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We propose a continuum model for the theoretical study of hybridized moiré excitons in transition-metal
dichalcogenides heterobilayers, and we use a variational method to solve the exciton wave function and calculate
the optical absorption spectrum. The exciton continuum model is built by the charge continuum model for
electrons and holes in moiré superlattices, thereby preserving the moiré periodicity and lattice symmetry from
the charge continuum model. The momentum-space shift of interlayer electron-hole distribution is included, and
thus the indirect nature of interlayer excitons is described. The spin and valley degrees of freedom and related
interactions are omitted, except for the spin-orbit energy splitting of A and B excitons. This continuum model
is applied to the simulation of optical absorption by hybridized moiré excitons in WSe2/WS2 and MoSe2/WS2

heterobilayers. Twist-angle and electric-field dependencies of absorption spectra are studied. Calculated spectra
are compared with experimental observations in the literature, and correspondences of signatures are found. The
deficiency and the potential of the present model are discussed.
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I. INTRODUCTION

Two-dimensional (2D) semiconducting materials, such as
transition-metal dichalcogenides (TMDCs), are promising to
be applied in future photonic and optoelectronic devices
[1–3]. Excitonic effects are critical for deciding the optical
properties of 2D semiconductors due to the reduction of
dielectric screening and the enhancement of quantum con-
finement [4,5]. Recently, moiré heterostructures stacked by
2D semiconducting materials with twisted angles or lattice
mismatches have been predicted theoretically and synthe-
sized experimentally. Emergent physical phenomena related
to the additional moiré degree of freedom have been observed
and discussed [6–10]. Exciton physics in this system is also
studied. Excitons in moiré heterostructures are modulated by
interlayer charge-transfer couplings and moiré periodic po-
tentials, which are formed by local atomic registry changes
[11–25]. Optical properties of excitons in 2D heterostructures
can be tuned by this additional moiré degree of freedom. The
applications of 2D layered materials are widened by this new
tunability.

An exciton is an electron-hole pair bound by Coulomb
attraction [4,5]. Excitonic signatures can be found in direct-
gap semiconductors and detected by optical spectroscopy. For
multilayer materials, excitons can be sorted as intralayer ex-
citons, where the electron and the hole are at the same layer,
and interlayer excitons, where the electron and the hole are at
different layers. In TMDC heterobilayers with type-II band
alignment, the lowest-energy excitation is contributed from
the interlayer exciton, which has a small electron-hole wave
function overlap [12,17]. Therefore, interlayer valence-to-
conduction band transition has a low oscillator strength, and
thus interlayer-exciton signatures are difficult to be observed
in absorption spectra. While there is no direct interlayer

exciton transition in TMDC heterobilayers, electron transfer
between conduction bands on each layer or hole transfer be-
tween valence bands on each layer could occur. The charge
transfer contributes to the formation of interlayer excitons.
In some situations, such as by applying a perpendicularly
electric field to tune the band gaps, the difference between
the optical transition energy of interlayer excitons and the
transition energy of intralayer excitons can be at the same
scale as the interlayer charge-transfer coupling. Hybridiza-
tion between interlayer excitons and intralayer excitons forms
hybrid excitons. These hybrid excitons borrow the oscillator
strength from the intralayer exciton, and thus they can be
observed in absorption spectra [26–28].

With the additional moiré degree of freedom in TMDC
heterobilayers, excitons become trapped by the moiré po-
tential, and the translational symmetry of the center-of-mass
(COM) motion of excitons becomes broken. The interlayer
charge-transfer coupling should also follow the same moiré
periodicity with the potential. If the physical properties of an
exciton are decided or strongly affected by this moiré degree
of freedom, the exciton can be called a moiré exciton [22–24].
Various theoretical methods have been proposed and applied
to the research of moiré excitons [29–44]. An effective con-
tinuum model which describes the COM motion of an exciton
being modulated by a periodic potential as the moiré potential
has been widely used to find exciton band structures and
exciton wave functions [30–32]. For more generalized con-
tinuum models [34,39,41,42], the interlayer charge-transfer
coupling is included. However, these models only describe the
COM motion of moiré excitons, such that the effect of moiré
periodicity on the internal motion of excitons has not been
discussed. A more sophisticated method is to apply atomistic
calculation with density-functional theory (DFT) to simulate
the hybridized moiré excitons [36–38,43]. However, since the
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unit cell for moiré superlattices is usually quite large, the
atomistic approach with DFT is expensive computationally.
A method to model impartially and simulate efficiently hy-
bridized moiré excitons is still lacking. It is the gap we intend
to fill in this work.

In this article, we provide an improved version of the exci-
ton continuum model to study the hybridized moiré excitons
in TMDC heterobilayers with lattice mismatches and small
twist angles. The exciton continuum model is written down
based on four conditions. First, the exciton continuum model
is built by the charge continuum model for electrons and holes
in moiré superlattices, thereby preserving the moiré periodic-
ity and lattice symmetry from the charge continuum model.
Second, the momentum-space shift of interlayer electron-hole
distribution is included, and thus the indirect nature of inter-
layer excitons is described. Third, the spin and valley degrees
of freedom and related interactions are omitted, except for
the spin-orbit energy splitting of A and B excitons. Forth,
in long moiré-wavelength and zero charge-transfer-coupling
limits, the exciton model and the optical absorption formula
can be reduced to the counterparts of an isolated exciton. A
variational method using Slater-type orbitals (STOs) as the
basis function is applied to the numerical solution of the
exciton continuum model. Optical absorption by hybridized
moiré excitons is studied with varying twist angles in small
degrees and varying out-of-plane electric fields to tune the
band-edge energy. Twist-angle-dependent and electric-field-
dependent absorption spectra of WSe2/WS2 and MoSe2/WS2

heterobilayers are simulated. A good correspondence between
the calculated spectra from this work and the experimentally
observed spectra from the literature is achieved. In Sec. II,
the exciton continuum model is derived based on the moiré
periodicity and the charge continuum model. The methods
to solve the exciton wave function and the optical transition
amplitude are also introduced. In Sec. III, the model is applied
to the simulation of twist-angle-dependent and electric-field-
dependent absorption spectra of WSe2/WS2 and MoSe2/WS2

heterobilayers. In Sec. IV, the applications and improvements
of this model in the future study are discussed, and the conclu-
sion is given. In Appendix B, matrix elements of the exciton
continuum model spanned by STO and plane-wave basis func-
tions are given.

II. THEORY

In this section, the continuum model for hybridized moiré
excitons in TMDC heterobilayers is derived, and the method
to calculate the exciton wave function and the optical spec-
trum is given. In Sec. II A, the geometry of moiré superlattices
and reciprocal lattices is illustrated, and the concept of moiré
Brillouin zone (MBZ) is introduced. In Sec. II B, the charge
continuum model and the many-body formulation are intro-
duced. The expression of screened Coulomb interaction in the
many-body Hamiltonian is also discussed. In Sec. II C, the
exciton continuum model is derived through the many-body
formulation. A transformation from electron and hole posi-
tion coordinates to exciton COM and internal coordinates is
applied to the continuum model. In Sec. II D, the variational

FIG. 1. (a) Schematic plot of the R-stacked heterobilayer with
lattice mismatch δ = 0.1 and a twisted angle θ = 3◦. (b) Schematic
plot of the Brillouin zone of the top monolayer (inside blue dash-
dotted hexagonal) and the Brillouin zone of the bottom monolayer
(inside orange dot hexagonal) of the R-stacked heterobilayer. The
filled zone is the MBZ of heterobilayers. (c) Energy-level diagram of
band edges at the top monolayer K1, K′

1 and band edges at the bottom
monolayer K2, K′

2 in R-stacked and H-stacked heterobilayers. (d) A
closer look at the MBZ of the heterobilayer and high-symmetry
points.

method is introduced to solve the exciton wave function. In
Sec. II E, the method to calculate the optical absorption spec-
trum is discussed.

