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Anatomy of linear and nonlinear intermolecular exchange in S = 1 nanographene
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Nanographene triangulenes with an S = 1 ground state have been used as building blocks of topological an-
tiferromagnetic Haldane spin chains. Using inelastic electron spectroscopy, it was found that the intermolecular
exchange was described by the bilinear-biquadratic Hamiltonian. Starting from a Hubbard model, we analytically
derive these effective spin interactions using perturbation theory, up to fourth order. For chains with more than
two units, other interactions arise that entail second neighbor linear and three-site nonlinear exchange. We discuss
the extension to general S = 1 molecules and give numerical results for the strength of the nonlinear exchange
for several nanographenes.
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I. INTRODUCTION

Nonlinear exchange, i.e., spin interactions that go beyond
the simple Heisenberg coupling between two spins, play a
prominent role in many physical systems, such as antifer-
romagnetic transition metal oxides [1], magnetic impurities
in insulators [2], magnetic multilayers [3,4], chiral magnets
[5], and magnetic two-dimensional materials [6]. Nonlinear
exchange is a key ingredient in the exactly solvable Affleck-
Kennedy-Lieb-Tasaki (AKLT) models [7], whose ground state
is a resource for measurement based quantum computing [8].

The relative size and sign of linear and nonlinear ex-
change can have a dramatic impact in several contexts. For
instance, whereas the swap gate, or permutation operator, for
spin qubits can be implemented with a linear Heisenberg
interaction [9], for spin qudits it requires the presence of
nonlinear exchange terms [10]. Alternatively, in the case of
the two-dimensional S = 3/2 honeycomb lattice, the relative
size of linear and nonlinear exchange controls the nature of
the ground state and its excitation spectrum [7,11–13].

Here we undertake the exploration of nonlinear exchange
in S = 1 nanographenes. This class of system features out-
standing flexibility to realize S = 1 molecules with different
shapes and sizes. It has been recently shown [14] that there
are 383 different nanographenes that can be formed with nine
hexagons or less. Therefore this type of system provides an
ideal arena to engineer intermolecular exchange. One of the
simplest S = 1 nanographenes is the so-called [3]-triangulene.
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Triangulenes are graphene fragments with the shape of
an equilateral triangle, of various sizes and terminated with
zigzag edges; these are customarily defined in terms of the
number of benzenes n in a given edge [15,16] (termed a [n]-
triangulene). Based on Lieb’s theorem for the Hubbard model
for bipartite lattices at half-filling [17], [n]-triangulenes are
predicted to be open-shell multiradicals, with the spin of the
ground state scaling as 2S = n − 1, associated with a half-full
shell of n − 1 in-gap nonbonding zero modes [15,18–22].

Due to recent breakthroughs in bottom-up synthesis tech-
niques [16,23–26], and the capability of atomic precision
manipulation of organic molecules, triangulenes have been
used as building blocks of larger molecular structures [27–30].
A prime example of this is the recent realization of Haldane
spin chains, where [3]-triangulenes (henceforth referred sim-
ply as triangulene) were coupled in order to generate chains
with more than 16 units [28]. There, the inelastic electron tun-
neling spectroscopy (IETS) was described with an effective
S = 1 spin Hamiltonian that included both linear and non-
linear exchange terms, i.e., the so called BLBQ Hamiltonian
[31–35]:

HBLBQ =
∑

i

JSi · Si+1 + B(Si · Si+1)2, (1)

where each triangulene is represented by a spin-1 operator
Si, the sum runs over all triangulenes in the chain and the
parameters J and B are the linear and nonlinear exchange
couplings, respectively. The introduction of the nonlinear ex-
change term proved essential to increase the accuracy of the
spin model when compared with experimental data [28] and
full fermionic numerical approaches [33].

In the following, we derive the effective S = 1 spin
Hamiltonian (1) starting from a fermionic model for the
nanographenes. Importantly, our derivation unveils the pres-
ence of additional second neighbor linear interactions, and
nonlinear exchange that involve three-spin terms, with
strength comparable to B in Eq. (1). The rest of this paper is
organized as follows. In Sec. II, we introduce the fermionic
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model that is used to describe nanographenes. We focus
particularly on triangulenes as a prototypical example, and
discuss the modification that are required to study other S = 1
nanographenes. In Sec. III, using perturbation theory up to
fourth order order we derive the effective spin Hamiltonian
for triangulene chains. For the case with more than two trian-
gulenes, we obtain new terms in the spin Hamiltonian which
were neglected in other BLBQ-based approaches. In Sec. IV,
we discuss the possibility of engineering the exchange inter-
actions in the effective spin model by considering other S = 1
nanographenes as building blocks. At last, in Sec. V, we give
a summary of our results and discuss possible future studies
on this type of system. Four Appendixes close the paper.

II. MODEL

A. Hubbard Hamiltonian

As a fermionic model we use a single-orbital Hubbard
Hamiltonian (considering only pz orbitals at the carbon sites)
at half-filling, containing hoppings between first (t) and third
neighbor (t3) sites and an on-site Hubbard repulsion term (U )
which deals with the intra-atomic Coulomb repulsion cost as-
sociated with having a given π -orbital doubly occupied [22].
Explicitly,

