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We present a systematic topological theory of the scattering matrix and its submatrices, focusing on the
singular values and vectors. We study the topological properties of the scattering matrix in the parameter space
and determine a set of topological characteristics for a general system, including the winding number, Berry
phase, and skew polarization. We reveal unique topological effects for a reciprocal system such as quantized
single-band polarization and Z2 topology of Takagi vectors. Applying our theory, we reveal the topological
nature of two phenomena: the well-known effect of coherent perfect absorption and a new effect we call coherent
perfect extinction. Coherent perfect extinction refers to the complete extinction of light due to interference of
multiple incident waves. It accounts for both absorption and scattering losses and encompasses many other
known effects such as complete polarization conversion and reflectionless scattering modes, providing a unifying
theme for these phenomena. Our analysis highlights the topological nature of these effects and provides criteria
to localize their occurrence in parameter space, facilitating optical design to achieve these effects. We propose
utilizing coherent perfect extinction for multichannel background-free sensing. These findings significantly
advance our understanding of scattering phenomena and have important implications for the development of
novel optical devices.
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I. INTRODUCTION

Topology is widely used in modern physics and provides
a powerful framework for understanding physical phenomena
[1–4]. Extensive research has been conducted on the topol-
ogy of the Hamiltonian in the parameter space such as the
Brillouin zone [5,6], leading to significant discoveries such
as the TKNN formula [7], Berry phase [8,9], and topological
insulators [10–12].

In addition to the Hamiltonian, the scattering matrix (S
matrix) [13] is another crucial characterization of a phys-
ical system. The scattering matrix is directly measurable
and essential in understanding physical phenomena such as
electron transport [14], light scattering [15,16], and particle
collisions [17]. It is therefore useful to study the topology
of scattering matrices. The topology of a single scattering
matrix element has been discussed in various contexts, includ-
ing optical vortices [18–24], polarization conversion [25–30],
optical computation [31,32], exceptional points [33,34], and
scattering anomalies [35,36]. However, there has been only
limited discussion regarding the topology of the entire scat-
tering matrix and its submatrices [37–40].

In this paper, we study the topology of scattering matrices,
focusing on the singular values and vectors [41]. Singular
values and vectors are fundamental characteristics of a scatter-
ing matrix and have direct implications on basic phenomena
including transmission [42], reflection [43], absorption, and
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emission [44,45]. They are also essential in applications such
as imaging [46,47], integrated photonics [48,49], and optical
neural networks [50].

Our main results are as follows. Firstly, we develop a gen-
eral theory on the singular topology of scattering matrices. We
analyze the evolution of a scattering matrix along a loop in the
parameter space and determine a set of topological character-
istics, including the winding number, Berry phase, and skew
polarization. We further reveal the unique topological effects
of a reciprocal system, such as quantized single-band polar-
ization and Z2 topology of Takagi vectors. Then, we apply
our general theory to reveal the topological nature of two phe-
nomena: the well-known effect of coherent perfect absorption
[51] and a new effect we call coherent perfect extinction.

Coherent perfect absorption refers to the complete absorp-
tion of light due to the interference of multiple incident waves
[51]. While this effect has been extensively studied [22,51–
59], its topological nature has not been recognized beyond the
one-port case (i.e., the case of critical coupling [15]). Coherent
perfect extinction refers to the complete extinction of light
due to interference of multiple incident waves. This effect
generalizes the notion of coherent perfect absorption, and
differs in that it accounts for both absorption and scattering
losses. Additionally, coherent perfect extinction encompasses
other physical effects such as complete polarization conver-
sion [25] and reflectionless scattering modes [60–62]. Our
theory points to topological concepts as a unifying theme that
underlies these seemingly disparate phenomena. Our analysis
highlights the topological robustness of these effects under
generic parameter perturbations and provides criteria to lo-
calize their occurrence in parameter space, facilitating optical
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FIG. 1. Eigen topology of a Hermitian matrix H vs singular
topology of a scattering matrix S. (a) H depends on parameters
(τ1, τ2), where γ is a loop in the parameter space. Here the parameter
space is two-dimensional, but in general, it can have an arbitrary di-
mension. (b) S depends on (τ1, τ2). From S we construct a Hermitian
block matrix. (c) Eigen topology of H . We showcase a Dirac cone
with sheets representing eigenvalues and arrows representing eigen-
vectors as Bloch vectors. (d) Singular topology of S is connected
to eigentopology of the block matrix. We showcase the effective
two-band model of coherent perfect absorption. The sheets represent
the eigenvalues of the block matrix, which equals the singular values
of S and their negation. The arrows represent the eigenvectors of the
block matrix, which are related to the left and right singular vectors
of S.

design to achieve these effects. As a practical application,
we propose utilizing coherent perfect extinction for multi-
channel background-free sensing. These findings significantly
advance our understanding of various scattering phenomena
and have important implications for the development of novel
optical devices.

Our work reveals a fundamental connection between the
singular topology of a scattering matrix S and the eigentopol-
ogy of a chiral symmetric Hermitian matrix

H =
(

0 S†

S 0

)
. (1)

[See Figs. 1(a) and 1(b).] While this block matrix technique
has been previously utilized in the study of Floquet operators
[63] and non-Hermitian Hamiltonians [64–67], it has not been
applied to the analysis of scattering matrices. By leveraging
the well-established techniques of eigentopology of Hermitian
matrices, we can systematically study the singular topology
of scattering matrices. Our analysis reveals the emergence of
similar mathematical patterns in different physics contexts:
scattering phenomena and band topology. For instance, we
demonstrate that coherent perfect absorption has a mathemat-
ical structure isomorphic to the Dirac cone in graphene [see
Figs. 1(c) and 1(d)]. We anticipate that further exploration of
this correspondence will uncover new topological effects in
wave scattering. This approach may also point to new insights

FIG. 2. Scheme of the system.

into other scattering anomalies, including laser anomalies,
exceptional points, bound states in the continuum, etc.

This paper primarily focuses on the scattering matrices of
bosonic systems, including photonic and acoustic systems.
However, with additional caution, many of our findings can
also be extended to fermionic systems, such as electronic
systems.

The rest of this paper is organized as follows. In Sec. II,
we review the scattering matrix and its singular value de-
composition. In Sec. III, we develop a general theory on the
singular topology of scattering matrices. In Sec. IV, we reveal
the topology of coherent perfect absorption. In Sec. V A, we
propose coherent perfect extinction and study its topology.
We discuss in Sec. VI and conclude in Sec. VII. We intro-
duce mathematical notations as necessary throughout the text.
Appendix A provides a comprehensive list of the notations.
Appendices B–F provide detailed mathematical proof and
conventions.

II. SCATTERING MATRIX & SINGULAR VALUE
DECOMPOSITION

In this section, we briefly review the scattering matrix of a
linear system and its singular value decomposition. We eluci-
date the physical significance of singular values and vectors.
We introduce a useful mathematical technique for studying
singular value decomposition.

A. Scattering matrix

A scattering matrix characterizes a system’s response to
an incoming wave or particle [13]. Consider a general n-port
linear time-invariant system (Fig. 2). Each port is made of
lossless reciprocal media and supports an input mode and an
output mode, which are time-reversal pairs [15]. Using these
modes as orthonormal bases, we describe the incoming and
outgoing waves by

a = (a1, . . . , an)T , b = (b1, . . . , bn)T , (2)

where ai and bi are the input and output complex amplitudes
in the ith port, respectively. The system is described by a
scattering matrix S ∈ Mn:

b = Sa, (3)
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where Mn denotes the set of n × n complex matrices. The
matrix element Si j is the transport coefficient from the jth to
the ith port; the diagonal and off-diagonal elements are the
reflection and transmission coefficients, respectively.

B. Singular value decomposition

A scattering matrix S ∈ Mn is in general complex and is
not necessarily Hermitian. Any complex matrix takes singular
value decomposition [41]:

S = U�V †, (4)

where U,V ∈ U (n) with U (n) the set of n × n unitary matri-
ces, and

� = diag(σ1, . . . , σn). (5)

Here σ1 � · · · � σn � 0 are the singular values; the columns
of U , u1, . . . , un, are the left singular vectors; the columns of
V , v1, . . . , vn, are the right singular vectors. In terms of these
singular values and vectors, Eq. (4) can be rewritten as

S =
n∑

i=1

σiuiv
†
i . (6)

The singular values and vectors of the S matrix are crucial
characteristics of a linear system. The S matrix represents a
linear operator that maps from the input space to the output
space of waves. The right singular vectors {vi} and left
singular vectors {ui} form orthonormal bases for the input
and output spaces, respectively. The linear system converts
a right singular vector vi into a left singular vector ui with
an amplitude given by the singular value σi [Eq. (6)]. Thus
the left and right singular vectors form mode-converter pairs,
while the singular value characterizes the strength of each
mode-conversion channel [42,44,68]. These quantities have
direct physical significance and impose fundamental bounds
on basic phenomena such as transmission [42], reflection [43],
absorption, and emission [44,45]. The physical significance
of singular values and vectors motivates us to study their
topology.

C. Block matrix technique

Here we review a standard mathematical technique that
translates the singular value analysis of a complex matrix
(like the S matrix) into the eigenvalue analysis of a Hermitian
matrix [69,70]. This technique has been used in recent studies
of topological phases of non-Hermitian systems [64–67,71].
Consider a 2 × 2 block matrix

H :=
(

O S†

S O

)
, (7)

where O denotes the n × n zero matrix. By construction, H ∈
M2n is Hermitian and has built-in chiral symmetry [72,73],
i.e., there exists a unitary Hermitian matrix � such that

�H� = −H. (8)

Here � is the block Pauli matrix

� = �z =
(

I O
O −I

)
, (9)

where I denotes the n × n identity matrix.