A. Moiré superlattice and moiré Brillouin zone

There are two types of stacking for TMDC heterobilayers:
R-stacking and H-stacking. R-stacked TMDC heterobilayers
are stacking of two triangular lattices with near 0◦ rotation
and H-stacked TMDC heterobilayers are stacking with near
60◦ rotation [21]. Small twist-angle variants straying from
0◦ and 60◦ rotations can still be considered as R-stacked
and H-stacked heterobilayers. Schematic plots of the moiré
superlattice and MBZ of the R-stacked heterobilayer are illus-
trated in Figs. 1(a) and 1(b). The lattice constant of the moiré
superlattice aM as a function of twist angle θ and the lattice
mismatch δ = |a′

0 − a0|/a0, with a0, a′
0 the lattice constants

for the atomistic lattices, is given by [6,9]

aM = (1 + δ)a0√
2(1 + δ)(1 − cos θ ) + δ2

. (1)

The MBZ is built by the difference between reciprocal
vectors in the Brillouin zone of the top monolayer (in-
side blue dash-dot hexagonal) and the Brillouin zone of
the bottom monolayer (inside orange dot hexagonal), as
illustrated in Fig. 1(b). The moiré superlattice can be con-
sidered a triangular lattice with the unit cell containing
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local geometry. The primitive vectors of the moiré superlat-
tice can be defined as a1 = aM[(

√
3/2)ex + (1/2)ey], a2 =

aM[(−√
3/2)ex + (1/2)ey]. For the moiré reciprocal lattice,

the reciprocal primitive vectors can be defined by gi · a j =
2πδi j for i, j = 1, 2 and found to be g1 = √

3kM[(1/2)ex‘ +
(
√

3/2)ey], g2 = √
3kM[(−1/2)ex + (

√
3/2)ey], with kM =

4π/(3aM). A set of reciprocal primitive vectors can be de-
fined as g j = √

3kM[ex cos( jπ/3) + ey sin( jπ/3)], with j =
1, 2, . . . , 6. The vector connects between κ and γ is given by
κ1 = (2g1 − g2)/3 and the vector connects between κ ′ and γ

is given by κ2 = (g1 − 2g2)/3. These two vectors κ1 and κ2

can be assigned as reciprocal basis vectors. A set of recip-
rocal basis vectors can be defined as κ j = kM[ex cos(π/6 −
jπ/3) + ey sin(π/6 − jπ/3)], with j = 1, 2, . . . , 6. Part of
the reciprocal primitive and basis vectors are shown in
Fig. 1(d).

Energy-level diagrams of band edges on different lay-
ers with the same spin index on R-stacked and H-stacked
heterobilayers are illustrated in Fig. 1(c) [12]. Spin-orbit
coupling–induced (SOC-induced) energy-level splittings oc-
cur in both conduction bands and valence bands of both layers.
Due to the intrinsic spin-valley locking of TMDCs, the K and
K′ valleys with the same spin index have different band-edge
energies. As illustrated in Fig. 1(b), interlayer tunneling only
occurs among energy levels with the same types of lines (solid
line or dashed line). Optical transition is only allowed between
valence and conduction bands at the same valley (K1, K′

1,
K2, K′

2). Via this diagram and effective-mass-model param-
eters for TMDC monolayers, band-edge energies for different
intralayer or interlayer excitons in R-stacked or H-stacked
heterobilayers can be evaluated.

B. Charge continuum model

The many-body Hamiltonian for electrons and holes in
moiré superlattices including the electron-hole attraction is
given by

Ĥ =
∑

kk′,ll ′
[ĉ†

l,kH̃e,ll ′ (k, k′)ĉl ′,k′ + d̂†
l,kH̃h,ll ′ (k, k′)d̂l ′,k′]

+ 1

2S

∑
ll ′,q

W̃ll ′ (q)(�̂e,l,q�̂e,l ′,−q + �̂h,l,q�̂h,l ′,−q)

−1

S

∑
ll ′,q

W̃ll ′ (q)�̂e,l,q�̂h,l ′,−q, (2)

where ĉ†
l,k (ĉl,k) is the electron creation (annihilation) operator

at layer l with wave vector k, d̂†
l,k (d̂l,k) is the hole creation

(annihilation) operator, H̃c,ll ′ (k, k′) is the charge Hamilto-
nian with c = {e, h} the charge index indicating electrons and
holes, �̂e,l,q = ∑

k ĉ†
l,k+qĉl,k is the electron-density operator,

�̂h,l,q = ∑
k d̂†

l,k+qd̂l,k is the hole-density operator, S is the

area of the lattice, and W̃ll ′ (q) = ∫
e−iq·rWll ′ (r)d2r is the

screened Coulomb interaction. Note that we have ignored
the spin and valley degrees of freedom in this many-body
Hamiltonian.

The charge Hamiltonian in real space is related to the
charge Hamiltonian in k space through the Fourier transform

H̃c,ll ′ (k, k′) = ∫
e−i(k−k′ )·rHc,ll ′ (r)d2r and is given by [45]

Hc(r) =
(

hc,1(r) tc(r)

t∗
c (r) hc,2(r)

)
, (3)

where hc,l (r) is the layer-charge Hamiltonian of the lth layer
and te(r), th(r) is the interlayer tunneling coupling. The layer-
charge Hamiltonian is given by

hc,l (r) = εc,l − zcUl (r) + |p + zcκl |2
2mc,l

, (4)

where p = −i∇ is the momentum operator of the charge
particle, ze = − and zh = + are the charge parity, εc,l is the
band-edge energy, mc,l is the charge mass at layer l , Ul (r)
is the moiré potential. The moiré potential is given by the
harmonic-function form

Ul (r) = 2Vl

∑
j=1,3,5

cos(g j · r + ψl ), (5)

and the interlayer tunneling couplings are given by

te(r) = we(1 + eig1·r + eig2·r ), (6)

th(r) = wh(1 + e−ig1·r + e−ig2·r ), (7)

where Vl is the moiré potential depth at layer l , ψl is the phase
angle, and we (wh) are the electron (hole) interlayer-tunneling
coupling strength. In this work, the phase angle is always
chosen to be ψl = −(−1)lπ/2, such that the moiré potential
can be rewritten as Ul (r) = 2Vl (−1)l

∑
j=1,3,5 sin(g j · r).

The screened Coulomb potential is described by a modified
Rytova-Keldysh potential [46,47], which is written as

W̃ll ′ (q) = 2π

εll ′ (q)q
, (8)

where εll ′ (q) is the bilayer dielectric function determined by
intrinsic properties of heterobilayers. While there are many
formulations for the bilayer dielectric function [33,35,48–
51], here we use a simple form derived in Appendix A. The
intralayer and interlayer dielectric functions are given by

ε11(q) = κ0ε12(q)(
κ1+κ0

2 + r2q
)
eqd − (

κ1−κ0
2 + r2q

)
e−qd

, (9)

ε22(q) = κ0ε12(q)(
κ1+κ0

2 + r1q
)
eqd − (

κ1−κ0
2 + r1q

)
e−qd

, (10)

ε12(q) =
(

κ1 + κ0

2
+ r1q

)(
κ1 + κ0

2
+ r2q

)
eqd

κ0

−
(

κ1 − κ0

2
+ r1q

)(
κ1 − κ0

2
+ r2q

)
e−qd

κ0
, (11)

and ε21(q) = ε12(q), where κ1 is the dielectric constant out-
side the bilayer, κ0 is the dielectric constant inside the bilayer,
rl is the screening length on the lth layer, and d is the inter-
layer distance.