HHubb. = t
∑
〈i, j〉

∑
σ

c†
i,σ c j,σ + t3

∑
〈〈〈i, j〉〉〉

∑
σ

c†
i,σ c j,σ

+ U
∑

i

ni↑ni↓, (2)

where 〈. . . 〉 and 〈〈〈. . . 〉〉〉 refer to sums over first and third
neighbors, respectively; the operator c(†)

i,σ annihilates (cre-
ates) an electron at site-i with spin σ =↑,↓ and ni,σ =
c†

i,σ ci,σ . The second neighbor hopping is neglected here
as it breaks electron-hole symmetry, which leads to an
inhomogeneous distribution of the charge [36], that is coun-
terbalanced by long-range Coulomb interactions. As a result,
fitting tight-binding models to ab-initio calculations leads
to a second-neighbour hopping 5 times smaller than third-
neighbour hopping [37], and is often neglected [38]. Recent
theoretical and experimental work [39] shows the prominent
role played by third-neighbour hopping in the intermolecu-
lar exchange of S = 1/2 triangulenes. The Hubbard model
has been validated by comparison with multiconfigurational
calculations obtained with full-quantum chemistry ab initio
methods [22], for t = −2.7 eV, t3 ∼ t/10 and U ∼ |t | [40].
Ab initio calculations often yield larger estimates for U than
the one we are considering [41], likely due to the neglect of
screening effects from a conducting substrate (something that
must be accounted for when comparing theoretical predictions
with experimental data).

B. Single-particle energies

At the single-particle level, i.e., taking U = 0 in Eq. (2),
the Hamiltonian can be solved exactly. As mentioned in
the introduction, for triangulenes, as well as other S = 1
nanographenes, the single-particle spectrum features two in
gap nonbonding zero modes, localized in the majority sublat-
tice of the nanographene [22]. Let us now consider the case

CAS(6,6)

CAS(4,4)

CAS(6,6)

CAS(4,4)

(a) (b)

(c)

(d)

FIG. 1. Single-particle energies for the triangulene dimer with
t3 = t/10 (a) and 0 (b). Energies are given in unit of |t | = 2.7 eV.
The dashed boxes indicate two possible choices for the active space
where the Hubbard Hamiltonian is represented. CAS(NO, Ne) refers
to an active space with NO modes where Ne electrons are distributed.
(c) and (d) show the absolute value of the site representation of the
four molecular orbitals closer to zero energy for t3 = t/10 and 0,
respectively. Each circle is colored according to the sublattice where
it is located.

where two triangulenes are coupled, forming a dimer. The
results for the single-particle spectrum, as well as the wave
functions of the zero modes, for t3 = 0 and t3 �= 0 are de-
picted in Fig. 1. When t3 = 0, we find that the dimer has four
degenerate zero modes, two per triangulene. This is a direct
consequence of the lack of intermolecular hybridization, since
first neighbor hopping connects the two triangulenes via their
minority sublattices only, thus preventing the hybridization
of the two pairs of zero modes (since the respective wave
functions have no weight on the minority sublattice). Due to
the degeneracy of these 4 modes, there is some freedom in
how their wave functions are defined. We represent them as
eigenfunctions of the C3 symmetry operator with eigenvalues
±2π/3. For future reference we refer to these modes as the C3

symmetric basis.
Turning on t3, we observe that the previously degenerate

zero modes are now slightly split. This is due to the inter-
molecular hybridization of the two sets of zero modes which
is now made possible by t3, since this hopping parameter
connects the two triangulenes via their majority sublattices.
This hybridization is also clear in the representation of the
wave functions which now show the typical bonding and
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S = 1S = 1

S = 2

S = 2

FIG. 2. (a) Eigenvalues of the Hubbard Hamiltonian for the trian-
gulene dimer obtained with CAS(4,4), with U = |t |, t3 = t/10, and
t = −2.7 eV. (b) Energy of the first two excited manifolds (triplet
in red, and quintuplet in black) as a function of U obtained with
CAS(4,4) (dashed) and CAS(6,6) (solid).

antibonding structure of hybridized modes. This is the molec-
ular orbital basis. Although our analysis of the single-particle
spectrum focused on triangulene dimers, similar analysis with
identical results can be performed for larger chains as well as
other S = 1 molecules.

C. CAS

Contrarily to the single-particle problem, the Hubbard
Hamiltonian with interactions, i.e. U �= 0, can only be numer-
ically diagonalized exactly for rather smaller systems due to
the exponential increase of the Hilbert space as the system
size grows. For the molecules we presently wish to discuss,
the Hubbard model with finite U can only be solved using
approximate approaches. Here, we make use of the con-
figuration interaction approach combined with the complete
active space (CAS) approximation [22]. In this framework, the
single-particle problem is solved first. Then, the full Hamilto-
nian is expressed in terms of the single-particle eigenstates,
and Ne electrons are distributed over a subset of NO orbital
close to zero energy; the remaining electrons fully occupy
the orbitals at lower energy (at charge neutrality, Ne = NO).
Considering once again the triangulene dimer, we solve the
Hubbard Hamiltonian at charge neutrality in an active space
composed of the four zero modes only, i.e. CAS(4,4), and ob-
tain the results depicted in Fig. 2(a). In agreement with Lieb’s
theorem [17] and owing to the lack of sublattice imbalance of
the dimer, the ground state is a singlet. The first two excited
manifolds are a triplet, followed by a quintuplet. At higher
energies, well separated from these low energy excitations,
other manifolds appear. In panel (b), we plot the energy of
the first two excited states (the triplet in red and the quin-
tuplet in black) as a function of U , obtained with CAS(4,4)
and CAS(6,6) calculations, where in the latter an additional
pair of orbitals is accounted for. There, we find that in the
parameter region we are considering the energies are already
well described by the CAS(4,4) calculation; including an ad-
ditional pair of orbitals unlocks the Coulomb driven exchange
mechanism [42] which introduces an additional correction to
the energies.

The low energy part of this energy spectrum, i.e., a singlet
followed by a triplet and then a quintuplet, clearly resembles

the energy levels of two antiferromagnetically coupled spin 1
and prompts us to obtain an effective spin model for this type
of system.