Now we calculate the eigenvalues and eigenvectors of H .
Let λ j with j = ±1, . . . ,±n be the eigenvalues of H ordered
as

λ1 � . . . � λn � λ−n � . . . � λ−1, (10)

and let |ψ j〉 be the corresponding eigenvectors. Substituting
Eq. (4) into Eq. (7), we obtain

H =
(

O V �U †

U�V † O

)
=

(
V O
O U

)(
O �

� O

)(
V † O
O U †

)
.

(11)
Therefore the eigenvalues of H are

λi = σi, λ−i = −σi, i = 1, . . . , n. (12)

The corresponding eigenvectors are

|ψi〉 = 1√
2

eiαi

(
vi

ui

)
, |ψ−i〉 = 1√

2
eiα−i

(
vi

−ui

)
, (13)

where αi and α−i are arbitrary phases.
Equations (12) and (13) relate the singular values and vec-

tors of S to the eigenvalues and vectors of H . Moreover, they
reveal the relations

λ−i = −λi, |ψ−i〉 = eiδi� |ψi〉 , (14)

where δi = α−i − αi is an arbitrary phase. These relations are
direct consequences of the chiral symmetry [Eq. (8)] [72,73].

The block matrix technique establishes a direct correspon-
dence between a general scattering matrix S ∈ Mn and a chiral
symmetric Hermitian matrix H . The topology of Hermitian
matrices has been well studied [74]. For example, there is a
complete topological classification of fully gapped Hermitian
matrices in terms of time-reversal symmetry, particle-hole
symmetry, and chiral symmetry [72]. These known results are
useful in studying the topology of scattering matrices.

III. SINGULAR TOPOLOGY OF SCATTERING MATRICES

In this section, we investigate the singular-value and
singular-vector topology of scattering matrices. We first study
general systems, then examine reciprocal systems. Here in the
study of “general systems,” we do not assume any symme-
try, while in the study of “reciprocal systems,” we consider
systems that adhere to reciprocity relations, such as photonic
systems satisfying Lorentz reciprocity [15] and acoustic sys-
tems satisfying Rayleigh reciprocity [75].

A. General systems

We consider a system described by an n × n scattering
matrix that depends on some parameters τ ∈ 
, where the
parameter space 
 is a p-dimensional smooth manifold1. For

1We recall that a manifold is locally Euclidean: every point τc in

 has a neighborhood U , called a chart, that is homeomorphic to an
open subset of Rp. The homeomorphism defines a coordinate map on
U : τ �→ (τ1, . . . , τp). The coordinates on a chart allow one to carry
out computations as though in Euclidean space. Different charts are
connected by smooth transition functions. See Ref. [111] for more
details about smooth manifolds.
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example, 
 can be Rp, a p-sphere, or a p-torus. The system is
characterized by the map:

S : 
 → Mn τ �→ S(τ ). (15)

We assume that S is continuous. We study the topological
properties of S.

We take a similar approach as Berry’s [8]. Consider a
closed path or a loop γ:

γ : [0, 2π ] → 


φ �→ γ (φ), with γ (0) = γ (2π ). (16)

We analyze the cyclic evolution of S along the loop γ and
determine a set of topological quantities that characterizes the
homotopy of the composite map:

S ◦ γ : [0, 2π ] → Mn,

φ �→ S(γ (φ)), with S(γ (0)) = S(γ (2π )).
(17)

We assume that S ◦ γ is piecewise continuously differentiable
and everywhere invertible:

det S(γ (φ)) �= 0, ∀φ ∈ [0, 2π ]. (18)

Condition (18) is generically met since for A ∈ Mn, det A = 0
is a codimension 2 phenomenon. Typically, achieving det A =
0 requires adjusting two real parameters, as both the real and
imaginary parts of det A must vanish. Thus, in a p-dimensional
parameter space, the equation det A = 0 defines a submani-
fold of dimension (p − 2). A loop like γ as a one-dimensional
manifold generically does not intersect with this submanifold,
since (p − 2) + 1 < p. Therefore generically we can assume
that the matrix S(γ (φ)) has full rank along the loop γ . Similar
codimension arguments will be used throughout this paper.

1. Winding number

First, we can calculate the winding number of S around the
loop γ:

wind(S) := 1

2π i

∫ 2π

0
Tr

(
S−1 dS

dφ

)
dφ, (19)

which can be proven to be equal to the winding number of
det S [76]:

wind(S) = wind(det S) := 1

2π i

∫ 2π

0

1

det S

d det S

dφ
dφ. (20)

See Appendix C for proof of Eq. (20). The winding number
of S is an integer:

wind(S) ∈ Z. (21)

It labels the first homotopy class of S in the general linear
group GL(n,C) whose fundamental group [77]

π1(GL(n,C)) ∼= Z, (22)

where ∼= denotes isomorphism. See Appendix B for proof of
Eq. (22).

2. Berry phase and skew polarization

We can also calculate geometric phases for the singular
vectors of S around γ . We need to further assume that S(γ (φ))
has distinct singular values, i.e.,

σ1(φ) > σ2(φ) > . . . > σn(φ) > 0, ∀φ ∈ [0, 2π ], (23)

where σi(φ) denote the ith singular value of S(γ (φ)). Since
S ◦ γ is continuous, σi is also continuous. We refer to σi as
the ith singular band (of S). In condition (23), σn(φ) > 0
is equivalent to condition (18), while the other inequalities
require all the singular bands to be fully gapped. The latter
is generically met since for S ∈ Mn, having two equal singular
values is a codimension 3 phenomenon [78]. If condition (23)
is not met, one can either apply a small generic perturbation
to restore condition (23), or treat a group of bands glued
together by degeneracies as a whole and develop a multiband
formulation [6]. We will assume that condition (23) is true for
simplicity.

We apply the block matrix technique as discussed in
Sec. II C. From S(γ (φ)), we construct H (γ (φ)) by Eq. (7) and
calculate its eigenvalues λ j (φ) and eigenvectors |ψ j (φ)〉 with
j = ±1, . . . ,±n. From Eq. (12) and condition (23),

λ1(φ) > . . . > λn(φ) > 0 > λ−n(φ) > . . . > λ−1(φ),

∀φ ∈ [0, 2π ]. (24)

Since λ±i(φ) = ±σi(φ) and σi is continuous, λ j is also con-
tinuous. We refer to λ j as the jth eigenband (of H). Condition
24 indicates that all the eigenbands are fully gapped. Con-
sequently, each eigenvector |ψ j (φ)〉 possesses well-defined
geometric phases around γ . Since H (γ (φ)) has built-in chiral
symmetry, there are two different geometric phases: polariza-
tion (Berry phase) and skew polarization [79].

First, we calculate the polarization of each eigenband [6]:

Pj := 1

2π

∫ 2π

0
Aj (φ) dφ, Aj (φ) = i 〈ψ j (φ)|∂φ|ψ j (φ)〉 ,

(25)
which is the Berry phase of |ψ j (φ)〉 around γ in units of
2π [8,9]. We note that Pj is well defined only modulo 1 [6].
Consider a gauge transformation

|ψ ′
j (φ)〉 = e−iβ(φ) |ψ j (φ)〉 , (26)

where β(φ) is a continuous real function with

β(2π ) = β(0) + 2πk, k ∈ Z. (27)

Then Eq. (25) is transformed according to

A′
j (φ) = Aj (φ) + dβ(φ)

dφ
, P′

j = Pj + k, (28)

thus Pj is gauge-invariant only modulo 1. The chiral symmetry
relates Pi and P−i. Substituting Eq. (13) into Eq. (25), we
obtain

A−i(φ) = Ai(φ), P−i = Pi. (29)

One can further prove that the total polarization of all the
positive (or negative) eigenbands

P :=
n∑

i=1

Pi =
n∑

i=1

P−i (30)
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can only take the values 0 and 1
2 modulo 1 [79,80]:

P ≡ 0, or P ≡ 1
2 . (31)

Throughout the paper, ≡ denotes congruence modulo 1
(mod 1) [81].

Second, we calculate the skew polarization of each eigen-
band [79,82]:

ν j := 1

π

∫ 2π

0
Ã(φ) dφ, Ã(φ) = i 〈�ψ j (φ)|∂φ|ψ j (φ)〉 ,

(32)
which is well-defined for fully gapped chiral symmetric
systems. We note that ν j is invariant under the gauge trans-
formation in Eq. (26). The chiral symmetry relates νi and ν−i.
Substituting Eq. (13) into Eq. (32), we obtain

Ã−i(φ) = Ãi(φ), ν−i = νi. (33)

One can prove that the total skew polarization of all the posi-
tive (or negative) eigenbands

ν :=
n∑

i=1

νi =
n∑

i=1

ν−i (34)

is quantized in integers [79], and moreover,

ν = wind(S) = wind(det S) ∈ Z. (35)

Thus ν j characterizes the contribution to the winding number
from the jth eigenband.

Here we make a few remarks. First, the polarization Pj and
the skew polarization ν j are distinct quantities. However, there
is a relation between the total polarization P and the total skew
polarization ν [79,80]:

P ≡ 1
2 (ν mod 2). (36)

Second, for a general system, the polarization Pj and the skew
polarization v j of a single band may not be quantized. Only
the total polarization and the total skew polarization, summed
over all the positive (or negative) bands, are quantized [82].