C. Exciton continuum model

An exciton state is assumed to be written as |XI〉 = X†
I |0〉,

where

X†
I =

∑
le,lh

∑
ke,kh


̃lelh,I (ke, kh)ĉ†
le,ke

d̂†
lh,kh

(12)

155424-3



YAO-WEN CHANG PHYSICAL REVIEW B 108, 155424 (2023)

is the exciton creation operator, |0〉 is the ground-state ket,
and 
̃I (ke, kh) is the exciton wave function. By the variation
method, δ[〈XI |Ĥ|XI〉 − λ(〈XI |XI〉 − 1)] = 0, an eigenvalue
equation can be derived as∑

k′
e,k

′
h

H̃X(ke, kh; k′
e, k′

h)
̃I (k′
e, k′

h) = εX,I
̃I (ke, kh), (13)

where H̃X(ke, kh; k′
e, k′

h) = 〈0| d̂lh,kh ĉle,keĤĉ†
l ′e,k′

e
d̂†

l ′h,k
′
h
|0〉 is

the momentum-space exciton Hamiltonian, and εX,I is the ex-
citon eigenenergy. The continuum model to describe excitons
in 2D moiré superlattices can be derived from the Fourier
transform of the momentum-space exciton Hamiltonian

HX(re, rh) = 1

N

∑
ke,kh

exp (ike · re) exp (ikh · rh)H̃X(ke + ke, kh + kh; ke, kh), (14)

and it is written as

HX(re, rh) =

⎛
⎜⎜⎜⎜⎝
H11(re, rh) 0 Th(re, rh) Te(re, rh)

0 H22(re, rh) T ∗
e (re, rh) T ∗

h (re, rh)

T ∗
h (re, rh) Te(re, rh) H12(re, rh) 0

T ∗
e (re, rh) Th(re, rh) 0 H21(re, rh)

⎞
⎟⎟⎟⎟⎠, (15)

where Te(re, rh) = te(re), Th(re, rh) = th(re) are interlayer charge-transfer couplings,

Hlelh (re, rh) = lelh +
∣∣pe − κle

∣∣2
2me,le

+
∣∣ph + κlh

∣∣2
2mh,lh

+ Ule (re) − Ulh (rh) − Wlelh (reh), (16)

is the layer-exciton Hamiltonian, lelh = εe,le + εh,lh is the band-gap energy, and Wlelh (r) = ∫
eik·rW̃ (k)d2k/(2π )2 the screened

Coulomb potential. The exciton continuum model can be reformulated by the coordinate transformation from electron posi-
tion and hole position coordinates to exciton COM and internal coordinates, R = γe,le re + γh,lh rh, r = re − rh, with γe,le =
me,le/(me,le + mh,lh ), γh,lh = mh,lh/(me,le + mh,lh ), which leads to the following transformation for momentums pe = γe,le P + p,
ph = γh,lh P − p, with P the COM momentum and p the internal momentum. The same method has been used in Ref. [52]. The
reciprocal basis vectors are also applied by the coordinate transformation

Klelh = κle − κlh , κlelh = γh,lhκle + γe,leκlh , (17)

with Klelh the COM reciprocal basis vector and κlelh the internal reciprocal basis vector. The exciton Hamiltonian can be rewritten
as

HX(R, r) =

⎛
⎜⎜⎜⎜⎝
H11(R, r) 0 Th(R, r) Te(R, r)

0 H22(R, r) T ∗
e (R, r) T ∗

h (R, r)

T ∗
h (R, r) Te(R, r) H12(R, r) 0

T ∗
e (R, r) Th(R, r) 0 H21(R, r)

⎞
⎟⎟⎟⎟⎠, (18)

where

Te(R, r) = we{1 + exp [ig1 · (R + γh,lh r)] + exp [ig2 · (R + γh,lh r)]}, (19)

Th(R, r) = wh{1 + exp [−ig1 · (R − γe,le r)] + exp [−ig2 · (R − γe,le r)]}, (20)

Hlelh (R, r) = lelh +
∣∣P − Klelh

∣∣2
2mX,lelh

+
∣∣p − κlelh

∣∣2
2μX,lelh

+ Vlelh (R, r) − Wlelh (r), (21)

with mX,lelh the exciton mass, μX,lelh the reduced mass, and
Vlelh (R, r) the exciton moiré potential. The exciton mass and
the reduced mass are given by

mX,lelh = me,le + mh,lh , μX,lelh = me,le mh,lh

mX,lelh

. (22)

The exciton moiré potential is a combination of the electron
moiré potential and the hole moiré potential. The exciton
moiré potential is given by

Vlelh (R, r) = Ule (R + γh,lh r) − Ulh (R − γe,le r). (23)

Note that the exciton band minimum is centered at Klelh =
κle − κlh . For intralayer excitons le = lh = l thus Klelh = 0,
the exciton band minimum locates at the γ point in MBZ.
For the interlayer exciton, le = 1, lh = 2 or le = 2, lh =
l thus Klelh = ±(κ2 − κ1), the exciton band minimum lo-
cates at one of the κ , κ ′ points in the MBZ. Based on
Fig. 1(b), the momentum shift of interlayer excitons comes
from the momentum difference between K1 (K′

1) and K2

(K′
2) points on the Brillouin zones of the top and bottom

layers. Therefore, the intralayer exciton is assigned as a direct
exciton and the interlayer exciton is assigned as an indirect
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exciton. Optical transitions only occur for intralayer exci-
tons located at K = 0, which is the γ point on the MBZ of
excitons.

It is worth mentioning that, by Taylor expansion of the
internal coordinate, the exciton moiré potential can be approx-
imated as

Vlelh (R, r) � Ule (R) + γh,lh r · ∇RUle (R)

− Ulh (R) + γe,le r · ∇RUlh (R). (24)

For intralayer excitons, le = lh = l and ψl = −(−1)lπ/2 are
used, and the exciton moiré potential becomes

Vll (R, r) � 2Vl (−1)l
∑

j=1,3,5

(g j · r) cos(g j · R). (25)

On the other hand, for interlayer excitons, le = 2 and lh = 1,
the exciton moiré potential becomes

V21(R, r) � 2(V1 + V2)
∑

j=1,3,5

sin(g j · R). (26)

Therefore, exciton moiré potentials for intralayer excitons
and interlayer excitons are different. Additionally, the exciton
moiré potential jointly couples the COM motion and the in-
ternal motion. The COM wave function and the internal wave
function of an intralayer moiré exciton are entangled for any
moiré potential depths.

D. Exciton wave function

The exciton wave function and exciton band structure can
be solved by the eigenvalue problem

HX(R, r)
X,IK(R, r) = εX,IK
X,IK(R, r), (27)

where 
X,IK(R, r) is the exciton wave function and εX,IK is
the exciton eigenenergy. A variational exciton wave function
method is used to solve the exciton Hamiltonian. To include
the entanglement between the COM motion and the internal
motion, the variational exciton wave function should contain
a direct product of the COM-coordinate function and the
internal-coordinate function. Such variational exciton wave
function is written as


X,IK(R, r) = eiK·R

2π

∑
lelh,a,G

C(lelh,a,G),IKχG(R)

× exp
(
iκlelh · r

)
φlelh,a(r)Elelh , (28)

where C(lelh,a,G),IK is the variational wave function coefficient,
χG(R) is the COM-coordinate basis function, φlelh,a(r) is the
internal-coordinate basis function, and Elelh is the exciton
Hamiltonian-matrix basis vector with

E11 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠, E22 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠, E12 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, E21 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠.

