIX A: TIGHT-BINDING MODEL OF
PHOSPHORENE

Throughout this work, we describe the electronic structure
of phosphorene by employing a simplified two-band tight-
binding model [48,50]. The inclusion of uniform strain is
done by using the Harrison prescription [57,59,79]. In short,
this model captures the behavior of the anisotropic spectra of
phosphorene with a uniform strain field. The Hamiltonian can
be cast into

H (2)
q =

[
Bqei(qa−qb)/2 Aq + Cqei(qa−qb)/2

A∗
q + C∗

q e−i(qa−qb)/2 Bqei(qa−qb)/2

]
, (A1)

where

Aq = t2 + t5e−iqa , (A2)

Bq = 4t4e−i(qa−qb)/2 cos
(qa

2

)
cos

(qb

2

)
, (A3)

Cq = 2eiqb/2 cos
(qb

2

)
(t1e−iqa + t3). (A4)

Here, qa = q · a, qb = q · b, where a = (4.580 Å)x̂ and b =
(3.320 Å)ŷ are lattice vectors of the unstrained phosphorene
monolayer and q is the electronic momentum. One can follow
the Harrison prescription and include the effect of strain in the
hopping amplitudes [79],

ti ≈ (
1 − 2αi

xεx − 2αi
yεy − 2αi

zεz
)
t0
i , (A5)

with t0
1 = −1.220, t0

2 = 3.665, t0
3 = −0.205, t0

4 = −0.105,
and t0

5 = −0.055 eV being hopping parameters of the
unstrained phosphorene [48,50], and αi

μ = (δi
μ/|δi|)2, where

δi are the ith hopping vectors: δ1 = (r0
1x, r0

1y, 0), δ2 = (−r0
2x,

0,−r0
2z ), δ3 = (−2r0

2x − r0
1x, r0

1y, 0), δ4 = (r0
1x + r0

2x, r0
1y,

−r0
2z ), and δ5 = (2r0

1x + r0
2x, 0,−r0

2z ). They are written
in terms of vectors r0

1 = (1.503, 1.660, 0) Å and
r0

2 = (0.786, 0, 2.140) Å. The parameter εμ is negative
(positive) for compressive (tensile) uniaxial strain along the
μ direction (μ = x, y, z).

In Fig. 8(a), we show how strain along the y direction mod-
ifies the energy spectra E (q) and the velocity of the carriers,
v(q) = h̄−1∇qE (q). The compressive strain (εy < 0) reduces
the energy gap of phosphorene at the � point and enhances
the modulus of the velocity of the carriers. On the other
hand, the tensile strain (εy > 0) enhances the energy gap of
the electronic spectra and reduces the velocity of the carriers.

FIG. 8. (a) The three panels represent the energy (top)
and velocities (bottom) of the carriers computed for differ-
ent values of uniaxial strain applied in the y direction, εy =
−20 (compressive), 0 (unstrained), 20 (tensile)%, obtained from the
two-bands model. The shaded region represents the band gap in en-
ergy spectra. The plots were done in the path q ∈ [Y : (0, π/|b|) →
� : (0, 0) → X : (π/|a|, 0)] of the Brillouin zone, shown in (b). In
the path Y → � (� → X ), we plotted the component vy (vx) of the
electronic velocity. (c) The band gap in energy spectra as a function
of uniaxial strain applied in three directions.

The behaviors of the energy spectra and the electronic velocity
with strain along the x direction are qualitatively similar, while
strain in the z direction produces an opposite effect, as can be
seen in Fig. 8(c).

APPENDIX B: OPTICAL CONDUCTIVITY

With Hamiltonian (A1), we can compute the matrix
elements of the optical conductivity tensor of strained phos-
phorene, written in Eq. (1). Generally, it is possible to express
the optical conductivity as a sum of two contributions, to wit,
σμ,μ(ω, εμ) = σ (Inter)

μ,μ (ω) + σ (Intra)
μ,μ (ω) [73,80]. The intraband

contribution is given by

σ (Intra)
μ,μ (ω) = iDμ,μ

h̄ω + iη1
, (B1)

where the Drude weight is

Dμ,μ = −gs
e2h̄

S

∑
n=1,2

∑
q

f ′
n,q 〈uq,n| v̂μ(q) |uq,n〉2 . (B2)
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FIG. 9. Drude weights Dx,x (solid red) and Dy,y (dashed blue) as
functions of the Fermi energy for distinct values of strain applied in
the y direction, εy = −20 (top), 0 (center), 20% (bottom). Again, the
shaded region represents the band gap in the energy spectra.