D. Hamiltonian in the basis of zero modes

The first step in the derivation of an effective spin Hamilto-
nian is to represent the Hamiltonian in the C3 symmetric basis
taking into account only the four modes at zero energy. The
representation of the Hubbard model in that basis leads to the
following effective Hamiltonian:

H =
∑
μ′μ

∑
σ

τμ′μd†
μ′,σ dμ,σ +

∑
μ

Uμnμ,↑nμ,↓

+
∑
	

J	+,	− (n	+,↑n	−,↓ + n	−,↑n	+,↓)

+
∑
	

J	+,	− (d†
	+,↑d	−,↑d†

	−,↓d	+,↓ + H.c.), (3)

where μ and μ′ run over the four C3 symmetric modes and
σ =↑,↓. The sums over 	 run over the two triangulenes,
and 	± refers to the modes with eigenvalues ±2π/3 in a
given triangulene. The operator d (†)

μ,σ annihilates (creates) an
electron in the μ mode with spin σ , and nμ,σ = d†

μ,σ dμ,σ .
This Hamiltonian contains three distinct types of terms.

The first term in Eq. (3) represents the hopping be-
tween two modes, μ and μ′, with an amplitude τμμ′ =
t3

∑
〈〈〈i, j〉〉〉 �∗

μ(i)�μ′ ( j) where �μ(i) is the site representation
of the μ mode (depicted in Fig. 1). This hopping amplitude is
zero when the two modes are localized in the same sublattice;
thus, hoppings between modes in the same triangulene vanish.
In addition, due to the C3 symmetry of the μ modes, all the
finite hoppings have the same absolute value, which we label
simply as τ .

The remaining terms in the Hamiltonian account for
electron-electron interactions. The second term of Eq. (3),
corresponds to an effective Hubbard repulsion that penalizes
the double occupancy of a given mode μ, with the energy
penalty being given by the inverse participation ratio [43]
(IPR) times the Hubbard repulsion U , and is defined as Uμ =
U

∑
i |�μ(i)|4, where the sum runs over all the sites; the

IPR is a metric of the delocalization of a given wave func-
tion. Again, due to the C3 symmetry of the modes, one finds
Uμ ≡ U is independent of μ.

The last two lines in Eq. (3) describe an intra-triangulene
ferromagnetic exchange interaction, with the exchange cou-
pling given by Jμμ′ = U

∑
i |�μ(i)|2|�μ′ (i)|2. As before,

Jμμ′ = J is independent of μ and μ′, and U = J .
Therefore the model (3) realizes a Creutz-ladder [44], with

the difference that the vertical hoppings are replaced by a fer-
romagnetic exchange and there are Hubbard interactions. In
Fig. 3, we present a pictorial representation of the Hamiltonian
of Eq. (3) for the triangulene dimer, as well as the extension
to larger structures, e.g., a triangulene chain. The extension of
Eq. (3) to triangulene chains is easily obtained by running the
sums over all triangulenes.

Let us note in passing, that for molecules less symmetric
than triangulenes, for example panels (c) to (f) of Fig. 5,
the hoppings τμμ′ , the effective Hubbard repulsion Uμ, and
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(a) (b)

FIG. 3. (a) Schematic representation of the interactions present
in the Hamiltonian of Eq. (3), with modes in the same triangulene
ferromagnetically coupled, and hoppings between the two triangu-
lenes. (b) Extension of the model for the case of a triangulene chain.

the exchange coupling Jμμ′ are in principle mode-dependent.
Moreover, it might be necessary to include a new term asso-
ciated with electron-pair hoppings in Eq. (3). As discussed in
[22], this term vanishes for triangulenes, but may be finite for
other molecules. Including it is straightforward, and does not
affect the main physical features we presently wish to discuss.

III. EFFECTIVE SPIN MODEL

Starting from the many-body fermionic model just pre-
sented in Eq. (3), we now produce an effective low energy
description which can be related to the effective spin model.
To this end, we shall employ degenerate perturbation up to
fourth order, treating the hoppings τ as a perturbation (for
U ∼ t we have U/τ ∼ 5). An alternative approach to deter-
mine linear and nonlinear exchange, based on the so-called
magnetic force theorem [45] has recently been used in the
study of triangulene spin chains [46].

A. Dimer

For the unperturbed system (τ = 0) the two pairs of modes
are decoupled, and each triangulene can be studied individ-
ually. At half-filling, with two electrons per triangulene, the
lowest energy states in a given triangulene are |↑〉|↑〉, |↓〉|↓〉

(a) (b)

En
er

gy
(m

eV
)

J CAS
J An.
B CAS
B An.

CAS
An.

FIG. 4. Comparison between the analytical expression and the
result found from numerical diagonalization for (a) the linear ex-
change J and the nonlinear exchange B, and (b) the ratio β = B/J as
a function of the on-site Hubbard repulsion U in units of |t | = 2.7 eV
with t3 = t/10.

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Values obtained for β = B/J by numerically diagonal-
izing the Hubbard Hamiltonian in a restricted Hilbert space with 4
modes only, for dimers obtained from S = 1 building blocks, taking
U = |t |, t3 = t/10, and |t | = 2.7 eV.

and (|↑〉|↓〉 + |↓〉|↑〉)/
√

2, where each ket refers to one of the
C3 symmetric modes in a triangulene. These states correspond
to the three spin projections of an S = 1 state formed by
the ferromagnetic coupling of two spin-1/2 electrons, i.e.,
|↑〉|↑〉 ≡ |↑〉, |↓〉|↓〉 ≡ |↓〉 and (|↑〉|↓〉 + |↓〉|↑〉)/

√
2 ≡ |+〉,

with the ket on the right hand side referring to the state of the
triangulene as a whole. With these three states in each triangu-
lene, the total unperturbed dimer Hamiltonian at half-filling is
nine-fold degenerate. From the CAS numerical solution given
in Fig. 2, one sees that the low energy spectrum is composed
of 9 states as well, i.e. a singlet, a triplet and a quintuplet.
Hence, we expect that as we allow τ to increase, the nine-fold
degenerate manifold will split, and a spin model shall emerge.