In Appendix C, we provide our detailed proofs for
Eqs. (20), (21), (31), (35), and (36). Although these results
are standard for chiral symmetric systems and can be found
in e.g., Refs. [79,80,82], their proofs are scattered in the lit-
erature and some lack rigor. Our approach utilizes Jacobi’s
formula [83] to derive the results directly from the defini-
tions, avoiding the need for introducing surface integrals of
Berry curvatures as is commonly done. Additionally, the proof
utilizes the existence of a periodic continuous singular value
decomposition, which has been rigorously established in re-
cent mathematical literature [84].

B. Reciprocal systems

Our analysis above applies to general linear time-invariant
systems. Now we focus on reciprocal systems and highlight
their unique behaviors.

1. Autonne-Takagi decomposition

For a reciprocal system, S is a complex symmetric matrix
[15,85,86]:

S = ST . (37)

We write S ∈ Ms
n, where Ms

n denotes set of n × n complex
symmetric matrices. Consequently, the singular value decom-
position of S can take a special form:

S = U�U T , (38)

which is known as the Autonne-Takagi decomposition
[41,87,88]. Comparing Eqs. (4) and (38), we see that for a
reciprocal system, one can set

U = V ∗, or vi = u∗
i . (39)

Thus the left singular vector vi can be chosen as the time
reversal of its corresponding right singular vector ui. We refer
to ui as the Takagi vectors. Correspondingly, Eq. (6) becomes

S =
n∑

i=1

σiuiu
T
i . (40)

See Ref. [41] pp. 263–264 for more details about the Autonne-
Takagi decomposition.

2. Block matrix with additional symmetries

For a reciprocal system with S ∈ Ms
n, the block Hermitian

matrix

H =
(

O S†

S O

)
=

(
O S∗
S O

)
. (41)

Besides the built-in chiral symmetry, H also possesses time-
reversal symmetry,

�xH∗�x = H, (42)

and particle-hole symmetry,

�yH∗�y = −H, (43)

where

�x =
(

O I
I O

)
, �y =

(
O −iI
iI O

)
. (44)

Substituting Eq. (39) into Eq. (13), we obtain the eigenvectors
of H :

|ψi〉 = 1√
2

eiαi

(
u∗

i
ui

)
, |ψ−i〉 = 1√

2
eiα−i

(
u∗

i
−ui

)
. (45)

3. Quantized single-band polarization

These additional symmetries have topological conse-
quences. We consider the same setting as Sec. (III A) and
calculate the geometric phases of S ∈ Ms

n around a loop γ

under the assumption of (23).2

The additional symmetries require the single-band polar-
ization Pj to be quantized:

Pj ∈ 1
2Z2, j = ±1, . . . ,±n. (46)

2Condition (23) is generically met for reciprocal systems since
for S ∈ Ms

n, having two equal singular values and having one zero
singular value are both codimension 2 phenomena.
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See Appendix D for proof of Eq. (46). In contrast, for nonre-
ciprocal systems, we only have

P ∈ 1
2Z2. (47)

On the other hand, the additional symmetries do not lead to
the quantization of the single-band skew polarization ν j . See
numerical demonstrations in Sec. IV E.

4. Z2 topology of Takagi vectors

There is another unique topological property of reciprocal
systems: Z2 topology of Takagi vectors. We consider the same
setting above and study the evolution of S ∈ Ms

n around γ un-
der the assumption of (23). Then S(γ (φ)) admits a continuous
Autonne-Takagi decomposition [78]:

S(γ (φ)) = U (φ)�(φ)U T (φ), φ ∈ [0, 2π ], (48)

with U ∈ U (n) and � = diag(σ1, . . . , σn), where U (φ), �(φ)
are as smooth as S(γ (φ)). See Ref. [78] for an algorithm that
constructs the continuous Autonne-Takagi decomposition.

Continuity imposes a strong constraint on Autonne-Takagi
decomposition. Without the requirement of continuity, at any
given φ, U is unique only up to the sign of each column; thus
there are 2n possibilities in total [41]. Continuity removes all
the freedom: If we fix a reference factorization at some φ,
say at φ = 0, then there is only one continuous factorization
satisfying this given condition [78].

Such uniqueness has topological consequences. Consider a
continuous Autonne-Takagi decomposition of S around γ as
given in Eq. (48). Since γ (0) = γ (2π ), we have

�(2π ) = �(0), |ui(2π )〉 = ± |ui(0)〉 (49)

where |ui(φ)〉 denotes the ith column of U (φ). See Ref. [78]
for proof of Eq. (49). The ± sign defines a Z2 topological
number for |ui〉, which is independent of the initial choice
of U (0). Since Z2 is discrete, the sign persists under a small
perturbation of γ . The minus sign case corresponds to a flip of
the Takagi vector around a loop, which is reminiscent of a flip
of the normal vector of a Mobius strip after an orbit.

In contrast, the scattering matrix of a nonreciprocal system
does not have the Autonnne-Takagi decomposition. Therefore
the singular vectors of a general scattering matrix do not have
the Z2 topology as described in Eq. (49).

IV. TOPOLOGY OF COHERENT PERFECT ABSORPTION

In the previous section, we found that scattering matrices
can have nontrivial topological properties in the parameter
space. These topological properties impose strong constraints
on the behaviors of scattering matrices and have direct phys-
ical consequences. As an application of our theory, in this
section, we explore the connection between the topological
winding of the scattering matrix and the physical effect of
coherent perfect absorption (CPA).

Coherent perfect absorption refers to the complete absorp-
tion of light due to the interference of multiple incident waves.
While this effect is well-known, its topological aspect has not
been studied. Here we reveal the topological nature of coher-
ent perfect absorption. We show that in a simply connected
two-dimensional parameter space, a nonzero winding num-
ber of the scattering matrix along a simple loop implies the

FIG. 3. Scheme of coherent perfect absorption. (a) System.
(b) Parameter space.

existence of a CPA point within the loop where the system ex-
hibits coherent perfect absorption. In the vicinity of this CPA
point, the scattering matrix displays certain universal features:
The smallest singular value forms a half Dirac cone in the
parameter space with the apex reaching zero at the CPA point;
the singular vectors exhibit nontrivial polarizations and skew-
polarizations around the CPA point. Our findings elucidate the
topology and universality of coherent perfect absorption.

A. Coherent perfect absorption

We briefly review the concept of coherent perfect ab-
sorption [51,54]. Coherent perfect absorption refers to the
complete absorption of light due to the interference of
multiple incident waves. Consider an n-port linear time-
invariant system as characterized by a scattering matrix S ∈
Mn [Fig. 3(a)]. The system is a coherent perfect absorber if
there exists an input a ∈ Cn\{0} such that

Sa = 0, (50)

and thus the absorptivity of the input

α[a] := 1 − a†S†Sa
a†a

= 1. (51)

B. Codimension of CPA

From Eq. (50), a necessary and sufficient condition of
coherent perfect absorption is

det S = 0, (52)

or equivalently,

σn = 0. (53)

Thus coherent perfect absorption is an effect of codimension
2. This codimension result remains the same for reciprocal
systems with S ∈ Ms

n.

C. Topology of a generic CPA point

Since coherent perfect absorption has a codimension of 2,
one typically needs to adjust two real parameters to achieve it.
Hence, we consider a system described by an n × n scattering
matrix S that depends on two parameters τ = (τ1, τ2) ∈ 
,
where 
 is a compact and simply connected subset of R2.
The system is characterized by the map S : τ �→ S(τ ) as given
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in Eq. (15). We assume that S is continuous. In the two-
dimensional parameter space 
, coherent perfect absorption
generically occurs at isolated points, referred to as CPA points.
Without loss of generality, we assume that there is a unique
generic CPA point τc = (τc1, τc2) ∈ 
, and there is no other
point in 
 where a pair of singular values coalesce or a
singular value becomes zero.3 We introduce two simple closed
curves in 
: a nontrivial loop γ that encircles τc and a trivial
loop γ ′ that does not. Figure 3(b) shows a scheme of the
parameter space.

Now we study the singular topology of the S matrix near
a generic CPA point. We apply our general theory and obtain
the following topological results.

1. General systems with S ∈ Mn

Along a nontrivial loop γ:

wind(S) = ν = ±1, P ≡ 1
2 . (54)

In contrast, along a trivial loop γ ′:

wind(S) = ν = 0, P ≡ 0. (55)

2. Reciprocal systems with S ∈ Ms
n

In addition to Eqs. (54) and (55), we have further results.
Along a nontrivial loop γ:

Pn = P−n ≡ 1
2 ; Pj ≡ 0, j = ±1,±2, · · · ± (n − 1).

(56)

|un(2π )〉 = − |un(0)〉 ; |ui(2π )〉 = |ui(0)〉 ,

i = 1, 2, . . . n − 1. (57)

In contrast, along a trivial loop γ ′:

Pj ≡ 0, j = ±1, . . . ,±n. (58)

|ui(2π )〉 = |ui(0)〉 , i = 1, . . . , n. (59)

See Appendix E for proof of these results.

D. Effective two-band model

To better understand the physics, we develop an effective
two-band model near a generic CPA point using the matrix
perturbation theory [69,89]. The key quantities for coherent
perfect absorption are the smallest singular value of the S
matrix σn and the corresponding right singular vector vn. This
is because for a given S ∈ Mn, the maximal absorptivity for all
possible coherent input a ∈ Cn\{0} is

max α[a] = 1 − σ 2
n , (60)

which is obtained by the input

a = cvn, c ∈ C∗. (61)

So we study the generic behaviors of σn and vn near a CPA
point τc. Recall that σn(τc) = 0.

3Generic means that we neglect any effects of higher codimension
such as the coalescing of two CPA points. See Ref. [112] for a more
rigorous elaboration.