(29)

The exciton COM degree of freedom can be solved as the
problem of a particle in a periodic potential. Therefore, the
COM-coordinate basis function is given by the plane-wave

function

χG(R) = e−iG·R, (30)

where G is the reciprocal-lattice vector. The exciton inter-
nal degree of freedom can be treated as the eigenspectrum
problem of an isolated exciton. It is known that STOs can
be used as the basis function to solve exciton internal wave
functions accurately in two dimensions [53–56]. The internal-
coordinate basis function is given by STOs, which have the
form

φlelh,a(r) = (eiLaϕ/
√

2π )rNa−1 exp
(−Zlelh,ar

)
, (31)

with Na the shell number, La the angular momentum, and
Zlelh,a the shielding constant. Note that the phase factor
exp(iκlelh · r) has been added in Eq. (28). This phase factor
is utilized to shift the internal momentum to center the origin
point,

exp (−iκlelh · r)(p − κlelh ) exp (iκlelh · r) = p, (32)

such that the matrix element can be written in a simpler
form. Matrix elements of the exciton Hamiltonian matrix and
the overlap matrix span by the present basis are shown in
Appendix B.

By using the exciton wave function, the radius and angular
momentum of the hybridized moiré exciton can be found. The
exciton radius operator is defined by the matrix representation

rX(R, r) ≡ rI, (33)

with

I =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (34)

being a four-dimensional identity matrix. The exciton radius
can be solved from

aX,I =
∫


∗
X,I0(R, r)rX(R, r)
X,I0(R, r)d2Rd2r. (35)

The exciton angular-momentum operator is defined as
LX(R, r) ≡ L′

X(R) + L′′
X(r), where

L′
X(R) = [

R × (
P − Klelh

)]
I (36)

and

L′′
X(r) = [

r × (
p − κlelh

)]
I (37)

are the matrix representations of the exciton COM angular-
momentum operator and the exciton internal angular-
momentum operator. Since the internal angular momentum of
optically active excitons should be zero, the root-mean-square
exciton angular momentum is used to measure the contri-
bution of nonzero-angular-momentum Rydberg excitons on
moiré exciton wave function. The root-mean-square exciton
angular momentum (〈L′′2

X 〉)1/2 is given by the formula

〈
L′′2

X

〉
I =

∫

∗

X,I0(R, r)L′′2
X (r)
X,I0(R, r)d2Rd2r. (38)

Therefore, if the exciton wave function contains the STO
φlelh,a(r) with La 
= 0, a nonzero value of root-mean-square
exciton angular momentum can be found.
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E. Optical absorption

Based on Fermi’s golden rule, the optical absorption spec-
trum can be given by the formula

�(ω) = 2π

ω

∑
I,μ

∣∣ jμ0I

∣∣2δ(ω − EI + E0), (39)

where EI is the Ith state eigenenergy, jII ′ = 〈I| ĵ|I ′〉 is the
transition amplitude, with |I〉 the Ith state ket. The transition
between a one-exciton excited state and the ground state is
known as the one-exciton transition. By assuming the one-
exciton excited states being excited states |I〉 = |XIK〉, the
one-exciton transition amplitudes are given by

j0,IK =
∫

J X(r)
X,IK(R, r)d2rd2R, (40)

where J X(r) = (J 11(r) J 22(r) 0 0), with J ll (r) the mo-
mentum matrix element. The momentum matrix element is
given by

J ±
ll (r) = e

[
J x

ll (r) ± iJ y
ll (r)

]
/
√

2 = δτ,±δ(r)evF,l , (41)

where vF,l is the Fermi velocity for each layer l . Note that
τ is the valley index and the matrix element is circular-
polarization selected. However, this selection can be ignored
since we have not included the valley degree of freedom in this
model. By using the exciton wave function, the one-exciton
transition amplitude is given by

j±0,IK = 2π
∑
l,a

∑
G

evF,lδK,GC(ll,a,G),IGφll,a(0). (42)

Since only the first Brillouin zone is considered in the cal-
culation, the selection for the COM wave vector is given by
K = 0 for optical absorption. The ground-state energy can
be assigned as E0 = 0 and the excited-state energy for every
one-exciton excited state is given by EI = εX,I0. Combining
all the information, the optical absorption spectrum can be
rewritten as

�(ω) =
∑

I,τ=±

∣∣ jτ0,I0

∣∣2
εX,I0

2η

(ω − εX,I0)2 + η2
, (43)

where η is a line-broadening factor. Equation (43) is the
working formula for us to calculate the optical absorption
spectrum of moiré heterobilayers. Note that if C(ll,a,G),IG =
δl,1C(11,a,G),IG in Eq. (42), the formula in Eq. (43) can be re-
duced to the optical absorption formula for intralayer exciton
transitions in the layer l = 1. The interlayer exciton transi-
tion is only introduced through the wave function coefficient
C(ll,a,G),IG of the Ith exciton state, where each exciton state is
a linear combination of intralayer and interlayer exciton wave
functions.

III. APPLICATIONS

In this section, the exciton continuum model is applied to
the simulation of optical absorption spectra of WSe2/WS2

heterobilayers and MoSe2/WS2 heterobilayers. Twist-angle
and electric-field dependencies of optical absorption spectra
are calculated and discussed. Parameters for the effective-
mass band and the modified Rytova-Keldysh potential of

FIG. 2. (a) Calculated absorption spectra of WSe2 and WS2

monolayers. (b) Calculated absorption spectra of R-stacked and
H-stacked WSe2/WS2 heterobilayers, with parameters we = wh =
20 meV, VWSe2 = 30 meV, VWS2 = 5 meV, η = 5 meV, and d = 7.0
Å.

heterobilayers embedded in hexagonal boron nitride sub-
strates are given in Table I. All other parameters, including
moiré potential depths and charge-transfer coupling strengths,
are chosen to fit simulated optical spectra with experimental
observations.

A. Excitons in WSe2/WS2 heterobilayers

Calculated absorption spectra of WSe2 monolayer, WS2

monolayer, and WSe2/WS2 heterobilayers are shown in
Figs. 2(a) and 2(b). The contributions from A and B excitons
in WSe2 monolayer and A excitons in WS2 monolayer have
been included in Fig. 2(a). Signatures of 2s, 3s Rydberg exci-
tons in WSe2 monolayer are also shown around 1.85 eV for A
excitons and around 2.25 eV for B excitons as the satellite
peaks of the dominated 1s exciton transition peak. By in-
cluding moiré potentials and charge-transfer couplings in the
exciton calculation for WSe2/WS2 heterobilayers, signatures
of intralayer and interlayer moiré excitons are shown. The
three prominent peaks around 1.7–1.8 eV, labeled I, II, and III
peaks as in Ref. [14], can be attributed to the intralayer moiré
excitons extending from A excitons of WSe2. The inset fig-
ures in Fig. 2(b) show enlarged peaks from optical absorption
by interlayer excitons. The signature around 1.4–1.5 eV in the
spectrum of the R-stacked heterobilayer can be attributed to
the interlayer moiré excitons with the electron locating at K
valley of WS2 monolayer and the hole locating at K valley
of WSe2 monolayer. The signature around 1.4–1.5 eV in the
spectrum of the H-stacked heterobilayer can be attributed to
the interlayer moiré excitons with the electron locating at K′
valley of WS2 monolayer and the hole locating at K valley of
WSe2 monolayer. The signature around 1.85–1.95 eV in the
spectrum of the H-stacked heterobilayer can be attributed to
the interlayer moiré excitons with the electron locating at K
valley of WS2 monolayer and the hole locating at K′ valley
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TABLE I. Effective-mass-model parameters for TMDC monolayers. The dielectric constants for the modified Rytova-Keldysh potential
are given by κ1 = 4.4 and κ0 = 2.0. Egap is the band-gap energy, E v

edge is the valence band-edge energy, E c
edge is the conduction band-edge

energy, E v
SO is the valence-band spin-orbit splitting energy, E c

SO is the conduction-band spin-orbit splitting energy, a is the lattice constant of
the TMDC monolayer, me and mh are effective electron and hole masses, m0 is the bare electron mass, r0 is the screening length, EX is the
exciton binding energy for the 1s-orbital exciton, vF is the Fermi velocity, and c0 is the light speed. The exciton binding energy is calculated
by variationally solving the effective mass model with Rytova-Keldysh potential as the screened Coulomb potential. The Fermi velocity is
estimated by Egap = (me + mh)vF. The effective masses and screening lengths are acquired from Ref. [57]. The lattice constants are acquired
from Ref. [58]. The band-edge energies are acquired from Ref. [59]. The spin-orbit splitting energies are acquired from Ref. [60].