Representing Eq. (1) in the basis of two spin-1 objects, and
focusing on the Sz = 0 sector, one finds that while the bilinear
term, proportional to J , is responsible for connecting the state
|+〉|+〉 with the states |↑〉|↓〉 and |↓〉|↑〉, the biquadratic term,
proportional to B, unlocks a new interaction between the states
|↑〉|↓〉 and |↓〉|↑〉 (see Appendix A for details). Recalling the
definition of the spin-1 states in terms of two spin-1/2, one
realizes that while the processes mediated by J link states
which differ by two spin flips, the process mediated by B con-
nects states differing by four spin flips. Hence, the biquadratic
interaction is only to be expected in fourth-order perturbation
theory, while the bilinear term should already be present in
2nd order.

The expressions for the second- and fourth-order correc-
tions in degenerate perturbation theory read [47,48]

h(2)
kp =

∑
m

〈k|Hτ |m〉〈m|Hτ |p〉
�E (0)

m

, (4)

h(4)
kp =

∑
mm′m′′

〈k|Hτ |m〉〈m|Hτ |m′〉〈m′|Hτ |m′′〉〈m′′|Hτ |p〉
�E (0)

m �E (0)
m′ �E (0)

m′′

−
∑
mm′l

〈k|Hτ |m〉〈m|Hτ |l〉〈l|Hτ |m′〉〈m′|Hτ |p〉
�E (0)

m �E (0)
m �E (0)

m′
, (5)

155423-4



ANATOMY OF LINEAR AND NONLINEAR … PHYSICAL REVIEW B 108, 155423 (2023)

where k, p, and l label states inside the degenerate ground
state, and the sums run over all the states outside that sub-
space. The perturbation is Hτ = ∑

μμ′
∑

σ τμμ′d†
μσ dμσ and

�E (0)
m is the unperturbed energy of the |m〉 state relative to

the ground state. In the absence of applied magnetic field, the
odd-order corrections vanish identically [49]. One important
aspect to note is that even though the initial and final states
correspond to open-shell configurations with two electrons
per triangulene, the intermediate states contain closed-shell
configurations, as well as charge excitations, with different
number of electrons in the two triangulenes.

In second-order perturbation theory, where only two elec-
tron flips are considered, a finite contribution for J is found,
which for the present system simply reads:

J (2) = 2
τ 2

U . (6)

This result is similar to the one usually found when a Hubbard
chain is mapped to a Heisenberg chain of antiferromag-
netically coupled spins; the different numerical pre-factor
stemming from the different geometry of our system.

Progressing to 4th order perturbation theory, where pro-
cesses involving up to four electron are considered, different
paths appear which allow for |↑〉|↓〉 → |↓〉|↑〉. Carrying out
the necessary calculations, one finds that finite contributions
appear for both J and B. These are given by

J (4) = 4
τ 4

U3
B(4) = 8

τ 4

U3
. (7)

The second-order contribution to J dominates its fourth-order
counterpart in the physically relevant region of the parameter
space, and J (4) may be neglected. Hence, combining the re-
sults from second and forth order perturbation theory, we find
in leading order:

J ≈ 2τ 2

U , B ≈ 8τ 4

U3
, β ≡ B

J
≈ 4τ 2

U2
. (8)

Using the definitions of τ [40] and U [22], and assuming t3 ≈
t/10, one can estimate the strength of the quadratic exchange
with respect to the linear one, characterized by β, using β ≈
0.1(t/U )2. This rough approximation yields a nice agreement
with the value β = 0.09 that was found in the description of
experimental data in Ref. [28]. This good agreement, together
with the analytical expressions of Eq. (8), indicate that non-
linear exchange is a higher order manifestation of the same
underlying kinetic exchange mechanism [1] that gives rise to
linear exchange.

To validate our analytical expressions we shall now
compare them with the results found from numerical di-
agonalization. The numerical results are obtained by first
diagonalizing Eq. (3), followed by matching the energies of
the first excitations with those of the spin Hamiltonian. This
gives numerically both J and B as a function of the parameters
of the microscopic model, U and t3, and allows the compari-
son with Eq. (8).

In Fig. 4, we show the comparison between the analytical
expressions found for J and B and the numerical results.
Inspecting this figure reveals an excellent agreement between
the two approaches, especially in the region U � |t | where
perturbation theory is valid. Crucially, this agreement holds

near U ∼ |t |, the physically relevant region. For U = |t |, one
finds the linear exchange J = 20 meV and β = 0.11. As U
increases β approaches 0, and a Heisenberg-like picture is
recovered. For U � |t |, outside the validity region of pertur-
bation theory, the mapping to a spin model fails since the order
of low energy excitations is no longer the same in the two
approaches [35]. The fact that β is bounded by the AKLT limit
β = 1/3 is a consequence of Lieb’s theorem, which prevents
a four-fold degenerate ground state. As we shall see later in
the text, using different S = 1 molecules as building blocks it
is possible to modify the strength of nonlinear exchange.