We consider a small simple loop γ encircling τc such that

‖S(τ) − S(τc)‖ � σn−1(τc), ∀ τ ∈ 
γ , (62)

where ‖M‖ := σmax(M ) denotes the spectral norm of M ∈ Mn

[41], and 
γ ⊂ 
 is the area enclosed by γ . Then we can
treat S(τ) as a perturbation of S(τc). Using the block matrix
technique, we obtain a more familiar perturbation problem of
the Hermitian matrix [89–91]:

H (τ ) = H (τc) + δH (ξ) (63)

where ξ := τ − τc. H (τc) has doubly degenerate zero eigen-
values

λn(τc) = λ−n(τc) = 0 (64)

with the eigenvectors |ψ0
n 〉 and |ψ0

−n〉, respectively. We use the
degenerate perturbation theory [92,93] to obtain the effective
two-band model in the subspace spanned by |ψ0

n 〉 and |ψ0
−n〉.

Since δH has the chiral symmetry as described by Eq. (8), the
effective Hermitian matrix must take the form

Heff(ξ) =
(

0 f ∗(ξ)
f (ξ) 0

)
, (65)

where f (0) = 0. We take the first-order expansion of f (ξ):

f (ξ) = c1ξ1 + c2ξ2 + O(ξ2) (66)

where c1, c2 ∈ C. Generically, c1 and c2 are nonzero and
linearly independent over R. Then

Heff(ξ) =
(

0 c∗
1ξ1 + c∗

2ξ2

c1ξ1 + c2ξ2 0

)
=

2∑
i, j=1

ξiJi js j, (67)

where s j denote the Pauli matrices, and

J :=
(

c1r c1i

c2r c2i

)
∈ M2(R), (68)

where c1r and c1i are the real and imaginary parts of c1, etc.
From Eq. (67), we determine the band dispersion

λ±n(ξ) = ±|c1ξ1 + c2ξ2| = ±
√√√√ 2∑

i, j,k=1

JikJjkξiξ j . (69)

Translating H back to S, we obtain

σn(ξ) = λn(ξ) = |c1ξ1 + c2ξ2|. (70)

Figures 4(a) and 4(b) show typical spectra of σn(ξ) and
λ±n(ξ) near a generic CPA point. We see that σn(ξ ) forms
an upright anisotropic half Dirac cone, while λ±n(ξ ) form an
upright Dirac cone. Dirac cones have well-known nontrivial
topology [94–96]. Such topological features are directly con-
nected with the topological results discussed in Sec. IV C. For
example, direct calculation shows that

2P ≡ wind (S) = sgn (det J ). (71)

The effective two-band model in Eq. (67) remains un-
changed if the system is further assumed to be reciprocal.
Thus reciprocal and nonreciprocal systems exhibit similar
behaviors near a CPA point. Their differences appear when
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FIG. 4. The effective two-band model with paramters c1 = 5 +
1i, c2 = −3 + 4i. The colored surfaces represent the spectra of Heff

in Eq. (67). The gray plane indicates the zero value. (a) The singular
value σn(ξ) in Eq. (70). (b) The eigenvalues λ±n(ξ) in Eq. (69).

the loop γ is far from the CPA point such that the contributions
from other bands become nonnegligible.

E. Numerical demonstration

We demonstrate the topology of coherent perfect ab-
sorption as discussed above with three concrete physical
examples. We illustrate the universal features of generic CPA
points and highlight the similarities and differences between
reciprocal and nonreciprocal systems.

1. 2-port reciprocal CPA system

The first example is a 2-port reciprocal system. The struc-
ture is a double-layer dielectric slab [Fig. 5(a)]. Each layer has
a thickness of d = 1 µm. The first layer has a scalar relative
permittivity ε = εr + iεi, where εr = 6.0 and εi ∈ [0, 1.5].
The second layer has a scalar relative permittivity ε′ =
3.0. The structure is illuminated by linearly polarized light
in the normal direction from both sides. The light frequency
f = ω/2π ∈ [285, 300] THz. The system is characterized by
a 2 × 2 scattering matrix

S( f , εi ) =
(

r1 t
t r2

)
. (72)

We calculate S( f , εi ) using the transfer matrix method
[97]. Figures 5(b) and 5(c) plot the logarithmic amplitude
and phase of det S, respectively. There is a single CPA point
( f = 249.6 THz, εi = 0.815) with a winding number

wind (S) = +1. (73)

We introduce two square loops γ (φ) and γ ′(φ), where φ ∈
[0, 2π ] denotes the angle around the center of the square with
the lower left corner corresponding to φ = 0. γ encircles the
CPA point, while γ ′ does not.

Figure 5(d) plots the singular values σ1( f , εi ) and σ2( f , εi ).
σ2( f , εi ) forms a half Dirac cone. From S, we construct H
using the block matrix technique. Figure 5(e) plots the eigen-
values of H : λ±i(H ) = ±σi(S). λ2(H ) and λ−2(H ) form an
upright Dirac cone that touches at the CPA point. The disper-
sion is linear near the CPA point.

We calculate the continuous Autonne-Takagi decomposi-
tion of S and obtain the Takagi vectors |u1〉 and |u2〉 along γ

and γ ′. Figures 5(f) and 5(g) plot

Re 〈ui(φ)|ui(0)〉 , i = 1, 2, (74)

FIG. 5. A 2-port reciprocal CPA system. (a) Structure.
(b) ln | det S|( f , εi ). γ (φ) and γ ′(φ) are two loops.
(c) arg(det S)( f , εi ). (d) σi( f , εi ), i = 1, 2. (e) λ j ( f , εi ), j = ±1, ±2.
(f) Re 〈ui(φ)|ui(0)〉 along γ . (g) Re 〈ui(φ)|ui(0)〉 along γ ′. (h) Pj and
ν j around γ . (i) Pj and ν j around γ ′.

along γ and γ ′, respectively. We see that |u2〉 changes sign
along γ but not γ ′, while |u1〉 does not change sign in either
case. These results confirm Eqs. (57) and (59).
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Figure 5(h) plots the polarization Pj and the skew polariza-
tion ν j around γ . We observe that

P1 = P−1 ≡ 0, P2 = P−2 ≡ 1
2 , (75)

which confirms Eq. (56). (Note that − 1
2 ≡ 1

2 .) In contrast,

ν j �= 0, for all j. (76)

The total polarization and skew polarization

P =
2∑

i=1

Pi ≡ 1

2
, ν =

2∑
i=1

νi = 1, (77)

which confirm Eq. (54).
Figure 5(i) plots the polarization Pj and the skew polariza-

tion ν j around γ ′. We observe that

Pj ≡ 0, for all j. (78)

which confirms Eq. (58). In contrast,

ν j �= 0, for all j. (79)

The total polarization and skew polarization

P =
2∑

i=1

Pi ≡ 0, ν =
2∑

i=1

νi = 0, (80)

which confirm Eq. (55).

2. 4-port reciprocal CPA system

The second example is a 4-port reciprocal system. The
structure is a single-layer bianisotropic slab with a thickness
d = 1 µm [Fig. 6(a)]. The material is characterized by a 6 × 6
constitutive matrix C such that(

D
B

)
= C

(
E
H

)
=

(
ε0 ε

√
ε0μ0 ζ√

ε0μ0 η μ0 μ

)(
E
H

)
, (81)

where ε0 and μ0 are the vacuum permittivity and perme-
ability, respectively; ε, μ, ζ , η are 3 × 3 matrices of relative
electric permittivity, magnetic permeability, electric-magnetic
coupling strength, and magnetoelectric coupling strength, re-
spectively. We randomly set

ε = εr + iεi =

⎛
⎜⎝

1.75 0.30 0.09

0.30 1.97 1.11

0.09 1.11 4.33

⎞
⎟⎠

+ iκ

⎛
⎜⎝

0.72 −0.17 −0.05

−0.17 0.65 −0.26

−0.05 −0.26 0.78

⎞
⎟⎠, (82)

μ =

⎛
⎜⎝

1.08 −0.28 −0.07

−0.28 1.02 0.11

−0.07 0.11 0.70

⎞
⎟⎠,

ζ = −ηT = i

⎛
⎜⎝

0.36 0.11 0.40

0.57 0.15 0.57

0.40 0.06 0.27

⎞
⎟⎠, (83)

where

κ = ‖εi‖ ∈ [0, 1.5] (84)

FIG. 6. A 4-port reciprocal CPA system. (a) Structure.
(b) ln | det S|( f , ‖εi‖). (c) arg(det S)( f , ‖εi‖). (d) σi( f , ‖εi‖),
1 � i � 4. (e) λ j ( f , ‖εi‖), j = ±i. (f) Re 〈ui(φ)|ui(0)〉 along γ .
(g) Re 〈ui(φ)|ui(0)〉 along γ ′. (h) Pj and ν j around γ . (i) Pj and ν j

around γ ′.

measures the overall strength of the material loss. The material
is reciprocal since

ε = εT , μ = μT , ζ = −ηT . (85)
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The structure is illuminated by the light of both polar-
izations in the normal direction from both sides. The light
frequency f = ω/2π ∈ [300, 345] THz. The system is char-
acterized by a 4 × 4 scattering matrix

S( f , ‖εi‖) =

⎛
⎜⎜⎜⎜⎜⎝

rF
ss rF

sp tB
ss tB

sp

rF
ps rF

pp tB
ps tB

pp

tF
ss tF

sp rB
ss rB

sp

tF
ps tF

pp rB
ps rB

pp

⎞
⎟⎟⎟⎟⎟⎠, (86)

where for examples rF
sp denotes the reflection coefficient for a

forward-propagating p polarized light into the reflected s po-
larized light, and tB

ps denotes the transmission coefficient for a
backward-propagating s polarized light into the transmitted p
polarized light. Here the electric fields of the p and s polarized
light are aligned with the −x and y directions, respectively
[Fig. 6(a)]. See Appendix F for more explanations about the
basis convention.

