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The shift current is part of the second-order optical response of materials with a close connection to topology.
Here we report a sign inversion in the band-edge shift photoconductivity of the Haldane model when the system
undergoes a topological phase transition. This result is obtained following two complementary schemes. On
one hand, we derive an analytical expression for the band-edge shift current in a two-band tight-binding model
showing that the sign reversal is driven by the mass term. On the other hand, we perform a numerical evaluation
on a continuum version of the Haldane model. This approach allows us to include off-diagonal matrix elements
of the position operator, which are discarded in tight-binding models but can contribute significantly to the
shift current. Explicit evaluation of the shift current shows that while the model predictions remain accurate in
the deep tight-binding regime, significant deviations arise for shallow potential landscapes. Notably, the sign
reversal across the topological phase transition is observed in all regimes, implying it is a robust effect that could

be observable in a wide range of topological insulators.
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I. INTRODUCTION

Over the last decades, interest has grown on the second
order optical response known as the bulk photovoltaic effect
(BPVE) [1-3]. This is partly due to its prospects for the
development of efficient solar cells not bound by the Shockey-
Queisser limit [4-6]. For a material subject to an electrical
field E(w), the BPVE generates a DC current j that can be
written as

J40) = 0(0; 0, —w)E(w)E* (—w), (1)

where superscripts refer to Cartesian components and
o (0; w, —w) is the photoconductivity tensor, which we de-
note simply as o%*“(w) from now on. Given the quadratic
nature of the BPVE, it can only be present in noncentrosym-
metric materials [7].

Multiple contributions to the BPVE exist, such as the shift
and injection currents; these can arise from linearly or circu-
larly polarized light, where the polarization controls how the
relevant matrix elements are combined [8,9]. In particular, the
linear shift current has attracted considerable attention lately
[10-16], and its photoconductivity tensor is given by [17]

i ne’ Jabb

X [S(C‘)nm - a)) + S(G)mn - a))] (2)

O,abc'(w) —

Here, f., = f. — fm 1s the occupation factor difference,
Wyn = Wy — W, 18 the energy gap of the bands involved, and
the transition matrix element
b b 3
I;;;I;j = IWITIIl ’ﬂ;;I;: (:3 )
contains the dipole term r =i(l — 8,,)(n|d,/m) and its
generalized derivative ry.) = 3 Tew — i(AS — AS Dry, with

nm
Al = i(n|d,|n) the intraband Berry connection. In this
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context, the shift current can be interpreted as the real-space
shift of electrons upon an interband transition, encoded in the
shift vector R% = 3,@m + A%, — A% with 1y = |Fyun|e™Pm
[17].

Recently, the geometric interpretation of nonlinear optical
responses has lead to a connection to the field of topology
[18-20]. In the shift current, the geometry of the wave func-
tion comes into play through the Berry connection A,,,, which
describes the relation between bordering wave functions be-
longing to the manifold with band index n. As a consequence
of the role of geometric aspects, the shift current is enhanced
in materials like Weyl semimetals [21-26]. Another particu-
larly appealing effect was reported in the work of Tan and
Rappe [27], where DFT calculations in BiTel and CsPbls
revealed that the shift current undergoes a sign change across
the topological phase transition (TPT). This singular behavior
could potentially be exploited for the experimental determi-
nation of topological states by purely optical means. Given its
potential practical interest, it becomes desirable to gain insight
into the fundamental aspects of this peculiar effect.

Considering the above, the well-known Haldane model
represents an ideal test system for various reasons. First, it
describes a Chern insulator hosting a TPT between a trivial
and a topological insulator [28]. Second, it allows inversion
symmetry breaking, a mandatory requirement for a nonzero
shift current. Finally, thanks to its relatively simple two-band
model structure, the resulting analysis offers a clear descrip-
tion of the sign reversal effect and its regime of validity.

In this work, we examine the band-edge shift current in
the Haldane model by means of two complementary schemes.
First, based on a k - p expression for the transition matrix
element [29], we show that the low-energy current reverses
its sign upon the TPT due to a sign change of the mass term.
Additionally, we show that in the topological insulating phase
the shift photoconductivity tensor at the two valleys in the
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Brillouin zone (BZ) has opposite signs, resulting in a sharp
discontinuous jump in the secondary gap. In order to evalu-
ate the generality of the model results, in a second step we
conduct an exact numerical evaluation of the shift current in a
continuum system that maps into the Haldane model. Our cal-
culations show that, while the model predictions remain valid
in the deep-tight-binding regime, significant quantitative and
qualitative deviations arise for shallow potential landscapes
that mimic known two-dimensional (2D) materials. Notably,
the band-edge sign reversal through the TPT is observed in all
regimes despite the numerical differences, suggesting that the
effect is very robust and largely independent of the potential
describing the system.