The interband contribution is obtained from the Kubo for-
mula [71],

σ (Inter)
μ,μ (ω) = igs

e2h̄

S

∑
q

| 〈uq,1| v̂μ(q) |uq,2〉 |2

Eq

×
[

fq,1 − fq,2

h̄ω + 
Eq + iη2
+ fq,1 − fq,2

h̄ω − 
Eq + iη2

]
,

(B3)

where |uq,1(2)〉 is the eigenvector of the Hamiltonian
(A1), associated with energy bands Eq,1(2), and

Eq = (Eq,2 − Eq,1). Furthermore, fq,1(2) = fFD(Eq,1(2)),

with fFD(E ) = { exp[(E − EF )/kBT ] + 1}−1
being the

Fermi-Dirac distribution. In Eq. (B2), we also defined
f ′
1(2),q = [∂ fFD(E )/∂E ]|E=Eq,1(2)

. The velocity operator in

the μ direction is given by v̂μ(q) = h̄−1∂H (2)
q /∂qμ, with

μ = x, y. In Eqs. (B2) and (B3), gs = 2 is the spin degeneracy
factor and S is the area of the phosphorene layer. We express
the results in terms of σ0 = e2/h̄. In Eq. (B1), η1 = h̄/(2τ )
and τ is the momentum relaxation time [81]. In Eq. (B3),
η2 is a small phenomenological quantity. In all the results
presented in this paper, we used T = 180 K, η1 = 25 meV,
and η2 = 25 meV [73,80,82,83].

FIG. 10. Real and imaginary parts of phosphorene’s optical con-
ductivity in the insulating regime (EF, inside energy gap) under the
effect of different uniaxial strains: εy = −20 (blue), 0 (red), and 20%
(gray). Dashed curves represent intraband contributions, dot-dashed
curves represent interband contributions, and solid lines represent the
total optical conductivity.

Now, we briefly discuss the optical conductivity in insulat-
ing and metallic cases. In Fig. 9, we show the Drude weight as
a function of the Fermi energy for different values of uniaxial
strain along the y direction. These plots illustrate how the
Drude weight can be well controlled by uniform strain, which
occurs as a direct consequence of the change in the velocities

FIG. 11. Real and imaginary parts of phosphorene’s optical con-
ductivity for EF = 0.7 eV under the effect of different strains: εy =
−20% (blue) (metallic), 0% (red) (metallic), and 20% (gray) (insu-
lating). Dashed curves represent intraband contributions, dot-dashed
curves represent interband contributions, and solid lines represent the
total optical conductivity.
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FIG. 12. Electric dipole Purcell factors �(e)
x /�

(e)
0 , �(e)

y /�
(e)
0 , and �(e)

z /�
(e)
0 as functions of the distance d between the emitter and the

phosphorene/SiC medium. Here, we considered the uniaxial strain in the x direction with intensities εx = −20, −10, 0, 10, 20%. The emitter’s
transition wavelengths are (a)–(c) 1.5 μm, (d)–(f) 4.1 μm, and (g)–(i) 10 μm.

FIG. 13. Magnetic dipole Purcell factors �(m)
x /�

(m)
0 , �(m)

y /�
(m)
0 , and �(m)

z /�
(m)
0 as functions of the distance d between the emitter and the

phosphorene/SiC medium. Here, we considered the uniaxial strain in the x direction with intensities εx = −20, −10, 0, 10, 20%. The emitter’s
transition wavelengths are (a)–(c) 10 μm, (d)–(f) 150 μm, and (g)–(i) 300 μm.
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FIG. 14. Percentage variation in electric PFs generated by the
uniaxial strain along the x direction as a function of the distance from
the emitter to the phosphorene/SiC medium. Solid (dashed) curves
show results for εx = 20% (−20%).

of the carriers due to the strain, as previously mentioned in
Fig. 8(a). In addition, we may separate two distinct situations,
depending on the Fermi energy. In the insulating case, EF lies
inside the energy gap (shaded region in Fig. 9) and the Drude
weight vanishes. Consequently, the intraband term does not
contribute to the optical conductivity. The metallic case occurs
when EF crosses a Bloch band of the phosphorene energy
spectra. In this situation, the Drude weight is nonzero and the
optical conductivity has contributions from both interband and
intraband terms.