We calculate S( f , ‖εi‖) using the transfer matrix method.
Figures 6(b) and 6(c) plot the logarithmic amplitude and
phase of det S, respectively. There is a single CPA point ( f =
322 THz, ‖εi‖ = 0.895) with a winding number

wind(S) = +1. (87)

We introduce a nontrivial square loop γ (φ) and a trivial square
loop γ ′(φ).

Figure 6(d) plots the singular values σi( f , ‖εi‖), 1 � i � 4.
σ4( f , ‖εi‖) forms a half Dirac cone. From S, we construct
H using the block matrix technique. Figure 6(e) plots the
eigenvalues of H . λ4(H ) and λ−4(H ) form an upright Dirac
cone.

We calculate the continuous Autonne-Takagi decomposi-
tion of S and obtain the Takagi vectors |ui〉, 1 � i � 4, along
γ and γ ′. Figures 6(f) and 6(g) plot

Re 〈ui(φ)|ui(0)〉 , 1 � i � 4, (88)

along γ and γ ′, respectively. |u4〉 changes sign along γ but not
γ ′, while the other Takagi vectors do not change signs in either
case. These results confirm Eqs. (57) and (59).

Figure 6(h) plots the polarization Pj and skew polarization
ν j around γ . We observe that

P4 = P−4 ≡ 1
2 ; Pj ≡ 0, for other j. (89)

which confirms Eq. (56). In contrast,

ν j �= 0, for all j. (90)

The total polarization and skew polarization

P =
4∑

i=1

Pi ≡ 1

2
, ν =

4∑
i=1

νi = 1, (91)

which confirm Eq. (54).
Figure 6(i) plots the polarization Pj and the skew polariza-

tion ν j around γ ′. We observe that

Pj ≡ 0, for all j. (92)

FIG. 7. A 4-port nonreciprocal CPA system. (a) Structure.
(b) ln | det S|( f , ‖εi‖). (c) arg(det S)( f , ‖εi‖). (d) σi( f , ‖εi‖), 1 �
i � 4. (e) λ j ( f , ‖εi‖), j = ±i. (f) Pj and ν j around γ . (g) Pj and
ν j around γ ′.

which confirms Eq. (58). In contrast,

ν j �= 0, for all j. (93)

The total polarization and skew polarization

P =
4∑

i=1

Pi ≡ 0, ν =
4∑

i=1

νi = 0, (94)

which confirm Eq. (55).

3. 4-port nonreciprocal CPA system

The third example is a 4-port nonreciprocal system. The
structure is a single-layer bianisotropic slab with a thickness
of d = 1 µm [Fig. 7(a)]. The material has relative constitutive
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tensors

ε = εr + iεi, (95)

εr =

⎛
⎜⎝

2.13 −0.44 + 1.06i −0.61 + 0.41i

−0.44 − 1.06i 3.07 0.94 + 0.64i

−0.61 − 0.41i 0.94 − 0.64i 2.85

⎞
⎟⎠,

(96)

εi = κ

⎛
⎜⎝

0.84 −0.13 + 0.17i −0.06 − 0.20i

−0.13 − 0.17i 0.70 0.16 − 0.24i

−0.06 + 0.20i 0.16 + 0.24i 0.72

⎞
⎟⎠,

(97)

μ =

⎛
⎜⎝

0.81 0.01 + 0.19i 0.13 + 0.06i

0.01 − 0.19i 0.94 0.15 − 0.20i

0.13 − 0.06i 0.15 + 0.20i 1.06

⎞
⎟⎠, (98)

ζ =η† =

⎛
⎜⎝

0.12+0.16i 0.15 + 0.25i −0.20 + 0.16i

−0.07− 0.05i 0.11 − 0.08i 0.16 − 0.18i

−0.08− 0.33i 0.19 + 0.30i −0.01 − 0.16i

⎞
⎟⎠.

(99)

where κ = ‖εi‖ ∈ [0, 1.5] measures the overall strength of the
material loss. The material is lossless when κ = 0 and is lossy
when κ > 0. The material is nonreciprocal since

ε �= εT , μ �= μT , ζ �= −ηT . (100)

The structure is illuminated by the light of both polar-
izations in the normal direction from both sides. The light
frequency f = ω/2π ∈ [240, 300] THz. The system is char-
acterized by a 4 × 4 scattering matrix S( f , ‖εi‖) with the
same form of Eq. (86).

We calculate S( f , ‖εi‖) using the transfer matrix method.
Figures 7(b) and 7(c) plot the logarithmic amplitude and
phase of det S, respectively. There is a single CPA point ( f =
266.6 THz, ‖εi‖ = 0.6525) with a winding number

wind(S) = +1. (101)

We introduce a nontrivial square loop γ (φ) and a trivial square
loop γ ′(φ).

Figure 7(d) plots the singular values σi( f , εi ), 1 � i � 4.
σ4( f , ‖εi‖) forms a half Dirac cone. From S, we construct
H using the block matrix technique. Figure 7(e) plots the
eigenvalues of H . λ4(H ) and λ−4(H ) form an upright Dirac
cone. The system is nonreciprocal and thus does not have the
Autonne-Takagi decomposition.

Figure 7(f) plots the polarization Pj and the skew polariza-
tion ν j around γ . We observe that

Pj �≡ 0 for all j. (102)

Thus all the eigenbands exhibit nontrivial Berry phases. This
is a unique nonreciprocal effect [cf. Eq. (56)]. We also see that

ν j �= 0 for all j, (103)

FIG. 8. Scheme of coherent perfect extinction. (a) System.
(b) Parameter space.

which is similar to reciprocal systems. The total polarization
and skew polarization

P =
4∑

i=1

Pi ≡ 1

2
, ν =

4∑
i=1

νi = 1, (104)

which confirm Eq. (54).
Figure 7(g) plots the polarization Pj and the skew polariza-

tion ν j around γ ′. We observe that

Pj �≡ 0, for all j. (105)

This is a unique nonreciprocal effect [cf. Eq. (58)]. We also
see that

ν j �= 0, for all j. (106)

The total polarization and skew polarization

P =
4∑

i=1

Pi ≡ 0, ν =
4∑

i=1

νi = 0, (107)

which confirm Eq. (55).

V. TOPOLOGY OF COHERENT PERFECT EXTINCTION

In the preceding section, we found that the effect of coher-
ent perfect absorption is connected to the topological winding
of the scattering matrix. This prompts us to investigate other
scattering phenomena with topological nature. As an example,
we inquire about the physical effect that is connected to the
topological winding of a scattering submatrix. The outcome
is a new phenomenon we term coherent perfect extinction
(CPE). Coherent perfect extinction refers to the complete ex-
tinction of light due to the interference of multiple incident
waves. It encompasses many known effects as special cases,
including complete polarization conversion [25] and reflec-
tionless scattering modes [60–62]. In this section, we study
coherent perfect extinction and reveal its topological nature.

A. Coherent perfect extinction

We introduce the concept of coherent perfect extinction.
Consider an n-port linear time-invariant system as character-
ized by a scattering matrix S ∈ Mn [Fig. 8(a)]. We select m
input ports with indices j1, . . . , jm and l output ports with
indices i1, . . . , il , where 1 � l, m � n. (The two sets { jk} and
{ik} may or may not have intersection.) The scattering from the
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selected input to selected output ports is then characterized by
a scattering submatrix:

S̃ := S[i1, . . . , il ; j1, . . . , jm], (108)

which is the l × m submatrix of S keeping only the {ik}th
rows and { jk}th columns. We consider light scattered into the
unselected (n − l ) output ports as scattering loss.

We say that the system exhibits coherent perfect extinction
if there exists an input ã ∈ Cm\{0} such that

S̃ã = 0, (109)

and thus the extinction coefficient [98,99] of the input

ε[ã] := 1 − ã†S̃†S̃ã

ã†ã
= 1. (110)

Coherent perfect extinction is a natural extension of coherent
perfect absorption [cf. Eqs. (50) and (51)]. However, these two
effects are fundamentally different, since extinction consists
of both absorption and scattering losses [98,99]. The concept
of “mutual extinction and transparency,” i.e., the enhanced or
reduced extinction by constructive or destructive interference
of multiple incident waves, has been recently proposed and
demonstrated in Refs. [100–102]. However, coherent perfect
extinction has not been proposed or demonstrated.

There are many choices for the scattering submatrix S̃. A
matrix S ∈ Mn has (2n − 1)2 submatrices and

(2n
n

) − 1 square
submatrices (see Ref. [81], pp. 169 for combinatorial proof).
We note three special cases. (1) When l = m = 1, S̃ reduces
to a single element of S. The topology of this special case has
been studied in, e.g., Refs. [25,33]. (2) When l = m = n, S̃ =
S, and coherent perfect extinction reduces to coherent perfect
absorption. (3) When l = m and {ik} = { jk}, S̃ is a principal
submatrix of S, and coherent perfect extinction reduces to
coherent zero reflection. This special case corresponds to the
recently proposed “reflectionless scattering modes” [60–62];
yet, its topology has not been studied. Therefore the concept
of coherent perfect extinction generalizes many known physi-
cal effects and points to a unified theory for all these effects.

B. Codimension of CPE

Unlike coherent perfect absorption which always has a
codimension of 2, the codimension of coherent perfect extinc-
tion depends on the numbers of selected output ports l and
selected input ports m.

When l < m, coherent perfect extinction is always attain-
able. This is because

nullity(S̃) = m − rank(S̃) � m − l > 0, (111)

hence Eq. (109) must have nontrivial solutions. Thus in this
case, codim(CPE) = 0.