This paper is organized as follows. In Sec. II we present
our analytical calculation of the shift current on the Haldane
model and discuss the role of the TPT and the k - —k
asymmetry in the band structure. Then, in Sec. III we de-
scribe the results of the numerical evaluation and analyze the
quantitative importance of off-diagonal matrix elements of the
position operator, not included in the tight-binding model.
Finally, we provide conclusions and outlook in Sec. 1V,
and describe TPT’s between higher-order Chern numbers in
Appendix.

II. SHIFT CURRENT IN THE HALDANE MODEL
A. Review of the model

The Haldane model is built on a 2D honeycomb lattice
formed by a triangular lattice containing a two atom basis
[28]. This results in two sublattices which we refer to as A
and B. The relevant vectors involved are the lattice vectors
a, = a/2(+/3,3) and a, = 3a/2(x/3, —3); the shift between
nearest neighbors (nn) e; = (0, a) and e; 3 = a/2(:|:«/§, —1);
and the displacement between next-nearest neighbors (nnn)
vi = (=v/3a,0) and v,3 = a/2(~/3, F3), where a is the
lattice parameter. The properties of the system are con-
trolled by a tight-binding Hamiltonian with the following
elements:

(i) The on-site energies +M(—M) for the A(B) site.

(i) The nn hopping parameter ?,.

(iii) The nnn hopping parameter e+ with 4(—) for the
A(B) — A(B) term.

The appearance of the phase ¢ in the nnn hopping pa-
rameter is due to the inclusion of a vector potential with the
periodicity of the cell under the condition that the net mag-
netic flux is null. As a loop on the full lattice can be performed
by hopping along nn, #; does not pick up a phase, while ¢, does
for the opposite reason. This leads to the breaking of the time
reversal symmetry.

The Hamiltonian expressed in k space takes the form [30]

HEK) =) fik)oi,

3
fo =2t cos¢p |:Z cos(k - Vi)i|,

i=1

fi=t) cos(k-e),

H=0) sink-e),
f3=M —2t;sin¢ Z sin(k - vj). “

The band structure of the model is given by € = /), f;
and the band edges are located at the corners of the BZ, which
are the K = % 0)and K' = (—3%, 0) points. The band
gap A(K) at the two valleys can be explicitly written as

A =2(M + x3v3nsin¢p) = 2m(x), 5)

where y = —1(41) makes reference to the K(K’) point, and
m(x) is known as the mass term. Equation (5) shows that
the gap at the corners of the BZ is a function of the tight-
binding parameters. Note that for f, sin¢ # 0 their values
differ. Whenever m(x) < 0, a band inversion takes place, im-
plying a change in the topology of the system. For the Haldane
model, the Chern number characterizes the topological order
of the system, which can be written as

1 f of of
= — —3< —)dkxdky. 6)
4 Jpz If |l

— X
dk, 0k,

There are three different scenarios within the Haldane
model; if |M| = 3+/3|t> sin¢| the system is gapless, |M| >
34/3|t, sin ¢| represents a trivial insulator (C = 0), and |M| <
33|t sin ¢| describes a topological insulator (C = 1) [31].
This implies that the lowest energy band-edge gap changes
sign upon the TPT. Another important observation for the
proceeding section is that m(y ) acquires a different sign at
the two valleys only in the topological insulator phase.

B. Band-edge shift current: sign change at the TPT

In order to derive an analytical expression for the shift cur-
rent, we make use of a simplified formulation for the transition
matrix elements in Eq. (2) that was given in Ref. [29] and is
valid for two-band models:

1 €.b
Iy = Z ] (fmfi,bfj,ab - fmﬁ,bfj,a?)éijm, (N

ijm

with f; , = 9,f; and €, the Levi-Civita tensor.