In Fig. 10, we show the real and imaginary parts of the opti-
cal conductivity for the case of Fermi energy EF = (Eq=0,2 +
Eq=0,1)/2 lying inside the insulating band gap and different
values of εy. In this situation, σμ,μ(ω) = σ (Inter)

μ,μ (ω). For com-
parison, we show in Fig. 11 the same quantities, but for a fixed
Fermi energy, EF = 0.7 eV. For εy = −20% and εy = 0%
in Fig. 11, the Fermi energy crosses the electronic bands
of phosphorene and the system exhibits a metallic behavior,
such that σμ,μ(ω) = σ (Inter)

μ,μ (ω) + σ (Intra)
μ,μ (ω). For εy = 20%,

the bottom of the conduction band surpasses the Fermi energy
EF = 0.7 eV that enters into the energy gap region, thereby
vanishing the intraband contribution to the conductivity. From
these results, the possibility of controlling the optical re-
sponses of phosphorene by means of uniaxial strain becomes
evident. Typically, fixed Fermi energy can be maintained by

FIG. 15. Percentage variation in magnetic PFs generated by the
uniaxial strain along the x direction as a function of the distance from
the emitter to the phosphorene/SiC medium. Solid (dashed) curves
show results for εx = 20% (−20%).

controlling the carriers doping [35,84], which is possible by
tuning the back-gate voltage in the substrate [75].

The tight-binding model used in this work describes the
electronic properties of phosphorene at the top of the valence
band and the bottom of the conduction band near the � point
of the Brillouin zone. This region rules the optical conduc-
tivity within the frequency range h̄ω ∈ [0, 3.5] eV. At higher
frequencies, the optical properties are influenced by interband
transitions to excited Bloch bands [73] not described by the
model. The highest emitter frequency investigated in this work
is h̄ω0 = 0.82 eV (λ0 = 1.5 μm), comfortably lying inside the
energy range mentioned above. The uniaxial strain causes a
slight shift in this validity range, but it always encompasses
the emitter’s frequencies employed in this study.

APPENDIX C: REFLECTION COEFFICIENTS

In our system, the phosphorene sheet is grown on top of
a substrate of silicon carbide (SiC), whose electrical permit-
tivity can be modeled by a simple Drude-Lorentz model [85],

εSiC(ω)

ε0
= ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − iω/τSiC

)
, (C1)
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with ε∞ = 6.7, ωL = 182.7 × 1012 rad/s, ωT = 149.5 ×
1012 rad/s, and τ−1

SiC = 0.9 × 1012 rad/s.
The reflection coefficients of the phosphorene/SiC

medium can be derived by solving the Maxwell equa-
tions with proper boundary conditions [35,86]. Following
Ref. [35], we obtain the diagonal parts of the reflection
matrices,

rpp = 
T
+
L

− + �2


T+
L+ + �2
and rss = −
T

−
L
+ + �2


T+
L+ + �2
. (C2)

In both equations,


L
± = (kz,1ε2 ± kz,2ε1 + kz,1kz,2σL/ω)/ε0, (C3)


T
± = (kz,2μ1 ± kz,1μ2 + ωμ1μ2σT)/μ0, (C4)

�2 = −Z2
0 μ1μ2kz,1kz,2σ

2
LT/μ2

0. (C5)

In our system, medium 1 is the vacuum (ε1 = ε0, μ1 = μ0)
and medium 2 is the SiC substrate (ε2 = εSiC, μ2 = μ0). In

Eqs. (C3)–(C5), Z0 = √
μ0/ε0, kz,n =

√
k2

n − k2
‖ , k‖ = |k‖| =

|kxx̂ + kyŷ|, and kn = ω
√

εnμn (n = 1, 2). We have also de-
fined the optical conductivities in the reference frame of the
incident electromagnetic wave [35], so that σL = (k2

x σxx +
k2

y σyy)/k2
‖ , σT = (k2

y σxx + k2
x σyy)/k2

‖ , and σLT = kxky(σyy −

σxx )/k2
‖ , where σxx(yy) are given by Eqs. (B1)–(B3). We stress

that the inclusion of substrate in this work has conceptual
importance, allowing for the application of strain in the plane
of phosphorene. Nevertheless, the optical response in the
phosphorene/SiC half space is dominated by phosphorene.
The strain along the z direction cannot be controlled in the
setup proposed in Fig. 1.

APPENDIX D: PURCELL FACTORS FOR STRAINS
IN THE x DIRECTION

In Figs. 2 and 4, we presented the electric and magnetic
PFs as functions of the separation between the emitter and
the phosphorene/SiC half space for different values of uni-
axial strain applied along the y direction. Figures 12 and 13
contain the results for the electric and magnetic PFs, respec-
tively, when considering the uniaxial strain applied along the
x direction. Figures 14 and 15 present the percentage varia-
tion in the electric and magnetic PFs, respectively, generated
by the uniaxial strain along the x direction as functions of the
distance from the emitter to the phosphorene/SiC medium.
In both results, the compressive strain may strongly increase
the PFs, while the tensile strain nearly suppresses them. We
highlight the electric PF for λ0 = 4.1 μm that can be enhanced
up to almost 1000%.
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