When l = m, coherent perfect extinction has a codimen-
sion of 2. This is because S̃ ∈ Mm is a square submatrix of S,
and coherent perfect extinction occurs if and only if

det S̃ = 0, (112)

or equivalently,

σ̃m = 0, (113)

where σ̃m is the smallest singular value of S̃. Thus, in this case,
codim(CPE) = 2.

When l > m, coherent perfect extinction has a codimen-
sion of 2(l − m) + 2. This is because we can partition S̃ as

S̃ =
(

S̃α

S̃β

)
, (114)

where S̃α and S̃β are m × m and (l − m) × m matrices, respec-
tively. Then Eq. (109) becomes

S̃ã = 0 ⇐⇒
{

S̃α ã = 0,

S̃β ã = 0.
(115)

The first set of equations requires two real parameters. The
second set of equations consists of (l − m) complex linear
equations and thus requires 2(l − m) additional real param-
eters. Thus, in this case, codim(CPE) = 2(l − m) + 2.

We summarize the codimension results as follows:

codim(CPE) =
{

0 if l < m,

2(l − m) + 2 if l � m.
(116)

These codimension results remain unchanged for the case S̃ ∈
Ms

m. Note that in general S̃ /∈ Ms
m even for a reciprocal system

with S ∈ Ms
n, unless S̃ is a principal submatrix of S.

C. Topology of a generic CPE point

For concreteness, we focus on the l = m case. The other
cases will be discussed elsewhere. In the l = m case, coherent
perfect extinction has a codimension of 2, thus one typically
needs to adjust two real parameters to achieve it. Hence, we
consider a system with an m × m scattering submatrix S̃ that
depends on two parameters τ̃ = (τ̃1, τ̃2) ∈ 
̃, where 
̃ is a
compact and simply connected subset of R2. The system is
characterized by the map S̃ : τ̃ ∈ 
 �→ S̃(τ̃) ∈ Mm. We as-
sume that S̃ is continuous. In the two-dimensional parameter
space 
̃, coherent perfect extinction generically occurs at
isolated points, referred to as CPE points. We must emphasize
that a CPE point is generally not a CPA point, and vice versa,
because the singular values of the submatrix S̃ are generally
different from those of the total matrix S. Without loss of
generality, we assume that there is a unique generic CPE point
τ̃c = (τ̃c1, τ̃c2) ∈ 
̃, and there is no other point in 
̃ where a
pair of singular values of S̃ coalesce or a singular value of S̃
becomes zero. We introduce two simple closed curves in 
̃:
a nontrivial loop γ̃ that encircles τ̃c and a trivial loop γ̃ ′ that
does not. Figure 8(b) shows a scheme of the parameter space
[cf. Fig. 3(b)].

Now we study the topology of the S̃ matrix near a generic
CPE point. This problem is mathematically identical to that in
Sec. IV C. We obtain the following topological results.

1. S̃ ∈ Mn

Along a nontrivial loop γ̃:

wind(S̃) = ν̃ = ±1, P̃ ≡ 1
2 . (117)

Along a trivial loop γ̃ ′:

wind(S̃) = ν̃ = 0, P̃ ≡ 0. (118)
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2. S̃ ∈ Ms
n

We have additional results. Along a nontrivial loop γ̃:

P̃m = P̃−m ≡ 1
2 ; P̃j ≡ 0, j = ±1, . . . ,±(m − 1). (119)

|ũm(2π )〉 = − |ũm(0)〉 ; |ũi(2π )〉 = |ũi(0)〉 ,

i = 1, . . . , m − 1. (120)

Along a trivial loop γ̃ ′:

P̃j ≡ 0, j = ±1, . . . ,±m. (121)

|ũi(2π )〉 = |ũi(0)〉 , i = 1, . . . , m. (122)

D. Effective two-band model

We apply the same method in Sec. IV D to construct an
effective two-band model

H̃eff =
2∑

i, j=1

ξ̃iJ̃i j s j, (123)

where ξ̃ := τ̃ − τ̃c and J̃ ∈ M2(R). We can show

2P̃ ≡ wind(S̃) = sgn(det J̃ ). (124)

The effective two-band model in Eq. (123) remains unchanged
for S̃ ∈ Ms

n.
Thus our unified theory elucidates similar topological fea-

tures of the two different effects of coherent perfect absorption
and coherent perfect extinction (in the l = m case).

E. Numerical demonstration

We demonstrate the topology of coherent perfect extinction
with a concrete example. We highlight the similarities and
differences between CPE and CPA.

The structure is modified from that in Ref. [103]. It consists
of two layers [Fig. 9(a)]. The first layer is a photonic crystal
slab with a lattice constant a and a thickness d = 0.5 a. It
contains a square array of air holes; each unit cell has a
circular hole with a diameter dc = 0.28 a at the center and two
elliptical holes with a major axis dy = 0.56 a and a minor axis
dx = 0.20 a displaced by ± �D = ±(0.375 a, −0.18 a) with re-
spect to the center. The second layer is a uniform dielectric
slab with a thickness ds = 0.2 a. Both slabs are made of ma-
terials with a scalar relative permittivity ε = εr + iεi, where
εr = 8.0 and εi ∈ [0, 0.01].

The structure is illuminated by the light of both polar-
izations in the normal direction from the photonic crystal
slab side. Here the electric fields of the p and s po-
larized light are aligned with the x and y directions,
respectively [Fig. 9(a)].4 The light frequency f = ω/2π ∈
[1.1696, 1.17109]c/a. Since c/a < f <

√
2 (c/a, both the re-

flected light and the transmitted light have five diffraction

4Note that in Figs. 6(a) and 7(a), the p polarization is aligned with
the −x direction, while in Fig. 9(a), it is aligned with the x direction.
This is in accordance with the conventions adopted by the TMM [97]
and RCWA [104] packages.

FIG. 9. A 20-port CPE system. (a) Left: structure. Right: unit
cell. (b) ln | det S̃|( f , εi ). (c) arg(det S̃)( f , εi ). (d) σ̃i( f , εi ), 1 � i �
4. (e) λ̃ j ( f , εi ), j = ±i. (f) P̃j and ν̃ j around γ . (g) P̃j and ν̃ j around
γ ′.

orders; each diffraction order has two polarizations. The to-
tal system is therefore characterized by a 20 × 20 scattering
matrix S ∈ Ms

20.
We focus on the direct transmission order and consider

all the other diffraction orders as scattering loss. This is the
conventional configuration for extinction measurement. The
direct transmission is characterized by a 2 × 2 submatrix
of S:

S̃( f , εi ) =
(

tpp tps

tsp tss

)
∈ M2. (125)
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We calculate S̃( f , εi ) using the rigorous coupled-wave analy-
sis [104]. Figures 9(b) and 9(c) plot the logarithmic amplitude
and phases of det S̃, respectively. There is a single CPE point
( f = 1.1703 c/a, εi = 0.004 95) with a winding number

wind(S̃) = +1. (126)

We introduce a nontrivial loop γ̃ (φ) and a trivial loop γ̃ ′(φ)
as illustrated in Fig. 9(b).

Figure 9(d) plots the singular values σ̃1( f , εi ) and σ̃2( f , εi ).
σ̃2( f , εi ) forms a half Dirac cone. From S̃, we construct H̃
using the block matrix technique. Figure 9(e) plots the eigen-
values of H̃ . λ̃2(H̃ ) and λ̃−2(H̃ ) form an upright Dirac cone.
S̃ is not a principal submatrix, thus S̃ /∈ Ms

2 and does not have
the Autonne-Takagi decomposition.

Figure 9(f) plots the polarization P̃j and the skew polariza-
tion ν̃ j around γ̃ . We observe that

P̃2 = P̃−2∼≈ 1
2 , P̃1 = P̃−1∼≈0, (127)

ν̃2 = ν̃−2 ≈ 1, ν̃1 = ν̃−1 ≈ 0. (128)

These observations may appear surprising at first sight given
that S̃ /∈ Ms

n. The reason is that the loop γ̃ is sufficiently close
to the CPE point, thus H̃ is well described by the effective
two-band model in Eq. (123), and the contributions from other
bands are negligible. So these results confirm our discussions
in Sec. IV D. The total polarization and skew polarization

P̃ =
2∑

i=1

P̃i ≡ 1

2
, ν̃ =

2∑
i=1

ν̃i = 1, (129)

which confirm Eq. (117).
Figure 9(g) plots the polarization P̃j and the skew polariza-

tion ν̃ j around γ̃ ′. We observe that

P̃j∼≈0, ν̃ j ≈ 0, for all j. (130)

Again, these results arise because γ̃ ′ is sufficiently close to the
CPE point. The total polarization and skew polarization

P̃ =
2∑

i=1

P̃i ≡ 0, ν̃ =
2∑

i=1

ν̃i = 0, (131)

which confirm Eq. (118).

F. CPE for multichannel background-free sensing

We propose utilizing coherent perfect extinction for multi-
channel background-free sensing.

Detecting weak optical signals in the presence of strong
backgrounds can be challenging for sensors, even if the same
signals are detectable in the absence of background [105,106].
The bright background introduces proportionate noise that
the weak signal must exceed to be observable [107,108].
Additionally, sensors must adjust their dynamic range to ac-
commodate the background due to their finite bit depths,
resulting in a coarser brightness scale that may render the
signal indistinguishable from its background [107,108].