Materials Egap(eV) E v
edge(eV) E c

edge(eV) E v
SO(meV) E c

SO(meV) a(Å) me/m0 mh/m0 r0(Å) EX(meV) 103vF/c0

MoSe2 1.874 −5.750 −3.876 −184 20 3.288 0.70 0.70 39 232 1.62
WS2 2.238 −6.190 −3.952 −425 −31 3.154 0.35 0.35 34 177 2.50
WSe2 1.890 −5.490 −3.600 −462 −37 3.286 0.40 0.40 45 165 2.15

of WSe2 monolayer. Interlayer-exciton transition peaks are
much less obvious in comparison with intralayer-exciton tran-
sition peaks because of the large energy difference between
interlayer excitons and intralayer excitons. These signatures
are overall coincident with experimental observations in the
literature [15,20].

In Table II, exciton transition energies, exciton binding
energies, transition amplitudes, exciton radii, and exciton
root-mean-square angular momentums of exciton transitions
in WSe2 monolayer and H-stacked WSe2/WS2 heterobilayers
are shown. Excitons α, β are two interlayer-exciton transi-
tions of H-stacked WSe2/WS2 heterobilayers, as indicated in
Fig. 2(b). Because the internal degree of freedom is included
in the exciton calculation, intralayer excitons and interlayer
excitons can have different radii and angular momentum. Ac-
cording to the variational exciton wave function in Eq. (28),
an exciton in heterobilayers can be seen as the hybridization
of various Rydberg excitons in monolayers. Therefore, hy-
bridized excitons listed in Table II show mixture properties
from different Rydberg excitons in WSe2 monolayer.

In Figs. 3(a) and 3(b), the calculated twist-angle and
electric-field dependencies of optical absorption spectra in
H-stacked WSe2/WS2 heterobilayers are shown. For the
twist-angle dependence, the three intralayer-exciton peaks I,
II, and III show spectral shifts with increasing twist angles.

TABLE II. Calculated properties of A excitons in WSe2 mono-
layer (top three rows) and moiré excitons in H-stacked WSe2/WS2

heterobilayers (remaining rows). Eexc is the exciton transition energy,
EX is the exciton binding energy, | jX|2 is the transition amplitude, aX

is the exciton radius, and (〈L′′2
X 〉)1/2 is the exciton root-mean-square

angular momentum. The properties of intralayer moiré excitons are
calculated without considering the interlayer tunneling.

Excitons Eexc (eV) EX (meV) | jX|2 (a.u.) aX (Å)
√〈L′′2

X 〉
A-1s 1.725 165 1.000 14.0 0
A-2s 1.851 39 0.107 66.8 0
A-2p 1.830 50 0 43.0 1
I 1.690 195 0.763 19.9 0.395
II 1.739 144 0.088 16.5 0.261
III 1.789 98 0.337 39.0 0.603
α 1.898 119 0.025 38.0 0.660
β 1.947 69 0.017 56.9 1.001

The peak I converges to the A-1s exciton of WSe2 monolayer,
the peak III converges to the A-2s exciton of WSe2 monolayer,
and the peak II diminishes. For the electric-field dependence,
an out-of-plane electric field is included in the model by
modulating the band-edge energy of WS2 monolayer as

ε̃e,WS2 = εe,WS2 − ξzFz, ε̃h,WS2 = εh,WS2 − ξzFz, (44)

where εe,WS2 and εh,WS2 are band-edge energies for the con-
duction band and the valence band, ξz is the out-of-plane
electric dipole moment, and Fz is the out-of-plane electric-
field strength. The electric dipole moment is assigned as ξz =
0.4e nm, where e denotes the elementary charge. Signatures
of hybridization can be found in both the twist-angle depen-
dence and the electric-field dependence, particularly near the
A-exciton transition energy of the WS2 monolayer. As shown
in Fig. 3(a), signatures of avoided crossings are found at
7 ◦ twist angle and around 2.1 eV excitation energy. In
Fig. 3(b), signatures of avoiding crossing are found around

FIG. 3. (a) Calculated twist-angle dependence and (b) electric-
field dependence of optical absorption spectra of H-stacked
WSe2/WS2 heterobilayers.
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FIG. 4. (a) Calculated absorption spectra of MoSe2 and WS2

monolayers. (b) Calculated absorption spectra of R-stacked and
H-stacked MoSe2/WS2 heterobilayers, with parameters we = wh =
10 meV, VMoSe2 = 35 meV, VWS2 = 5 meV, η = 5 meV, and d = 7.0
Å.

−0.3– − 0.5 V nm−1 electric field and around 2.1 eV ex-
citation energy. These signatures indicate the hybridization
between intralayer excitons and interlayer excitons through
charge-transfer couplings as the excitation energies of in-
tralayer excitons and interlayer excitons are close.

Note that, for real-world experiments, the moiré heterobi-
layer is embedded in a dielectric substrate, which is normally
composed of multiple layers of hexagonal boron nitrides
(hBNs) or silicon dioxide (SiO2), and the applied external
electric field can be screened by the substrate. Therefore, the
out-of-plane electric field mentioned above is the out-of-plane
displacement field and the simulated electric-field dependence
might be different from the experimental observation due
to different dielectric screening for different experimental
conditions.

B. Excitons in MoSe2/WS2 heterobilayers

Calculated absorption spectra of MoSe2 monolayer, WS2

monolayer, R-stacked and H-stacked MoSe2/WS2 hetero-
bilayers are shown in Figs. 4(a) and 4(b). Again, optical
absorption signatures of A excitons, B excitons, and 2s,
3s Rydberg excitons of MoSe2 monolayer and WS2 mono-
layer are shown in Fig. 4(a). The interlayer-exciton transition
energy of the R-stacked heterobilayer is close to the A-exciton
transition energy of MoSe2 monolayer and the interlayer-
exciton transition energy of the H-stacked heterobilayer is
close to the B-exciton transition energy of MoSe2 monolayer.
The hybridization between the intralayer excitons and the in-
terlayer excitons induces small changes in the shape of peaks
around the A-exciton transition energy of MoSe2 monolayer
(1.6–1.7 eV) for the R-stacked heterobilayer and around the
B-exciton transition energy of MoSe2 monolayer (1.8–1.9 eV)
for the H-stacked heterobilayer.

In Fig. 5, calculated twist-angle-dependent absorp-
tion spectra of R-stacked MoSe2/WS2 heterobilayers and

FIG. 5. Calculated twist-angle-dependent absorption spectra of
(a) R-stacked MoSe2/WS2 heterobilayers and (b) H-stacked
MoSe2/WS2 heterobilayers.