Given that we are interested in the properties at the band
edges, we perform a second order Taylor expansion of Eq. (4)
around the K and K’ points. Due to the presence of a second-
order derivative in Eq. (7), we need to Taylor expand up to
second order in momentum. The resulting low-energy Hamil-
tonian is

3 1 2 2 1 2 2
fir= Fh <X61xa — D9t 40 ) (®)
3 1 )
= Fh\ @a = Sxaxqya” |- )

93
fr=mG0+ x %_rz sin(@)(q;a” + gya°).  (10)

Here m( ) is the mass term as defined in Eq. (5) and ¢; (i =
x, y) are the momenta centered at the corners of the BZ. The
Jfo term need not be specified since it does not affect the tran-
sition matrix elements in Eq. (7). For energies of the incident
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radiation close to the band-edge hiw =~ 2|m(x )|, Eq. (2) can be
factorized as [29]

abb __”_63
o(w) = 4h2112(60)N(w)» (11)

where N(w) = f %8 (2€ — how) is the joint density of states
(JDOS) and 2e is the energy difference between the two bands
[29].

The evaluation of Eq. (7) results in

- 9a3tzsign[m(x )]
LY (w) = ———"2= 1+ 0(g), 12
12 (@) 8(/i0)? + O(q) (12)
, 9a3t?sign[m(x)]
[ (w) = ——1=""22 1 O(g). 13
As expected from the C3, point group of the Haldane model,
0" = —¢?*, while the rest of components vanish by sym-

metry.

Next, in order to evaluate N(w) at the band edge, we
perform a Taylor expansion in the energy difference of the
bands and express it in polar coordinates as

2.2

h
fon(g) ~ 2lm(x)| + 7" (14)

2,2 2 ; . .
where ﬁ — i ~18V3a mOJLX Sin@) Then, the JDOS simpli-
M Am(x)|

fies to
hiw ©(hw — 2|m(x)I)
18 a?t} |n(x)l

with n(x) = 1 — 24/3|m(x)|r2 sin(¢)/1}.
Note that for #, # 0, the JDOS for the expanded Hamilto-
nian at K and K’ points is not equal due to the n(yx) term.
Plugging Eqgs. (12) and (15) into Eq. (11), the shift current
tensor at the band edge reads

N(w) = as)

ea

4R wln(x)l

One important aspect of the above expressions is that the
tensor components depend on the sign of the mass term m(x ),
which changes across the TPT. Equation (16) therefore re-
produces the sign reversal effect found by DFT calculations
in topological insulators BiTel and CsPbl; [27], and is also
in accordance with the general conclusions of a related work
[32]. In the Appendix we extend these results and show that
the sign reversal of the band-edge shift current also holds for
TPT’s involving higher-order Chern numbers. As a second
major point of Eq. (16), in the topological phase the photocon-
ductivity contributions at the two valleys have opposite signs
owing to the valley dependence of the mass term in Eq. (5).
Therefore, an additional sign reversal can arise at the largest
band-gap value of the two valleys. In the coming section we
study in more detail these two particular features.

o (@) = — signm(x)] = —0" ().  (16)

III. TESTING MODEL PREDICTIONS

In order to complement the analysis of the previous section,
we now consider a continuum version of the Haldane model
and compute the shift current exactly following the numerical
scheme of Ref. [33]. The purpose of this procedure is to verify
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FIG. 1. Cartesian components of off-diagonal matrix elements of
the position operator as a function of the distance between Wannier
orbitals. Employed parameters are s = 0.70, ¥ = 1.5-1073, and
a =0.27.

to what extent does the simplified two-band model expres-
sion in Eq. (16) describe the actual shift current response. In
general, this is composed by both Hamiltonian and position
matrix elements [33]. While tight-binding models can account
for the matrix structure of the Hamiltonian via tunneling terms
between different sites, the position is implicitly diagonal
[34-36]. To study this in greater detail, let us express the
position operator in a localized Wannier basis |Rm) [37] as

(0n|r|Rm) = T,,00ROm + dnm(R) a7

Here 7,,60r 5, corresponds to the onsite or diagonal element
of the position operator, while d,, are the hopping or off-
diagonal elements of the position operator. In tight-binding
models, d,;, = 0 generally, so the contribution of these terms
is not included in Eq. (16). References [38,39] have assessed
the impact of intraatomic d,,, in the linear optical response of
toy models. More recent works have shown that the effect of
d,,,, on the shift current can be of the order or the Hamiltonian
matrix elements [33,40], and that it becomes specially large
for two-band systems [41]. Therefore, it is reasonable to ask if
the predictions encoded into the two-band model expressions
of Eq. (16) hold in reality. This is our main purpose in the
remainder of this work.