Coherent perfect extinction can overcome this problem for
coherent light sources by removing all the background in
multiple output channels prior to detection. This allows for

FIG. 10. CPE for multichannel background-free sensing. The de-
vice is as shown in Fig. 9. The unperturbed system is at the CPE
point. If the incident light is p-polarized, the direct transmission
exhibits nonzero background in both output polarizations (a), which
limits the contrast of total intensity (c). If the incident light is v-
polarized which leads to CPE, the direct transmission vanishes at the
CPE point (b), resulting in significant contrast of total intensity (d).
In (c) and (d), the input intensity is increased until one output channel
reaches saturation.

maximal contrast when a signal arrives and full utilization of
the detector’s dynamic range.

We provide a proof-of-concept demonstration using the de-
vice in Fig. 9. We detect the imaginary part of the permittivity
by measuring the direct transmission with both polarizations.
Assuming the unperturbed system is at the CPE point, we
perturb the imaginary part of the permittivity εi ∈ [0, 0.01].
If we select the incident light to be p-polarized, there is a
bright background in both output polarizations [Fig. 10(a)],
leading to limited contrast of total intensity under perturbation
[Fig. 10(c)]. In contrast, if we select the incident polarization
that leads to CPE (denoted as v-polarization), the background
vanishes in both output polarizations [Fig. 10(b)], resulting
in significant contrast of total intensity under perturbation
[Fig. 10(d)]. This allows for full utilization of the detector’s
dynamic range by adjusting the incident light intensity.

VI. DISCUSSION

We make three final remarks.
First, our analysis highlights the topological nature of CPA

and CPE. This fact has both fundamental importance and
practical applications. It reveals the robustness of these effects
under generic parameter perturbations. It also provides useful
criteria for localizing the occurrence of CPA and CPE in the
parameter space, facilitating optical design to achieve these
effects. For example, to find a CPA point in a two-dimensional
parameter space, we can apply our topological theory and
convert the 2D search problem into a series of 1D problems.
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FIG. 11. Bisection search of a CPA point in a 2D parameter space. The red dot denotes the CPA point. The blue area denotes the search
region. The green line segment bisects a search region. The orange area denotes the discarded region.

We first identify a simple loop along which the scattering
matrix S exhibits a nonzero winding number [Fig. 11(a)].
Then the region enclosed by the loop must contain at least one
CPA point. We can successively shrink the search region by
bisecting it with a line segment [Fig. 11(b)]. If det S = 0 at any
point along the line segment, that point is a CPA point. Other-
wise, det S must exhibit a nonzero winding number around the
boundary of at least one of the two half-regions, which must
contain a CPA point. We repeat this process until we localize
a CPA point to the desired accuracy [Figs. 11(c) and 11(d)].

Second, our theory provides a general framework to inves-
tigate the singular topology of scattering matrices. It applies
to any linear time-invariant systems described by scattering
matrices [16], such as acoustic waves. It can be used to sys-
tematically investigate other topological phenomena in wave
scattering beyond CPA and CPE.

Third, we have investigated the unique topological effects
of reciprocal systems, which are not present in nonreciprocal
systems. These effects arise due to the internal symmetry of
reciprocity [15,86], which imposes direct constraints on the
scattering matrix [109,110]. By applying a similar approach,
we can explore the topological consequences of other sym-
metries on scattering matrices. We anticipate a rich set of
symmetry-protected topological effects of scattering matrices.

VII. CONCLUSION

In conclusion, we have presented a systematic theory on
the singular topology of scattering matrices. We determine
a set of topological characteristics for a general system and
reveal unique topological features for a reciprocal system.
We apply our theory to elucidate the topological nature of
two physical phenomena: coherent perfect absorption and
coherent perfect extinction, the latter being a new effect that
accounts for both absorption and scattering losses. We pro-
pose utilizing coherent perfect extinction for multichannel
background-free sensing. Our findings significantly advance
our understanding of scattering phenomena and have impor-
tant implications for the development of novel optical devices.
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APPENDIX A: NOTATION

Here we summarize the mathematical notations used
throughout this paper. Z,R,R∗,R+,C and C∗ denote the
set of integers, real numbers, nonzero real numbers, posi-
tive real numbers, complex numbers, and nonzero complex
numbers, respectively. Mn, Ms

n, and U (n) denote the set of
n × n complex matrices, complex symmetric matrices, and
unitary matrices, respectively. For M ∈ Mn, MT , M∗, and
M† denote the transpose, conjugate, and conjugate transpose
of M, respectively. d(M ) = (d1(M ), . . . , dn(M ))T , λ(M ) =
(λ1(M ), . . . , λn(M ))T , and σ(M ) = (σ1(M ), . . . , σn(M ))T

denote the vector of diagonal elements, eigenvalues, and sin-
gular values of M, respectively. When describing the vectors
of d, λ, and σ, (M ) may be omitted if there is no ambiguity.
‖M‖ := σmax(M ) denotes the spectral norm of M [41]. O
and I denote n × n zero and identity matrices, respectively;
n should be clear from the context. ∼= denotes isomorphism.
a ≡ b (mod n) denotes a and b are congruent modulo n. In
the special case when n = 1, we may write a ≡ b and omit
(mod 1).

APPENDIX B: FUNDAMENTAL GROUP OF GL(n,C)

Here we briefly outline the proof of Eq. (22):

π1(GL(n,C)) ∼= Z. (B1)

Note that GL(n,C) is noncompact. Using polar decompo-
sition, we can reduce the computation of π1(GL(n,C)) to
that of π1(U (n)), where U (n) is the maximal compact sub-
group of GL(n,C). The fact that π1(U (n)) ∼= Z completes the
proof. The detailed proof can be found in Ref. [77], pp. 379,
Sec. 13.3.

APPENDIX C: PROOF OF RESULTS IN SEC. III A

Here we provide detailed proof of the results in Sec. III A,
Eqs. (20), (21), (31), (35), and (36). The proof is based on the
following theorem in matrix calculus:

Theorem 1 (Jacobi’s formula). If A(t ) ∈ Mn is invertible
and differentiable in t ∈ R, then

d

dt
det A(t ) = [det A(t )]Tr

[
A(t )−1 d

dt
A(t )

]
. (C1)

Proof. See Ref. [83], pp. 165, theorem 8.1. �
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1. Proof of Eqs. (20) and (21)

Proof. Eq. (20) is a direct result of Jacobi’s formula:

wind(S) := 1

2π i

∫ 2π

0
Tr

[
S−1 dS

dφ

]
dφ

= 1

2π i

∫ 2π

0

1

det S

d det S

dφ
dφ =: wind(det S).

(C2)

Since det(S) is continuous in the elements of S and S is
continuous in φ, we know that det S(φ) is a continuous func-
tion from [0, 2π ] to C. We have assumed that det S(φ) �= 0
and det S(0) = det S(2π ). So det S(φ) maps to a loop in the
punctured plane C∗ and thus [76]

wind(det S) ∈ Z. (C3)

This completes the proof of Eq. (21).

2. Proof of Eq. (31)

We first prove a general theorem that is useful in itself.
Theorem 2. Let H (φ) ∈ Mn be Hermitian and differen-

tiable with φ ∈ [0, 2π ] and H (0) = H (2π ). Suppose H (φ)
has distinct eigenvalues λi(φ), i = 1, . . . , n. Denote the
corresponding orthonormal eigenvectors |ψi(φ)〉. Then the
polarizations of all bands sum to 0 modulo 1:

n∑
i=1

Pi := i

2π

n∑
i

∫ 2π

0
〈ψi(φ)| d

dφ
ψi(φ)〉 dφ ≡ 0 (mod 1).

(C4)
Proof. We choose a gauge such that |ψi(φ)〉 is differen-

tiable and |ψi(0)〉 = |ψi(2π )〉. We introduce a matrix whose
columns are |ψi(φ)〉:

�(φ) := (|ψ1(φ)〉 , |ψ2(φ)〉 , . . . , |ψn(φ)〉). (C5)

Note that �(φ) ∈ U (n), det �(φ) is differentiable, and
| det �(φ)| = 1 �= 0. Therefore

n∑
i=1

Pi := i

2π

n∑
i

∫ 2π

0
〈ψi(φ)| d

dφ
ψi(φ)〉 dφ

= i

2π

∫ 2π

0
Tr

[
�†(φ)

d

dφ
�(φ)

]
dφ (C6)

= − wind(�) = − wind(det �) ∈ Z. (C7)

Since Pi is only defined by modulo 1, we should write

n∑
i=1

Pi ≡ 0 (mod 1). (C8)

This completes the proof. �
Now we prove Eq. (31).
Proof. For a chiral symmetric Hermitian matrix H (φ) ∈

M2n, Eq. (29) shows Pi = P−i, thus

P :=
n∑

i=1

Pi =
n∑

i=1

P−i. (C9)

Theorem 2 requires that

2P =
n∑

i=1

(Pi + P−i ) ≡ 0 (mod 1), (C10)

which is equivalent to

P ≡ 0, or P ≡ 1
2 (mod 1). (C11)

This completes the proof of Eq. (31). �

3. Proof of Eq. (35)

It suffices to prove that

ν = wind(S). (C12)

Proof. By assumption, S is a piecewise continuously dif-
ferentiable function from [0, 2π ] to Mn with S(0) = 2π . Also,
∀φ ∈ [0, 2π ], S(φ) is invertible and has distinct singular val-
ues. Then S takes a continuous singular value decomposition:

S(φ) = U (φ)�(φ)V †(φ), φ ∈ [0, 2π ], (C13)

where U , �, and V are as smooth as S. Moreover,

U (0) = U (2π ), �(0) = �(2π ), V (0) = V (2π ).
(C14)

See Ref. [84], theorem 2.4 and 3.3(i) for proof of the existence
of such a decomposition. Choosing such a decomposition
corresponds to choosing a periodic gauge [6].