B. Larger chains

Having completed the study of the triangulene dimer, we
extend our analysis to chains with more than two triangulenes.
The analysis is identical, although more convoluted, to the
one we just performed for the dimer, and as a result we refer
the reader to Appendix A for details. Generalizing Eq. (3) to
include more triangulenes, and once again employing pertur-
bation theory up to fourth order, we find that for a chain com-
posed of N triangulenes the effective spin Hamiltonian reads

HN = J
N−1∑
i=1

Si · Si+1 + B
N−1∑
i=1

(Si · Si+1)2 + J2

N−2∑
i=1

Si · Si+2

+ B1,1

N−2∑
i=1

(Si · Si+1)(Si+1 · Si+2) + H.c. (9)

While the first line corresponds to the BLBQ model for N
triangulenes, the second and third lines contain new exchange
interactions; the former describes an antiferromagnetic sec-
ond neighbor linear exchange, and the latter a ferromagnetic
quadratic exchange involving two adjacent triangulene pairs.
We note that the antiferromagnetic second neighbor linear ex-
change might promote frustration if its strength becomes com-
parable with J . If perturbation theory is extended up to sixth or
eight order, additional exchange interactions appear; however,
since these are in higher order of τ/U , we neglect their contri-
bution. Crucially, the terms proportional to J2 and B1,1 appear
in the same order of perturbation theory as B and therefore
must be accounted for. To leading order, we find the following
analytical expressions for the parameters of the spin model:

J = 2τ 2

U , B = 8τ 4

U3
, J2 = 79τ 4

12U3
, B1,1 = − 37τ 4

12U3
.

(10)

In Appendix B, we benchmark the effective spin model of
Eq. (9) and the analytical expression for the model parameters
against CAS calculations of the Hubbard model for the case
of a triangulene trimer. We find a very good agreement that
supports the validity of the analytical results. In the same
Appendix, we also compare the spin model with the exact
numerical diagonalization of a four-site model trimer, thus
allowing us to rule out the possibility that the new exchange
interactions are artifacts arising from the restriction of the
Hilbert space. Considering all this, a consistent description of
triangulene spin chains should include these terms, missing
in previous analysis [28].
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As a preliminary study of the effect of these new terms in
the Hamiltonian, in Appendix C, we study S = 1 chains and
rings with up to L = 13 spins. Using exact diagonalization
(with the QUSPIN package [50,51]), we compute the singlet
and triplet splitting (i.e., the energy of the first excitation) of
the spin chains as a function of the chain length L for both
the BLBQ Hamiltonian and Eq. (9). A similar procedure is
applied to the rings, where the energy of the first excitation
converges to the Haldane gap in the limit of L � 1. There,
one finds that the two models share the same qualitative
features, although quantitatively some differences appear. We
have verified that the Haldane gap, as determined from the
L = 13 with PBC, interpolates smoothly as we deform the
Hamiltonian from the BLBQ limit to the new Hamiltonian,
without ever closing. Therefore the new terms do not in-
duce a topological phase transition. An interesting prospect
for future works would be to study in detail how these new
interactions, as well as higher order ones we neglected in the
present discussion, would affect the phase diagram of the spin
model, using, for example, density matrix renormalization
group (DMRG) approaches.

IV. ENGINEERING OF EXCHANGE

We now briefly explore the nonlinear exchange of various
S = 1 dimers. By applying numerical diagonalization in the
minimal CAS, and comparing it with the excitation energies of
the BLBQ Hamiltonian, we obtain the value of β for different
dimers composed of molecules with a triplet ground state.
This should predict the relevance of nonlinear exchange, as
well as its tunability, in chains formed with different building
blocks.

In Fig. 5(b), we show a triangulene dimer, where a benzene
ring is introduced as a spacer between the two triangulenes.
Formally, this molecule is nearly identical to the dimer we
considered in the text [depicted in panel (a)], with the main
difference being that due to the extra benzene, intermolecular
hybridization between the two triangulenes is greatly dimin-
ished, resulting in a smaller τ . This leads to β = 0.002, two
orders of magnitude smaller than what we found for the case
without the spacer. As discussed in Appendix D, CAS(4,4)
underestimates the value of β for this dimer due to the larger
role played by Coulomb driven exchange [42].

Next, we consider the molecule of panel (c), where each
monomer is composed of two Phenalenyl side-by-side; for
this dimer β = 0.14. As benzenes are added between the two
Phenalenyl, depicted in panels (d) [52] and (e), the value
of β increases to β = 0.16 and β = 0.18, respectively. This
increase in β may be ascribed to the decrease of the IPR of
the zero modes of the individual molecules, i.e., the increased
delocalization of the wave functions. At last, we consider
panel (f), where an additional benzene is added close to the
binding site of the two molecules. This leads to a significant
decrease of β to β = 0.03. The reason for this sharp decrease
is similar to the one we gave when discussing panel (b).
Hence, we see that by carefully choosing the geometry of the
molecules used as building blocks, it should be possible to
engineer the strength of nonlinear exchange.

Even though we restricted our analysis to the minimal
CAS, accounting only for the zero modes, additional orbitals

could have been included in the calculation (see Fig. 1).
This would introduce the so-called Coulomb driven super-
exchange discussed in Ref. [42]. We have verified that
including this additional mechanism would slightly change
the numerical results, but preserve the qualitative features of
the model.

V. SUMMARY

We have considered chains of S = 1 nanographenes, tak-
ing the case of triangulene chains [28,29] as the prototypical
example. Using perturbation theory we have found that non-
linear exchange interactions are a higher order manifestation
of the same mechanisms that give rise to linear exchange, and
we have obtained analytical expressions for their amplitude.
The analytical results permit us to relate molecule geometry
with β, the degree of exchange nonlinearity. In addition, our
analysis for chains with more than two molecules shows that
new terms appear in the Hamiltonian, namely a second neigh-
bor linear and a three-site non linear exchange interaction,
going beyond the BLBQ paradigm. Future work will address
the impact of these extra terms on the well established phase
diagram of the BLBQ model.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
SPIN HAMILTONIAN