H-stacked MoSe2/WS2 heterobilayers are shown, and in
Fig. 6, calculated electric-field-dependent absorption spec-
tra of R-stacked MoSe2/WS2 heterobilayers and H-stacked
MoSe2/WS2 heterobilayers are shown. The out-of-plane elec-
tric field is included in the model by the same band-edge
modulation of WS2 monolayer in Eq. (44). Signatures of
avoiding crossing due to exciton hybridization can be found in

FIG. 6. Calculated electric-field-dependent absorption spectra
of (a) R-stacked MoSe2/WS2 heterobilayers and (b) H-stacked
MoSe2/WS2 heterobilayers.
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both simulated spectra. Experimental twist-angle-dependent
absorption spectra of R-stacked and H-stacked MoSe2/WS2

heterobilayers can be found in Ref. [13]. Experimen-
tal electric-field-dependent absorption spectra of R-stacked
MoSe2/WS2 heterobilayers can be found in Ref. [20]. The
simulation and the observation share resemblances but also
noticeable differences. Those differences might be attributed
to the simplicity of the present model. Particularly, interval-
ley exciton exchange, spin-flip interlayer charge transfer, and
electron-phonon coupling are ignored. Some exciton transi-
tion signatures could be lost due to the omission. However,
since it is important to test the limit of the proposed model
and the context of this article is already quite ample, we will
leave those topics to future works.

IV. DISCUSSIONS AND CONCLUSION

A critical issue we have not discussed is the proper-
ness of parameters chosen in the exciton continuum model.
Apart from the parameters also used in monolayers, four
parameters decide the optical spectra of heterobilayers: two
moiré potential depths V1, V2 and two charge-transfer cou-
pling strength we, wh. These parameters can be obtained by
fitting observed optical spectra, as what we have done in
this work, or calculated by atomistic simulation. However,
there is an inconsistency between the moiré potential depths
acquired from atomistic simulation and fitting the spectrum.
By DFT calculation, moiré potential depths on MoSe2 layer
and WSe2 layer of different heterobilayers are estimated to
be around 8–10 meV (peak-to-peak energy difference around
80–100 meV) [43]. Via various simulations including this
work by exciton continuum models, observed moiré-exciton
signatures can only be explained by larger moiré potential
depths about 15–35 meV[14,25]. The discrepancy may be
attributed to the oversimplification of the effective moiré
potential, the insufficiency of DFT calculation to simulate
atom-atom potential without sufficient good van der Waals
density functionals [61], or the underestimation of geometry
relaxation and strain in moiré heterobilayer [25]. A theoretical
work eliminates the oversimplification by using DFT calcula-
tion to simulate moiré excitons atomistically [43]. They found
that one of the moiré-exciton signatures can be attributed to
the charge-transfer exciton across different moiré unit cells,
and the low moiré potential depth (≈9 meV) is sufficient to
explain all intralayer moiré-exciton signatures. However, we
do not reach the same conclusion since all radii of intralayer
moiré excitons calculated in this work and listed in Table II
are shorter than the moiré lattice constant (aM ≈ 80 Å) of
WSe2/WS2 heterobilayers. A scanning tunneling microscopy
experiment on twisted TMDC heterobilayers also indicates
that DFT calculations might underestimate the moiré potential
depths [62]. Further investigation on this issue is required in
future works.

Note that the exciton continuum model in this study is
only applied to the simulation of the optical spectrum of
WSe2/WS2 and MoSe2/WS2 heterobilayers with small twist
angles. This is because the present model is still too simple to
accurately simulate twisted TMDC homobilayers or twisted
TMDC heterobilayers with large twist angles. Several critical
elements are not considered in this model. One is the valley

degree of freedom of TMDCs, which is related to the opti-
cal selection rule of circular-polarized light. Another is the
mirror-symmetry-breaking interaction, which should exist in
chiral or helical materials. Without these elements, the chi-
rality and optical activity of twisted TMDC bilayers cannot
be described correctly, and thus the electronic structure of
twisted TMDC bilayers may not be simulated accurately by
this model. Additionally, as mentioned in Sec. III B, interval-
ley exciton exchange and spin-flip interlayer charge transfer
are ignored in this model. These effects are also related to
the valley degree of freedom and this ignorance might also
contribute to inaccuracy. Since this article is already lengthy,
we decided to keep the simplicity of this model and omit
these elements. In future works, we intend to include the
valley degree of freedom and the mirror-symmetry-breaking
interaction in an improved model and study a broader range
of twisted TMDC bilayers.

Although this exciton continuum model might suffer from
oversimplification, it can be beneficial with its simplicity
for future extended studies. For example, in this work, only
lattice mismatch and twist angle on the moiré pattern are
considered, and the rotational symmetry of the system is not
broken. However, in reality, the threefold rotational symmetry
of moiré heterobilayers could be broken in the presence of
the uniaxial strain, and the optical properties of interlayer and
hybrid excitons would be affected by the symmetry breaking.
The modification could be done by including a pseudogauge
potential in terms of strain tensor components [63,64]. An-
other example is that exciton complexes such as trions and
biexcitons are known to be computationally exhausting to
simulate. It is easier to use effective-mass models and vari-
ational wave functions to study exciton complexes [55,56]. It
is a natural extension of our theory to build the theoretical
framework of using continuum models and variational wave
functions to study hybridized moiré exciton complexes in
multilayer materials. Additionally, with the future inclusion of
intervalley exchange and electron-phonon coupling into this
model, charge and exciton dynamics in moiré materials could
also be studied without excessively exhausting computation.

In conclusion, we propose a continuum model to study
hybridized moiré excitons in TMDC heterobilayers. A vari-
ational wave function method is used to solve this model. We
use the present theory to study optical absorption spectra of
WSe2/WS2 and MoSe2/WS2 heterobilayers. A good corre-
spondence between theoretical simulation and experimental
observation of moiré excitons is found. This model could set
the foundation of a theoretical framework to study the physi-
cal properties of moiré excitons in different moiré materials.
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APPENDIX A: MODIFIED RYTOVA-KELDYSH
POTENTIAL

The modified Rytova-Keldysh potential for parallel bilay-
ers is derived in this section. The notation and formulation of
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the present derivation are taken from Ref. [65].

1. Reduced Green’s function

The Poisson equation for electrostatics in three-
dimensional (3D) free space is written as

∇2�(r) = −�(r)/κ, (A1)

where �(r) is the electrostatic potential, �(r) is the charge
density, and κ is the dielectric constant. The charge-free elec-
trostatic potential can be solved by the Laplace equation,
∇2�(r) = 0. The formal solution of the Poisson equation in
three-dimensional free space is given by

�(r) = 1

κ

∫
�(r′)

|r − r′|d3r. (A2)

The Green’s function at a point r interacting with the point
charge e at r′ in 3D space is given by

G(r, r′) = 1

κ|r − r′| . (A3)

Since ∇2(1/r) = −4πδ(r) and thus

κ∇2G(r, r′) = −4πδ(r − r′), (A4)

Green’s function is a solution of the Poisson equation. The
Green’s function can also be derived from solving Eq. (A4).
By using the property of the δ function,

δ(r − r′) =
∫

d3k

(2π )3 eik·(r−r′ ), (A5)

and the derivative ∇eik·(r−r′ ) = ikeik·(r−r′ ), the Fourier trans-
form of Green’s function can be found as

G(r, r′) =
∫

d3k

(2π )3

4π

κk2
eik·(r−r′ ). (A6)

Singling out the z direction in a 3D free space, Eq. (A6) can
be rewritten as

G(r, r′) = 4π

κ

∫
dkxdky

(2π )2
ei[kx (x−x′ )+ky (y−y′ )]

×
∫

dkz

2π

eikz (z−z′ )

k2
x + k2

y + k2
z

. (A7)

By using ∫ ∞

−∞

dkz

2π

eikz (z−z′ )

k2
‖ + k2

z

= 1

2k‖
e−k‖|z−z′ |, (A8)

with k2
‖ = k2

x + k2
y , the Green’s function becomes

G(r, r′) = 4π

∫
d2k‖
(2π )2 eik‖·(r‖−r′

‖)g(z, z′; k‖), (A9)

where r‖ = (x, y) is the 2D coordinates, k‖ = (kx, ky) is the
2D k vector, and

g(z, z′; k‖) = 1

2κk‖
e−k‖|z−z′ | (A10)

is the reduced Green’s function. The differential equation for
the reduced Green’s function can be found as