A. Continuum model

‘We consider the continuum model of Ref. [42], which was
proposed to mimic the Haldane model in the context of cold
atoms trapped in optical lattices. Here the lattice is spanned
by the lattice vectors a; » = (2 /3k)(e, F «/§ey) (kg is the
so-called laser wave vector) [42]. Hence, the Hamiltonian

1
H=—[p—AMP +V.(r) (18)
2m
is characterized by a scalar potential Vi(r) and a vector

potential A(r). The former is responsible of generating the
honeycomb lattice, and has the form

Vi(r) = 2sER{ cos[(b; —by) - r] 4+ cos <b1 B %1//)

4 cos (b - r)}, (19)
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FIG. 2. Cartesian components of the dominant off-diagonal ma-
trix elements of the position operator as a function of s and its
correlation to the spread of the Wannier functions. Employed param-
eters are = 1.5- 1073 and o = 0.27.

where Eg = hzki /2m is the recoil energy, s characterizes the
amplitude of the potential in units of Eg, b; are the reciprocal
lattice vectors, and ¥ controls the inversion symmetry break-
ing. The vector potential A(r), given by

2

1 .
A(r) = ahkL|:{ sin[(by —by) - r] + 7 ;(—1)’

i=1

2
x sin (b; - r)}ex — ? Z sin(b; - I‘)ey:|, (20)

breaks time reversal symmetry for o # 0, which is the ampli-
tude of the potential. In this continuum model, the tunnelings
and on-site energies 1, ;, and M depend on the parameters
that control the potentials, namely s, v, and « [43].

Calculation details

The procedure that we have employed for the numeri-
cal evaluation can be summarized in three steps. First, we
solve for the eigenvalues and eigenfunctions of Hamiltonian

1000
; ronnl |
(@)

- 100

M
r 10
—~ =
~— ¢ Yo 1
= >
~d S
~

k, (A)

(18) following the approach described in Refs. [44,45]. Then,
maximally localized Wannier functions are constructed from
Bloch eigenfunctions using the software package Wannier90
[46]. This is done by minimizing the spread of the Wannier
functions

Q=) "[{0n[r*|0n) — (On|r|0n)*], 1)

which is a measure of their degree of localization [47,48].
Finally, we compute the shift current following the procedure
outlined in Ref. [33].

Regarding the parameters involved in the simulations, we
have generated the continuum model following the procedure
outlined in Refs. [43,45]. We have a employed a 15x15 k-
point mesh as a basis to construct Wannier functions, while
we have employed a fine 2000 x 2000 mesh through Wannier
interpolation to compute the shift current in Eq. (2).

B. Matrix elements of the position operator

We begin by studying the effect of off-diagonal position
matrix elements [d,,,, in Eq. (17)]. For this purpose, let us first
set the real-space dimensions of the system. In our implemen-
tation we have chosen k;, = 0.78 10%‘1, leading to the lattice
vectors a; » = (2.65, F4.58) 10\, lattice parameter a = 3.05 A,
and Wannier centers 7;, = (1.40, 70.81) A. In this way, our
system has similar dimensions to real 2D monolayers [49]
such as BC,N studied in Ref. [41], which will serve as a
reference.

Figure 1 presents the Cartesian components of d,,, as a
function of the real-space distance between orbitals

Dnm(R) = |Tn —Tm+ Rl (22)

The results have been calculated for a setup that is inversion
asymmetric with = 1.5 - 1073, TR broken with & = 0.27,
and relatively shallow potential well of s = 0.70.

We observe that the predominant contribution to d;,, comes
from the nn within the unit cell at D,,, ~ 1.6 A, but neigh-
bors as far as 10 A still contribute with half the maximum
value. For d),, the dominant contribution is the nnn term

1000

K?
- Y
(b) L 100
M
10
= =
\—; . .F Q.K 1 -
4 i 3
r-10
L -100
- .

-1000

FIG. 3. Representation of 1}3” in the BZ for the (a) C = 0 and (b) C = 1 phases obtained with parameters « = 0.0, = 1.5 1073, s=25

and @ = 0.13, ¢ = 1.5- 1073, s = 2.5, respectively.
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FIG. 4. Shift photoconductivity o**?(w) of the trivial (blue) and
topological (magenta) systems described in Fig. 3. The energy is
measured with respect to each ones first band gap and vertical lines
mark the gaps at the band edges of the topological insulator. A 1//iw
decay for the C = 0 case is also included (green dashed line).

at D,,, ~ 4.0 A, and the decay with distance is similar to
that of d;,. We note that these trends are in line with the
two-band position matrix elements as well as the magnitudes
of monolayer BC,N [41].