1. Triangulene dimer

In this Appendix, we describe in more detail how to ob-
tain the BLBQ Hamiltonian, given in the main text, for a
triangulene dimer using perturbation theory. As discussed in
the main text, the unperturbed Hamiltonian (τ = 0) for the
triangulene dimer has a nine-fold degenerate ground state.
Since the perturbation conserves Sz we focus our analysis in
a single Sz sector, Sz = 0. There are three states with Sz =
0 in the degenerate ground state manifold, namely |↑〉|↓〉,
|↓〉|↑〉 and |+〉|+〉 where each ket refers to a triangulene,
and |↑〉 = |↑〉|↑〉, |↓〉 = |↓〉|↓〉 and |+〉 = (1/

√
2)(|↑〉|↓〉 +

|↓〉|↑〉) where each ket on the right hand side refers to one of
the two C3 symmetric modes in a given triangulene. Using the
equation given in the main text for the second-order correction
to the Hamiltonian, and computing the matrix elements using
the aforementioned three states with Sz = 0, one finds:

h(2) = τ 2

U

⎡
⎣

−4 2 0
2 −2 2
0 2 −4

⎤
⎦, (A1)

where the matrix is represented in the basis |↑〉|↓〉, |+〉|+〉,
|↓〉|↑〉. At this point we note in passing that when
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performing this type of calculation one should be careful with
the sign conventions in the definitions of the fermionic states.
Representing the BLBQ Hamiltonian in the same basis, we
find

hBLBQ =
⎡
⎣

−J + 2B J − B B
J − B 2B J − B

B J − B −J + 2B

⎤
⎦. (A2)

Demanding the two Hamiltonian to be equal (apart from some
constant energy shift), we find the second-order contribution
to J and B to be given by

J (2) = 2
τ 2

U , B(2) = 0, (A3)

as obtained in the main text. In order to find the fourth-order
corrections to J and B a similar procedure is followed. Using
the expression given in the main text for h(4)

kp , we arrive at

h(4) = τ 4

U3

⎡
⎣

0 −4 8
−4 4 −4

8 −4 0

⎤
⎦. (A4)

Once again, using the matrix representation of the BLBQ
Hamiltonian as a reference, we obtain

J (4) = 4
τ 4

U3
, B(4) = 8

τ 4

U3
. (A5)

As mentioned in the main text, because J (4) is of higher order
in τ/U than J (2), its contribution is rather small, and can
be safely neglected. To better illustrate this let us consider

some typical values for τ and U . For triangulenes, one
has τ = 2t3/11 and U ≈ 0.1U . Taking U = |t | and t3 =
t/10 as typical values, we find J (4)/J (2) = 2τ 2/U2 ≈ 0.06,
which makes J (4) more than one order of magnitude smaller
than J (2).

2. Extension to larger chains

We now extend the results of the previous section to
larger triangulene chains. We restrict our analysis to the chain
with three triangulenes, a trimer, which already hosts the
interactions which are absent in the dimer. For the triangulene
trimer the ground state of the unperturbed system is a 33 = 27
degenerate manifold. Of these, seven states belong to the Sz =
0 subspace. These seven states are the ones we will consider
in the following analysis. Using the definition of h(2) given in
the main text, and considering the basis |↑〉|+〉|↓〉, |↑〉|↓〉|+〉,
|+〉|↑〉|↓〉, |+〉|+〉|+〉, |+〉|↓〉|↑〉, |↓〉|↑〉|+〉, |↓〉|+〉|↑〉, we
find

h(2) = τ 2

U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4 2 2 0 0 0 0
2 −6 0 2 0 0 0
2 0 −6 2 0 0 0
0 2 2 −4 2 2 0
0 0 0 2 −6 0 2
0 0 0 2 0 −6 2
0 0 0 0 2 2 −4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A6)

In the same basis, the BLBQ Hamiltonian reads

hBLBQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2B J J 0 0 0 0
J 3B − J 0 J − B 0 B 0
J 0 3B − J J − B B 0 0
0 J − B J − B 4B J − B J − B 0
0 0 B J − B 3B − J 0 J
0 B 0 J − B 0 3B − J J
0 0 0 0 J J 2B

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A7)

Once again demanding the two Hamiltonian to be equal apart from a constant shift in energy we find

J (2) = 2
τ 2

U , B(2) = 0. (A8)

Extending this analysis to fourth order, we find for h(4):

h(4) = τ 4

12U3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−182 86 86 5 0 0 0
86 −56 −74 −47 42 96 0
86 −74 −56 −47 96 42 0

5 −47 −47 89 −47 −47 5
0 42 96 −47 −56 −74 86
0 96 42 −47 −74 −56 86
0 0 0 5 86 86 −182

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A9)

Comparing this matrix with hBLBQ it is clear that some
entries which vanish in hBLBQ are finite in h(4); this clearly
indicates that the BLBQ model is incomplete, and additional
interactions should be accounted for in order to describe the
triangulene trimer with an effective spin model. To determine

which interactions are lacking, one should study which states
yield a finite matrix element in h(4) that is not captured by
the BLBQ Hamiltonian. For example, the states |↑〉|+〉|↓〉
and |+〉|+〉|+〉 give a finite matrix element in h(4). These
two states are clearly connected via a second neighbor linear
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CAS(6,6)

(a) (b) (c)

FIG. 6. (a) Energies obtained from CAS(6,6) for the triangulene trimer with U = |t | and t3 = t/10. (b) Comparison between the first
six excitation energies obtained by solving the Hubbard model for the triangulene trimer with CAS(6,6) with t3 = t/10 (dots) and the ones
obtained by fitting the spin model to the CAS results (lines). (c) Comparison between the parameters of the spin model obtained from fitting
to CAS with the analytical expressions obtained with perturbation theory.