κ

[
k2
‖ − ∂2

∂z2

]
g(z, z′; k‖) = δ(z − z′). (A11)

By these two integrals over the infinitesimal segment near z =
z′,∫ z′+0

z′−0
dz

[
k2
‖ − ∂2

∂z2

]
g(z, z′; k‖) =

∫ z′+0

z′−0
dz

δ(z − z′)
κ

, (A12)∫ z′+0

z′−0
dzz

[
k2
‖ − ∂2

∂z2

]
g(z, z′; k‖)

=
∫ z′+0

z′−0
dzz

δ(z − z′)
κ

. (A13)

The first equation gives

−∂g

∂z

∣∣∣∣
z=z′+0

+ ∂g

∂z

∣∣∣∣
z=z′−0

= 1

κ
, (A14)

with 0 indicating an infinitesimal value, and the second equa-
tion becomes

−
∫ z′+0

z′−0
dzz

∂2

∂z2
g(z, z′; k‖) = z′

κ
, (A15)

and then becomes

−z
∂g

∂z

∣∣∣∣
z′+0

z′−0

+
∫ z′+0

z′−0
dz

∂g

∂z
= z′

κ
. (A16)

By using Eq. (A14), it is found that

g|z=z′+0 = g|z=z′−0. (A17)

The equation indicates the continuity condition for the so-
lution of the Poisson equation. Equations (A14) and (A17)
indicate that the g is continuous and ∂g/∂z is discontinuous at
z = z′.

2. Rytova-Keldysh potential in parallel bilayers

The parallel bilayers separate three regimes. Two are uni-
form dielectric materials z < 0, z > d . The regime in the
middle 0 < z < d is an empty space. The Green’s function
is written as

z � 0 : κ1∇2G(r, r′) = −4π [δ(r − r′) + σ1δ(z)], (A18)

0 < z < d : κ0∇2G(r, r′) = −4πδ(r − r′), (A19)

z � d : κ2∇2G(r, r′) = −4π [δ(r − r′) + σ2δ(z − d )],

(A20)

where σ1, σ2 are the surface bound charges on the layers,
κ1, κ2 are the dielectric constants of the uniform dielectric
materials, and κ0 is the dielectric constant for the empty space.
The surface-bound charge can be related to the polarization of
the layer by

∇‖ · P‖ = −σ, (A21)

where ∇‖ = (∂/∂x, ∂/∂y) and P‖ = (Px, Py) are the diver-
gence and the polarization on the 2D space. The polarization
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can be related to the electric field by

P‖ = χ2DE‖, (A22)

with E‖ = (Ex, Ey) the electric field in the two-dimensional space and χ2D is the electric susceptibility (or polarizability) of the
layer. Since E‖ = −∇‖�, we can derive the 2D Poisson equation,

χ1∇2
‖�(r)|z=0 = σ1, χ2∇2

‖�(r)|z=d = σ2, (A23)

where χ1 and χ2 are the electric susceptibilities of the corresponding layers, the Green’s function can be rewritten as

z � 0 : κ1

[
∇2 + 4π

κ1
χ1δ(z)∇2

‖

]
G
(
r, r′) = −4πδ

(
r − r′), (A24)

0 < z < d : κ0∇2G(r, r′) = −4πδ(r − r′), (A25)

z � d : κ2

[
∇2 + 4π

κ2
χ2δ(z − d )∇2

‖

]
G(r, r′) = −4πδ(r − r′). (A26)

By using Eq. (A9), the Poisson equation for the reduced Green’s function can be written as

z � 0 : κ1

[
k2
‖ − ∂2

∂z2
+ 4πχ1

κ1
k2
‖δ(z)

]
g = δ(z − z′), (A27)

0 < z < d : κ0

[
k2
‖ − ∂2

∂z2

]
g = δ(z − z′), (A28)

z � d : κ2

[
k2
‖ − ∂2

∂z2
+ 4πχ2

κ2
k2
‖δ(z − d )

]
g = δ(z − z′). (A29)

Assuming that the test charge is at z′ = 0, the boundary conditions can be derived

−κ0
∂

∂z
g

∣∣∣∣
z=+0

+ κ1
∂

∂z
g

∣∣∣∣
z=−0

= 1 − 4πχ1k2
‖g|z=0, (A30)

−κ2
∂

∂z
g
∣∣
z=d+0 + κ0

∂

∂z
g
∣∣
z=d−0 = −4πχ2k2

‖g|z=d . (A31)

The general solution of Green’s function is assumed as

z � 0 : g = Aek‖z, (A32)

0 < z < d : g = Bek‖z + Ce−k‖z, (A33)

z � d : g = De−k‖z. (A34)

By using the continuity condition in Eq. (A17) and the boundary conditions, the four coefficients can be connected to four
coupled linear equations,

A = B + C, Bek‖d + Ce−k‖d = De−k‖d . (A35)

(κ1k‖ + 2ξ1k2
‖ )A − κ0k‖B + κ0k‖C = 1, (A36)

κ0k‖(Bek‖d − Ce−k‖d ) + (κ2k‖ + 4πχ2k2
‖ )De−k‖d = 0. (A37)

By using the first equation A = B + C in other linear equations to replace the coefficient A, we can reduce one of the four
variables. We get the three coupled equations,

Bek‖d + Ce−k‖d − De−k‖d = 0. (A38)

(λ1 − κ0)B + (λ1 + κ0)C = 1/k‖, (A39)

κ0Bek‖d − κ0Ce−k‖d + λ2De−k‖d = 0. (A40)
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with λ1 = κ1 + 4πχ1k‖ and λ2 = κ2 + 4πχ2k‖. These equations can be rewritten as the matrix form,⎡
⎢⎣

λ1 − κ0 λ1 + κ0 0

ek‖d e−k‖d −e−k‖d

κ0ek‖d −κ0e−k‖d λ2e−k‖d

⎤
⎥⎦
⎡
⎣B

C
D

⎤
⎦ =

⎡
⎣1/k‖

0
0

⎤
⎦. (A41)

By Cramer’s rule, these coefficients can be solved as

B = 1

Det

∣∣∣∣∣∣∣
1/k‖ λ1 + κ0 0

0 e−k‖d −e−k‖d

0 −κ0e−k‖d λ2e−k‖d

∣∣∣∣∣∣∣ = (λ2 − κ0)e−2k‖d

k‖Det
, (A42)

C = 1

Det

∣∣∣∣∣∣∣
λ1 − κ0 1/k‖ 0

ek‖d 0 −e−k‖d

κ0ek‖d 0 λ2e−k‖d

∣∣∣∣∣∣∣ = −λ2 + κ0

k‖Det
, (A43)

D = 1

Det

∣∣∣∣∣∣∣
λ1 − κ0 λ1 + κ0 1/k‖

ek‖d e−k‖d 0

κ0ek‖d −κ0e−k‖d 0

∣∣∣∣∣∣∣ = − 2κ0

k‖Det
, (A44)

Det =

∣∣∣∣∣∣∣
λ1 − κ0 λ1 + κ0 0

ek‖d e−k‖d −e−k‖d

κ0ek‖d −κ0e−k‖d λ2e−k‖d

∣∣∣∣∣∣∣ = (λ1 − κ0)(λ2 − κ0)e−2k‖d − (λ1 + κ0)(λ2 + κ0). (A45)

Therefore, the intralayer and interlayer Rytova-Keldysh potentials can be found as

W11(k‖) = 4πg
∣∣
z=0,z′=0 = (4π/k‖)[(λ2 + κ0)ek‖d − (λ2 − κ0)e−k‖d ]

(λ1 + κ0)(λ2 + κ0)ek‖d − (λ1 − κ0)(λ2 − κ0)e−k‖d
, (A46)

W21(k‖) = 4πg
∣∣
z=d,z′=0 = 8πκ0/k‖

(λ1 + κ0)(λ2 + κ0)ek‖d − (λ1 − κ0)(λ2 − κ0)e−k‖d
. (A47)

By replacing q = k‖ and using dielectric functions, these potentials can be rewritten as

W11(q) = 2π

ε11(q)q
, W21(q) = 2π

ε21(q)q
, (A48)

where the intralayer and interlayer dielectric functions are written as

ε11(q) = κ0ε21(q)(
κ2+κ0

2 + r2q
)
eqd − (

κ2−κ0
2 + r2q

)
e−qd

, (A49)

ε21(q) =
(

κ1 + κ0

2
+ r1q

)(
κ2 + κ0

2
+ r2q

)
eqd

κ0
−
(

κ1 − κ0

2
+ r1q

)(
κ2 − κ0

2
+ r2q

)
e−qd

κ0
, (A50)

with r1 = 2πχ1 and r2 = 2πχ2 being the screening lengths. By assigning κ1 = κ2, the modified Rytova-Keldysh potentials in
Eqs. (9)–(11) can be derived.