Next, we analyze the dominant contributions of d;,, and
d>y, for varying s, represented in Fig. 2. In addition, we also
plot the spread of the Wannier functions in Eq. (21) as a func-
tion of s. Our results show that the d,,, increase significantly
in the low s regime, which correlates with a large spread €.
Therefore, the model parameter s effectively allows to control
the importance of off-diagonal position matrix elements. As
pointed out earlier, the magnitude of the calculated d,,, for
low s is of the same order as the one found in real materials
such as monolayer BC,N [41].

C. Numerical shift current
1. Deep tight-binding regime

We come now to test the results of the tight-binding analy-
sis. For this purpose, we start analyzing the deep tight-binding
regime (large s) and choose two sets of parameters that de-
scribe a Haldane model in its trivial and nontrivial insulating
phases [43]. The associated transition matrix element ;5" is
shown in Fig. 3. As revealed by the figure, ;5" is highly
localized in the two valleys, which justifies the k - p expansion
performed in Sec. II B. We note that the calculated sign at K
and K’ agrees with the model predictions encoded in Eq. (12)
for both the C = 0 and C = 1 cases.

We next focus on analyzing the resulting shift current
tensor 07 (w), shown in Fig. 4 for both phases. We observe
that the responses associated to the lowest energy band-edge
transition have opposite signs for the two phases (in this ex-
ample the gap at both valleys for the C = 0 phase are equal).
Furthermore, the shift photoconductivity at the second band-
gap also manifests a sign inversion in the C = 1 case, which is
due to the opposite sign of the transition matrix element at the
two valleys [see Fig. 3(b)]. The characteristics described are
in accordance with Eq. (16), revealing that the two-band shift

9 x10~°
NI
o I} e
kI e
Sl W T T s = 0.70
s = 1.00
—6 s =148
0.00 0.02 0.04 0.06
hw (ER>

FIG. 5. Shift photoconductivity o**”(®) in the continuum Hal-
dane model for three values of s. For each value of s a trivial insulator
(dashed) and a topological insulator (solid) is represented, with
parameters @ = 0.0, ¥ = 1.5-1073 and « = 0.27, ¥ = 1.5- 1073,
respectively. For s = 0.70, the sign at the second band edge is not
reversed, a feature that is marked by the arrow.

current expression appropriately describes the main response
features close to the band edge.

Concerning the behavior of the photoconductivity around
the band edge, in Fig. 4 we have included for the C = 0 case
the 1/w decay predicted by the band-edge model expression
of Eq. (16). As shown in the figure, the fit reproduces fairly
well the decay close to the band edge but underestimates it at
higher energies.

2. Limits of the TB description

In order to verify the extent of validity of the model pre-
dictions, we next compute the shift current as a function of
the parameter s. This is illustrated in Fig. 5, where we show
the calculated o?Y for three values of s. As observed in the
figure, the sign reversal at the lowest band-gap across the TPT
is maintained along the entire range of s. This implies that it
is a robust effect that is present beyond the deep tight-binding
regime. However, that is not the case for the sign inversion at
the second band gap in the topological phase, which fails to
take place for s = 0.70 (see marking arrow in Fig. 5).

To inspect the latter feature in more detail, in Fig. 6 we
show the transition matrix element ;5" of Eq. (2) along the
high symmetry line KMK'T for the C = 1 case with s = 0.70.
Apart from the exact calculation of ;3", we have also included
a “tight-binding-like” contribution obtained by setting d,,,, =
0, which serves to identify the extent of their contribution. The
maximum difference between the two sets takes place at I but
it is also very pronounced at the K and K’ points. Importantly,
the effect of the d,;,, is inequivalent at the two valleys, leading
to [15"(K)| = 35.7 A and |1} (K')| = 31.8 A. In contrast, ac-
cording to the model expression of Eq. (12) it should have vir-
tually the same value given that the band gap at the valleys has
similar energy A(K’) = 1.02A(K); this is actually the case for
the “tight-binding” transition matrix element, with |1}3” (K)| =
28.68 A and |17 (K')| = 28.01 A. It is precisely the fact that
115" (K)| > |15"(K)| in the full calculation that prevents the
shift photoconductivity to flip sign at the gap in K marked by
the arrow in Fig. 5. This circumstance neatly exemplifies the
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FIG. 6. Top: tight-binding and full matrix element I;;” along the
high symmetry line KMK'T". Bottom: the difference between the two

data sets, which accounts for the contribution from d,,, to ;5.

importance of off-diagonal position matrix elements, which
can modify not only quantitatively but also qualitatively the
model predictions for the shift photoconductivity.