exchange which links the first and third triangulenes, i.e.,
S1 · S3, and produces the spin flip |↑〉| . . . 〉|↓〉 →
|+〉| . . . 〉|+〉. Applying the same type of reasoning to the
other matrix elements that are not properly captured by the
BLBQ model, we find that the appropriate spin Hamiltonian
to describe the trimer up to fourth order in τ/U reads

H = J (S1 · S2 + S2 · S3) + B[(S1 · S2)2 + (S2 · S3)2]

+ J2S1 · S3 + B1,1[(S1 · S2)(S2 · S3)

+ (S2 · S3)(S1 · S2)] (A10)

with the fourth-order corrections to the coefficients being
given by

J (4) = 49

12

τ 4

U3
, B(4) = 8

τ 4

U3
, J (4)

2 = 79

12

τ 4

U3
,

B(4)
1,1 = −37

12

τ 4

U3
. (A11)

Notice that while B(4) is the same that we found in the dimer,
J (4) differs from the one we found before by τ 4/12U3; we
thus see that the presence of an additional triangulene slightly
renormalizes the linear exchange between nearest neighbors.
This is due to processes with four electron hoppings, where an
electron visits the third triangulene, but leaves without chang-
ing its initial state. If we applied the procedure we described
so far to higher order corrections in perturbation theory, new
interactions would once again appear in the Hamiltonian.
An example of this is the second neighbor biquadratic ex-
change (S1 · S3)2. These new interactions, however, would
produce minute changes in the effective description of the
trimer, and as a result, we drop them. In Appendix B, we
shall compare the energies obtained by fitting the eigenvalues
of Eq. (A10) to the many-body energies of the triangulene
trimer obtained with CAS(6,6) (anticipating the results pre-
sented there, the agreement is excellent). The extension to
even larger chains can be obtained in a straightforward man-
ner using the procedure we just described. Doing so, gives

similar results, up to fourth order, to what we obtained for the
trimer.

APPENDIX B: COMPARISON BETWEEN SPIN MODEL
AND HUBBARD MODEL FOR TRIMERS

1. Triangulene trimer

In this Appendix, we briefly discuss how we numerically
validate the analytical results found with perturbation theory
for the triangulene trimer. In Fig. 6(a), we plot the energies
obtained with CAS(6,6), whose active space contains only
the zero modes (two in each triangulene), for the triangulene
trimer. There, we see that the ground state is a triplet, followed
by several low energy excitations, which are well separated by
a gap from other high energy states. Regarding the spin model,
we found that the model Hamiltonian has four parameters, J ,
B, J2, and B1,1. Contrarily to the case of the dimer discussed
in the main text, the low energy spectrum of the trimer has
more excitation energies than there are parameters in the spin
model (this is a consequence of truncating the effective spin
model at 4th order). Thus, it is not possible to write a linear
system of equations which relates the parameters of the spin
model with the CAS excitation energies. Instead, we obtain
the dependence of the parameters with U and t3 by fitting
the eigenenergies of the spin model to the first 33 states from
CAS [like the ones of Fig. 6(a)] taking the parameters of the
spin model as fitting parameters. The parameters so obtained
can then be compared with the analytical expressions, testing
their validity. In Fig. 6(b), we compare the energies obtained
by fitting the spin model to the CAS calculation for different
values of U and fixed t3 = t/10.

The agreement between the two approaches is clear, and
it validates the spin model proposed by us. In panel (c) of
the same figure, we show the comparison between J , B, J2

and B1,1 obtained from the fitting procedure and the analyt-
ical ones. Once again, the two data sets show an excellent
agreement. Next, we shall study a similar system where the

155423-8



ANATOMY OF LINEAR AND NONLINEAR … PHYSICAL REVIEW B 108, 155423 (2023)

(a) (b) (c) (d)

FIG. 7. (a) Schematic representation of a four-site model trimer. (b) Bands obtained for an infinite triangulene chain (solid black lines) with
t = −2.7 eV and t3 = t/10, and for a chain of four-site models (red dashed lines) obtained with t ′ = −0.86 eV and t ′′ = −0.15 eV.(c) Com-
parison between the excitation energies obtained with exact diagonalization of the Hubbard model and the energies obtained from the spin
Hamiltonian fit. (d) Parameters of the spin model obtained from the fitting procedure.

triangulenes are substituted by a simplified system, allowing
us to use solve the Hubbard model exactly.

2. Four-site model

Let us now benchmark the effective spin Hamiltonian
against the Hubbard model for a four-site model trimer
[depicted in Fig. 7(a)] instead of the complete triangulene
trimer. The four-site model (i.e., the building block) has been
successfully used in the past to emulate triangulenes, since
its sublattice imbalance and C3 symmetry endows this system
with main properties of a [3]triangulene [28,33]. The funda-
mental advantage of this simplified model is that, due to its
reduced number of sites, exact diagonalization can be used
(we use the QuSpin package [50,51] to perform the diago-
nalization). This should allow us to rule out the possibility
that the spin interactions present in the model we proposed
are spurious artifacts stemming from the constraints imposed
in the active space. The values of the hoppings t ′ and t ′′ [see
Fig. 7(a)] are determined by computing the bands of an infinite
chain [40], and fitting them to the bands of a triangulene chain
with t = −2.7 eV and t3 = t/10. In Fig. 7(b), we depict the
comparison between the bands of the two chains, obtained
for t ′ = −0.86 eV and t ′′ = −0.15 eV. With the parameters
of the four-site model fixed, we compute the energies for
the trimer via exact diagonalization. Then, we fit the spin
model to the first 33 states obtained from exact diagonaliza-
tion. In Fig. 7(c), we show the fit of the energies to the ones
obtained with exact diagonalization; an excellent agreement
is observed. In panel (d) of the same figure, we show the
parameters of the spin model obtained from the fitting pro-
cedure; the signs and relative magnitudes are similar to those
we just obtained for the triangulene trimer. This confirms that
the interactions that appear in the model we derived are not
artifacts caused by the restriction of the Hilbert space in the
CAS approximation.