APPENDIX B: MATRIX ELEMENTS OF EXCITON HAMILTONIAN

The matrix elements of the exciton Hamiltonian matrix and overlap matrix expanded by the basis functions in Sec. II D are
derived. By using the variational method, the exciton wave function can be solved from the matrix eigenvalue equation:∑

l ′el ′h,b

H̄(lelh,a,G)(l ′el ′h,b,G′),KC(l ′el ′h,b,G′),IK = εX,IK

∑
b

O(lelh,a,G)(lelh,b,G′ )C(lelh,b,G′ ),IK. (B1)

The exciton Hamiltonian matrix elements are given by

H̄(lelh,a,G)(l ′el ′h,b,G′),K = δle,l ′eδlh,l ′h

∫
ψ∗

G(R)φ∗
lelh,a(r)H̃lelh (R, r)ψG′ (R)φlelh,b(r)d2Rd2r

+(1 − δle,l ′e )δlh,l ′h

∫
ψ∗

G(R)φ∗
lelh,a(r)T̃e,(lelh )(l ′elh )(R, r)ψG′ (R)φl ′elh,b(r)d2Rd2r

+δle,l ′e (1 − δlh,l ′h )
∫

ψ∗
G(R)φ∗

lelh,a(r)T̃h,(lelh )(lel ′h )(R, r)ψG′ (R)φlel ′h,b(r)d2Rd2r, (B2)
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with

H̃lelh (R, r) = e−iK·R exp (−iκlelh · r)Hlelh (R, r) exp (iκlelh · r)eiK·R, (B3)

T̃e,(1lh )(2lh )(R, r) = e−iK·R exp (−iκ1lh · r)Te(R, r) exp (iκ2lh · r)eiK·R, (B4)

T̃e,(2lh )(1lh )(R, r) = e−iK·R exp (−iκ2lh · r)T ∗
e (R, r) exp (iκ1lh · r)eiK·R, (B5)

T̃h,(le1)(le2)(R, r) = e−iK·R exp (−iκle1 · r)Th(R, r) exp (iκle2 · r)eiK·R, (B6)

T̃h,(le2)(le1)(R, r) = e−iK·R exp (−iκle2 · r)T ∗
h (R, r) exp (iκle1 · r)eiK·R. (B7)

The overlap matrix elements are given by

Ō(lelh,a,G)(lelh,b,G′ ) =
∫

ψ∗
G(R)φ∗

lelh,a(r)ψG′ (R)φlelh,b(r)d2Rd2r. (B8)

The diagonal Hamiltonian matrix elements are given by

H̄(lelh,a,G)(lelh,b,G′ ),K = δG,G′oab

[
lelh +

∣∣K − G − Klelh

∣∣2
2mX,lelh

]
+ δG,G′ 〈a|

[
− ∇2

2μX,lelh

− Wlelh (r)

]
|b〉 + 〈a, G|Vlelh (R, r)|b, G′〉,

(B9)

− 1

2μX,lelh

〈a|∇2|b〉 = − 1

2μX,lelh

(Na + Nb − 1)!(
Zlelh,a + Zlelh,b

)Na+Nb

{
(1 − δNb,1)

[
(Nb − 1)2 − L2

b

](
Zlelh,a + Zlelh,b

)2

(Na + Nb − 1)(Na + Nb − 2)

−
[
(2Nb − 1)Zlelh,b

](
Zlelh,a + Zlelh,b

)
(Na + Nb − 1)

+ Z2
lelh,b

}
, (B10)

〈a|Wlelh (r)|b〉 = δLa,Lb

(2π )2

∫ ∞

0
R̃Na+Nb−1,0

(
Zlelh,a + Zlelh,b, k

)
W̃lelh (k)kdk, (B11)

〈a, G|Vlelh (R, r)|b, G′〉 =
∑

j=1,3,5

{
Vle exp[i(−1)leψ]δ(G − G′ + g j )ρ̃(lelh,a)(lelh,b)(−γh,lh g j )

+ Vle exp[−i(−1)leψ]δ(G − G′ − g j )ρ̃(lelh,a)(lelh,b)(γh,lh g j )

− Vlh exp[i(−1)lhψ]δ(G − G′ + g j )ρ̃(lelh,a)(lelh,b)(γe,le g j )

− Vlh exp[−i(−1)lhψ]δ(G − G′ − g j )ρ̃(lelh,a)(lelh,b)(−γe,le g j )
}
, (B12)

with

ρ̃(lelh,a)(l ′el ′h,b)(k) = e−i(La−Lb)ϕk

2π
R̃Na+Nb−1,Lb−La

(
Zlelh,a + Zl ′el ′h,b, k

)
, (B13)

where the radial function in momentum space can be obtained by the generating formula

R̃N,L(Z, k) = 2π (−i)N

kN+1

dN

dzN

[z − i(L/|L|)√1 − z2]|L|
√

1 − z2

∣∣∣∣∣
z=iZ/k

. (B14)

The nondiagonal Hamiltonian matrix elements can be rewritten as

H̄(lelh,a,G)(l ′el ′h,b,G′ ),K = weδlh,l ′h (1 − δle,l ′e )
{
δ(G − G′)ρ̃(lelh,a)(l ′elh,b)

[
(le − l ′

e)
(
γh,lhκ3 + eκlh

)]
+ δ(G − G′ − (le − l ′

e)g1)ρ̃(lelh,a)(l ′elh,b)
[
(le − l ′

e)
(
γh,lhκ1 + eκlh

)]
+ δ(G − G′ − (le − l ′

e)g2)ρ̃(lelh,a)(l ′elh,b)
[
(le − l ′

e)
(
γh,lhκ5 + eκlh

)]}
+ whδle,l ′e

(
1 − δlh,l ′h

){
δ(G − G′)ρ̃(lelh,a)(lel ′h,b)

[
(lh − l ′

h)
(
γe,leκ3 + hκle

)]
+ δ(G − G′ + (lh − l ′

h)g1)ρ̃(lelh,a)(lel ′h,b)
[
(lh − l ′

h)
(
γe,leκ1 + hκle

)]
+ δ(G − G′ + (lh − l ′

h)g2)ρ̃(lelh,a)(lel ′h,b)
[
(lh − l ′

h)
(
γe,leκ5 + hκle

)]}
, (B15)
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with e = γe,2 − γe,1, h = γh,2 − γh,1. The overlap matrix element is given by

Ō(lelh,a,G)(lelh,b,G′ ) = δ(G − G′)δLa,Lb

(Na + Nb − 1)!(
Zlelh,a + Zlelh,b

)Na+Nb
. (B16)

A more detailed derivation of matrix elements of the exciton Hamiltonian by using STOs as the basis function can be found in
Refs. [55,56].
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