We use such a decomposition to prove Eq. (C12). On the
one hand,

wind(S) := 1

2π i

∫ 2π

0
Tr

[
S−1 dS

dφ

]
dφ (C15)

= 1

2π i

∫ 2π

0
Tr

[
V �−1U † d (U�V †)

dφ

]
dφ (C16)

= 1

2π i

∫ 2π

0
Tr

[
V �−1U † dU

dφ
�V †

+ V �−1U †U
d�

dφ
V † + V �−1U †U�

dV †

dφ

]
dφ

(C17)

= 1

2π i

∫ 2π

0
Tr

[
U † dU

dφ
+ �−1 d�

dφ
+ V

dV †

dφ

]
dφ

(C18)

= wind(U ) + wind(�) + wind(V †) (C19)

= wind(U ) − wind(V ). (C20)

To obtain Eq. (C19), we use Eq. (C14) and the fact that U , �

and V are invertible. To obtain Eq. (C20), we note that det � ∈
R+ thus

wind(�) = wind(det �) = 0, (C21)

and moreover,

wind(V †) = wind(det V †) = wind(det V −1)

= − wind(det V ) = − wind(V ). (C22)
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FIG. 12. Evolution of the eigenvector |ψ j〉 around a loop γ in the
parameter space.

On the other hand,

ν :=
n∑

i=1

νi = i

π

n∑
i

∫ 2π

0
〈�ψi(φ)| d

dφ
ψi(φ)〉 dφ (C23)

= 1

2π i

∫ 2π

0

n∑
i

(
u†

i

d

dφ
ui − v

†
i

d

dφ
vi

)
dφ (C24)

= 1

2π i

∫ 2π

0
Tr

[
U † dU

dφ
− V † dV

dφ

]
dφ (C25)

= wind(U ) − wind(V ). (C26)

To obtain Eq. (C24), we use Eqs. (9) and (13). To obtain
Eq. (C25), we use the fact that ui and vi are the ith columns of
U and V , respectively. Comparing Eqs. (C20) and (C26), we
obtain Eq. (C12) and complete the proof. �

4. Proof of Eq. (36)

Proof. As in the proof above, we choose a periodic gauge.
Then

P :=
n∑

i=1

Pi = i

2π

n∑
i

∫ 2π

0
〈ψi(φ)| d

dφ
ψi(φ)〉 dφ (C27)

= i

4π

∫ 2π

0

n∑
i

(
u†

i

d

dφ
ui + v

†
i

d

dφ
vi

)
dφ (C28)

= − 1

4π i

∫ 2π

0
Tr

[
U † dU

dφ
+ V † dV

dφ

]
dφ (C29)

= −1

2
[wind(U ) + wind(V )]. (C30)

Combining Eqs. (C26) and (C30), we obtain

ν − 2P = 2 wind(U ) ∈ 2Z. (C31)

Since P is only defined by modulo 1, we should write

2P ≡ ν (mod 2), (C32)

which is equivalent to Eq. (36). This completes the proof. �

APPENDIX D: PROOF OF EQ. (46)

Here we prove Eq. (46). For convenience, we introduce
an alternative definition of polarization Pj with a discrete
formulation.

As shown in Fig. 12, we choose N representative eigenvec-
tors |ψ j,0〉 to |ψ j,N−1〉 around the loop γ , where

|ψ j,k〉 ≡
∣∣∣∣ψ j

(
φ = k

N
2π

)〉
,

j = ±1, . . . ,±n, k = 0, . . . , N − 1. (D1)

Note that |ψ j,N 〉 = |ψ j,0〉. Then we define the polarization Pj

by

Pj := − 1

2π
lim

N→∞
Im ln Wj,N , (D2)

where

Wj,N := 〈ψ j,0|ψ j,1〉 〈ψ j,1|ψ j,2〉 . . . 〈ψ j,N−1|ψ j,0〉 ∈ C∗. (D3)

One can prove that Eq. (D2) is equivalent to Eq. (25) [6].
For a reciprocal system, the eigenvectors of H are given in

Eq. (45) as reproduced below:

|ψi〉 = 1√
2

eiαi

(
u∗

i
ui

)
, |ψ−i〉 = 1√

2
eiα−i

(
u∗

i−ui

)
. (D4)

Then, for any given j = ±1, . . . ,±n,

Wj,N = 〈ψ j,0|ψ j,1〉 〈ψ j,1|ψ j,2〉 . . . 〈ψ j,N−1|ψ j,0〉
= 〈ψ∗

j,0|ψ∗
j,1〉 〈ψ∗

j,1|ψ∗
j,2〉 . . . 〈ψ∗

j,N−1|ψ∗
j,0〉

= W ∗
j,N (D5)

Therefore Wj,N ∈ R∗, and thus we obtain Eq. (46)

Pj ∈ 1
2Z2. (D6)

This completes the proof.

APPENDIX E: PROOF OF RESULTS IN SEC. IV C

Here we provide detailed proof of the results in Sec. IV C,
Eqs. (54)–(59).

1. Proof of Eqs. (57) and (59)

The proofs of Eqs. (57) and (59) can be found in Ref. [78],
theorem 2.6.

2. Proof of Eqs. (54) and (55)

Considering Eqs. (35) and (36), it suffices to prove

wind(S) = ±1 along a nontrivial loop γ,

wind(S) = 0 along a trivial loop γ ′. (E1)

Proof. We use the fact that the winding number is ho-
motopy invariant [76]. By our assumptions, τc is the single
generic zero point of det S(τ) in 
 (Fig. 13). The trivial loop
γ ′ can be shrunk to a point with det S �= 0 by homotopy,
therefore

wind(S) = wind(det S) = 0 along γ ′. (E2)

Instead, the nontrivial loop γ can only be shrunk to a small
circle γc around τc by homotopy. We take the first-order
expansion of det S(τ ) in γc:

det S(τc + ξ) = z1ξ1 + z2ξ2 + O(ξ2) (E3)
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FIG. 13. Scheme of parameter space. γ is homotopic to γc. γ ′

can be shrunk to a point.

where z1, z2 ∈ C. Generically, z1 and z2 are nonzero and lin-
early independent over R. We can rewrite Eq. (E3) as(

Re det S(τc + ξ)

Im det S(τc + ξ)

)
≈

(
z1r z2r

z1i z2i

)(
ξ1

ξ2

)
= Z

(
ξ1

ξ2

)
. (E4)

Direct calculation shows that

wind (S) = sgn (det Z ) = ±1 along γc. (E5)

Since det S is homotopy invariant,

wind (S) = ±1 along γ . (E6)

This completes the proof. �

3. Proof of Eqs. (56) and (58)

Proof. For a reciprocal system, we can choose the eigen-
vectors |ψ j〉 of H as given in Eq. (D4). Such a choice
corresponds to choosing a parallel-transport gauge [6], since

Aj (φ) = − Im 〈ψ j (φ)|∂φψ j (φ)〉
= − Im Re 〈u| j|(φ)|∂φu| j|(φ)〉 = 0. (E7)

In such a gauge, the Berry phase is just the phase mismatch at
the end of the loop [6]:

Pj ≡ − 1

2π
Im ln Re 〈u| j|(2π )|u| j|(0)〉 . (E8)

Along a nontrivial loop γ , we substitute Eq. (57) into Eq. (E8)
and obtain Eq. (56):

Pj ≡
{

1
2 , j = ±n,

0, j = ±1,±2, · · · ± (n − 1).
(E9)

Along a trivial loop γ ′, we substitute Eq. (59) into Eq. (E8)
and obtain Eq. (58):

Pj ≡ 0, j = ±1,±2, · · · ± n. (E10)

This completes the proof. �

APPENDIX F: BASIS CONVENTION

This paper adopts the standard basis convention where the
output mode is the time reversal of the input mode. This re-
sults in a symmetric scattering matrix for reciprocal systems,
which is useful for our purpose. Our convention differs from
the basis convention that is commonly used in the transfer ma-
trix method (TMM). Here, we provide a detailed discussion of
these two conventions.

Figure 14(a) shows the convention commonly used in
TMM [97]. Note that when the light propagation direction is
reversed, the direction of p polarization is flipped, while the
direction of s polarization is preserved. Under this convention,
the scattering matrix takes the form

S̃ =

⎛
⎜⎜⎜⎜⎜⎝

r̃F
ss r̃F

sp t̃B
ss t̃ B

sp

r̃F
ps r̃F

pp t̃B
ps t̃ B

pp

t̃F
ss t̃ F

sp r̃B
ss r̃B

sp

t̃F
ps t̃ F

pp r̃B
ps r̃B

pp

⎞
⎟⎟⎟⎟⎟⎠. (F1)

Figure 14(b) shows the convention we adopt [15]. Note that
when the light propagation direction is reversed, the electric
field directions of both s and p polarizations are preserved.

FIG. 14. Basis conventions. (a) Transfer matrix method convention. (b) Time reversal convention.
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Under this convention, the scattering matrix takes the form

S =

⎛
⎜⎜⎜⎜⎝

rF
ss rF

sp tB
ss tB

sp

rF
ps rF

pp tB
ps tB

pp

tF
ss tF

sp rB
ss rB

sp

tF
ps tF

pp rB
ps rB

pp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

r̃F
ss r̃F

sp t̃B
ss −t̃ B

sp

−r̃F
ps −r̃F

pp −t̃ B
ps t̃ B

pp

t̃F
ss t̃ F

sp r̃B
ss −r̃B

sp

t̃F
ps t̃ F

pp r̃B
ps −r̃B

pp

⎞
⎟⎟⎟⎟⎠. (F2)

We note that for a generic reciprocal system,

S = ST , S̃ �= S̃T . (F3)

This highlights the importance of the basis convention on the S-matrix representation.
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