APPENDIX C: EXACT DIAGONALIZATION OF SPIN
CHAINS AND RINGS

In this Appendix, we wish to compare the BLBQ Hamil-
tonian with the complete Hamiltonian given in Eq. (9), and
infer the possible effects of the exchange interactions which
are absent in the BLBQ model. To achieve this, we shall ex-
actly diagonalize (using the QUSPIN package [50,51]) the two
spin models for spin chains with up to L = 13 S = 1 spins;
we consider both open boundary conditions (OBC) as well
as periodic boundary conditions (PBC), thus realizing spin
rings.

In Fig. 8(a), we consider the case with OBC, and depict the
evolution of the sinlget-triplet splitting (i.e., the energy of the
first excitation) as a function of the chain length L. For both
models we find that the singlet-triplet splitting decays expo-
nentially. Assuming that this energy splitting takes the form
Ae−L/ξ , with A some constant and ξ the correlation length, we
obtain ξ ∼ 2 and ξ ∼ 3 when Eq. (9) and the BLBQ model
are considered, respectively.

In Fig. 8(b), we focus on the case with PBC, i.e. spin rings,
and track the evolution of the first excitation as a function
of the chain length; in the limit L � 1 this should converge
to the Haldane gap. Due to computational limitations we are
unable to go beyond 13 spins, and consequently we do not
accurately capture the saturation of the first excitation energy.
Nonetheless, it is clear that the results for both model share
the same qualitative features, and appear to only differ on the
Haldane gap, which is larger when the Hamiltonian of Eq. (9)
is used.

Hence, with this simple analysis we see that in re-
gion of the parameter space we are considering, which is
the relevant one for this kind of system, the new interac-
tions that appear in Eq. (9), and are absent in the BLBQ
model, preserve the qualitative features of the spin model, al-
though quantitatively some differences appear. Future studies
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OBC PBC
(a) (b)

FIG. 8. (a) Singlet-triplet spinning (i.e., energy of the first excita-
tion) obtained for S = 1 spin chains with up to 13 spins considering
open boundary conditions. (b) Energy of the first excitation for
spin chains with periodic boundary conditions, i.e., spin rings.
In both panels, the exact diagoanlization was applied considering
the complete Hamiltonian of Eq. (9) and the BLBQ Hamiltonian.
The parameters were determined using Eq. (10) and considering
t = −2.7 eV, t3 = t/10 and U = |t |, i.e., J = 20 meV, B1 =
2.97 meV, J2 = 2.45 meV, and B1,1 = −1.14 meV (the last two pa-
rameters are only used in the compelte model).

should focus on a more thorough comparison of the two
models.

APPENDIX D: THE EFFECT OF INCREASING
THE ACTIVE SPACE ON THE VALUE OF β

At last, in this Appendix, we perform a more detailed study
on the values of β for the S = 1 dimers discussed in the final
part of the main text. We shall compute both J and B for sev-
eral values of U in two different active spaces, i.e. CAS(4,4)
which accounts only for the 4 zero modes, and CAS(6,6)
which includes the highest occupied molecular orbital and the
lowest unoccupied molecular orbital. In the CAS(4,4) calcula-
tion, we use t3 = t/10, while in the CAS(6,6) calculation, we
consider t3 = 0. In the relevant region of the parameter space,
i.e., U ∼ |t | the different exchange mechanisms are additive,
and the results for CAS(6,6) with t3 = t/10 are essentially
given by summing the results from CAS(4,4) with t3 = t/10
with the ones from CAS(6,6) with t3 = 0 [42]. These results
are summarized in Fig. 9; in Table I we show the correspond-
ing value of β obtained for U = |t | with the two considered
active spaces with t3 = t/10. From Table I, we see that the
values of β obtained with CAS(4,4) and CAS(6,6) are similar
in all cases, except for the triangulene dimer separated with
a benzene, i.e., case (b). For this particular molecule, the

J CAS(4,4) B CAS(4,4) J CAS(6,6) B CAS(6,6)

(a)

(c) (d) (e)

(f)(b)

FIG. 9. Values for J (black) and B (red) as a function of U obtained by comparing the BLBQ spectrum with CAS calculations for the six
dimers shown in the main text. Solid lines represent results obtained from CAS(4,4) with t3 = t/10 and dashed lines correspond to results
obtained with CAS(6,6) with t3 = 0.
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TABLE I. Values of β = B/J obtained by comparing the BLBQ
energies with CAS(4,4) and CAS(6,6) calculations, with U = |t | and
t3 = t/10, for the six molecules mentioned in the main text.

a b c d e f

βCAS(4,4) 0.11 0.002 0.14 0.16 0.18 0.03
βCAS(6,6) 0.11 0.01 0.14 0.16 0.16 0.03

benzene that separates the two triangulenes leads to a sub-
stantial reduction of intermolecular hybridization, as can be
seen in Fig. 9 where the values of J and B are one order of

magnitude smaller than the ones of case (a) where the benzene
spacer is absent. Due to the very weak intermolecular hy-
bridization of the zero modes, the contribution from CAS(4,4)
is not enough to accurately describe the system in the region
U ∼ |t |, and processes involving orbitals higher/lower in en-
ergy must be accounted for, as evidenced by the difference
between CAS(4,4) and CAS(6,6) calculations. Regarding the
remaining molecules depicted in Fig. 9, we note that the
contribution to exchange coming from CAS(4,4) is the most
relevant one for U ∼ |t |. However, as U increases, the contri-
bution from Coulomb driven exchange becomes more relevant
and can even surpass the one coming from the hybridization
of zero modes.
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