IV. CONCLUSIONS AND OUTLOOK

In summary, we have obtained a two-band tight-binding
expression for the nonlinear shift photoconductivity in the
Haldane model. It describes an optical sign inversion when
the system undergoes a topological phase transition and is
driven by the mass term. Additionally, the model expression
predicts a further sign change of the shift photoconductiv-
ity in the topological phase at the band gap of the second
valley. In a subsequent step, we have assessed the extent of
validity of these properties based on exact numerical eval-
uation of the shift current on a continuum version of the
model. This approach incorporates off-diagonal matrix ele-
ments of the position operator d,,,,, which are not included
in the tight-binding approach. We have found that the con-
tribution of d,,, to the shift current is significant for shallow
potential landscapes that mimic known 2D materials. While
the model predictions for the secondary sign change fail
far from the tight-binding regime, the main band-edge sign
change takes place in all inspected regimes of the continuum
model.

The above suggests that the sign reversal of the shift current
across the topological phase transition is a robust effect that
might therefore be experimentally observed in real topologi-
cal insulators. The pool of materials include two-dimensional
quantum anomalous Hall systems such as thin films of Cr-
doped (BiSe),Te; [50] and interfaces between ferromagnetic
and nonmagnetic semiconductors [51] (see, e.g., Ref. [52]
for more examples). In these systems, the topological phase
transition of interest can be induced by means of an external
magnetic field, which plays the role of the complex phase
¢ in the Haldane model. Additionally, the conclusions of
the present work can also be valuable in three-dimensional
topological insulators such as BiTel and CsPbls, given that
their topology described by the Kane-Mele model [53] is

driven by the inversion of the mass term at the band edge, a
feature that is shared with the Haldane model. In these classes
of topological materials, the topological phase transition
can be induced by applying pressure and effectively tuning
the lattice parameter, as described in the work of Tan and
Rappe [27].
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APPENDIX: HIGHER CHERN NUMBER
PHASE TRANSITIONS

In this Appendix we expand on the results obtained
in Sec. IIB by considering a topological phase transition
between nontrivial phases. Within the Haldane model, a
topological phase with |C| =2 can be achieved by in-
cluding the third nearest neighbor tunneling #; into the
model, as proposed in Ref. [54]. This then opens the
possibility for phase transitions between the C = 1 and
C = F2 phases (see phase diagram in Ref. [54]). In the
following, we study the shift current under such phase
transitions.

Since the third nearest neighbor connects A sites with B
sites, it results in an extra term in the Hamiltonian coefficients
that go with the Pauli matrices o and o0,:

3
fl=hH+1) cosk-c), (A1)

3
fy=f+1) sin(k- ). (A2)

Here ¢; are the vectors connecting to third nearest
neighbors [54]. An important difference with the
standard Haldane model is that the band-closing point
does not take place exactly at the K (or K’) point
but at three points around it. One of such points is
given by

K" = K" + x8k(1,0), (A3)

with §k a small displacement; the remaining two gap-closing
points are found by applying the C3 symmetry operation.

Expanding the Hamiltonian around K results in lengthy
expressions for the coefficients f;. The most important change
for our purpose takes place in the f3 term containing the mass
term, which is modified as

9/3a%8k>t, sin(¢)
4

This modified mass term drives the topological phase transi-
tion as its sign is reversed.

m'(x) = m(x)+ +0@6k®). (Ad)
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The new shift-current transition matrix element ;5 com-
puted with the aid of Eq. (7) reads

3 2 2
P~ a’ (9t} + 181,13 — 3613)

852 w?

sign[m'(x)].  (AS)

As in Eq. (12) for the standard Haldane model, Eq. (A5)
above depends on the sign of the modified mass term. In

practice, this is due to the fact that the band-edge contri-
bution to Ilazbb is determined by the terms f3f /2.4 and
S3f2.6/1.a0 In Eq. (7), which contain the mass term only once.
Therefore, Eq. (AS5) shows that the band-edge shift current
also undergoes a sign flip at the TPT between the C = +1
and C = F2 nontrivial phases. This result agrees with the
conclusion of Ref. [32] derived on the basis of a more generic
argument.
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