
PHYSICAL REVIEW B 108, 155416 (2023)

Purcell effect in two-dimensional photonic crystal slabs with triangular lattice

Sergey A. Dyakov ,1 Ilia M. Fradkin,1,2 Dmitry V. Yurasov ,3 Vladimir A. Zinovyev ,4

Sergei G. Tikhodeev ,5,6 and Nikolay A. Gippius1

1Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, str. 1, Moscow 143025, Russia
2Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Moscow Region 141701, Russia

3Institute for Physics of Microstructures RAS, GSP-105, Nizhny Novgorod 603950, Russia
4Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia

5Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia
6A.M. Prokhorov General Physics Institute, Vavilova st. 38, Moscow 117942, Russia

(Received 22 February 2023; revised 22 September 2023; accepted 25 September 2023; published 13 October 2023)

We present the results of theoretical studies of the Purcell effect in infinite photonic crystal slabs without
defects or cavities. First, we describe a theoretical model for calculating total and external Purcell factors in
two-dimensional photonic crystal slabs in terms of dipole’s emissivity to the near field and the far field. Then
we apply this theory to silicon photonic crystal slabs with triangular lattice on silica substrate and study how
the Purcell factor depends on the wavelength and the dipole’s position. We show that by placing the dipoles in
the hot spots of modes with the zero group velocity, one can greatly enhance the Purcell factor in comparison to
a homogeneous silicon slab. We demonstrate that this effect is associated with Van Hove singularities. We also
calculate partial contributions to the total Purcell factor from different energy dissipation channels.
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I. INTRODUCTION

The Purcell effect is a concept in physics related to
the interaction of electromagnetic fields with a material or
substance. It is named after the American physicist Ed-
ward Purcell, and it is a measure of how effectively excited
molecules or quantum dots placed in a nonhomogeneous di-
electric environment can recombine with radiation of photons.
The probability of spontaneous emission of an emitter per unit
time is determined by the local density of optical states, which
can be changed by placing the emitter in an optical cavity. The
ratio of the radiative decay rates, modified and unmodified by
the cavity, is known as a Purcell factor. Thus, when the emitter
is placed into a cavity, near an interface or into a photonic
crystal, the Purcell factor changes due to interaction of the
emitter’s dipole moment with optical resonances. Therefore,
one can greatly increase or decrease the Purcell factor by
using photonic structure with proper geometry.

High values of the Purcell factor can be obtained, for ex-
ample, in plasmonic nanoantennas [1–8], in metal-dielectric
metamaterials [9,10] or in three-dimensional dielectric mi-
crocavities such as microspheres and microtoroids [11–15],
where the local field enhancement is strong. However, there
is a way of achieving high Purcell factor in structures without
cavities. It is well known that in infinite chains of all-dielectric
particles, the theoretical Purcell factor diverges at frequen-
cies corresponding to band edges, where the group velocity
tends to zero. Such points are called Van Hove singularities;
they were originally described for crystalline lattices in solids
[16]. In reality, the divergence never occurs due to a finite
number of periods of the photonic crystal lattice, geometrical
imperfections, and radiative losses. Nevertheless, the high
Purcell factor was experimentally achieved in finite chains of

all-dielectric nanoparticles supporting multipolar Mie reso-
nances [17–19]. In Ref. [20] it was demonstrated that high
Purcell factor values can also be reached due to interference
between the band-edge modes and a standing mode supported
by the same array of dielectric particles.

Despite the attractiveness of one-dimensional chains of
nanoparticles, quantum emitters are often placed into two-
dimensional photonic crystal slabs [21–32]. The latter provide
a great variety of photonic resonances, which properties can
be controlled by choosing appropriate surface patterns. In
contrast to one-dimensional periodic waveguides, in two-
dimensional photonic crystal slabs, the Purcell factor does
not diverge on the modes with quadratic dispersion. Because
of this, photonic crystal slabs with modified lattice attract
interest of researchers since they can provide modes with
flatter dispersion. One of the examples of such structures
is doubly-periodic gratings [33], while an extreme case of
structures with flat dispersion modes is photonic crystal cav-
ities and waveguides. Thus, in the literature, theoretical and
experimental studies of spontaneous emission rate of emitters
have been carried out in photonic crystal slabs with cavities
and waveguides [34–38]. Owing to the small mode volume
of a single localized mode or a set of closely spaced modes
that have frequencies within the gap, the Purcell factor in
such structures can be quite large. Due to the small physical
volume of the resonator, the number of emitters for which
the Purcell factor reaches large values is also small. In this
regard, it is of great interest to study the Purcell effect for
dipoles located in a photonic crystal slab without cavities,
despite that the Purcell factor in them does not diverge. An
advantage of such structures from the experimental viewpoint
is that there is no need for measuring the photoluminescence
signal from very small surface area or to have a technology
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for precise positioning of emitters, because emitters located
in the same position in different unit cells will have the same
Purcell factor. Thus, almost the entire area of the fabricated
metasurface can be used, in contrast to photonic crystals with
a microcavity.

In this work, we consider the Purcell effect in infinite
photonic crystal slabs without cavities and demonstrate that
the Purcell factor in them can be greatly enhanced on flat-band
modes in comparison to homogeneous slabs. In the first part
of the manuscript, we present the theoretical background for
calculation of the Purcell factor in two-dimensional photonic
crystal slabs. In the second part, we apply this theory for
electric dipoles located in two types of photonic crystal slabs,
comprising (i) air holes in silicon and (ii) silicon rods in the
air.

II. THEORETICAL BACKGROUND

We define the Purcell factor as a ratio of the radiation rates
modified and unmodified by the cavity:

Fp = �cav
r

�r
. (1)

In order to utilize formula (1) for calculation of the Purcell
factor, we will use the result of the semiclassical theory of
radiation, which states that the quantum mechanical rate of
radiative decay is proportional to the total power dissipated
by classical dipole emitters (see Appendix A for details):

�r = P

h̄ω
, (2)

where ω is the frequency of electromagnetic oscillations. This
ratio leads us to an alternative formula for the Purcell factor
which is very important from the viewpoint of optical simula-
tions:

Fp(ω) = Pcav(ω)

P(ω)
, (3)

where Pcav(ω) is the total power dissipated by dipole emitters
in an inhomogeneous dielectric medium:

Pcav(ω) =
‹

�S(ω)d �A, (4)

where �S is the Poynting vector, d �A is the surface element, and
P(ω) is the total power that the same dipole emitters would
dissipate if they were in a dielectric that is uniform and infinite
in all three dimensions with a refractive index of n:

P(ω) = |�jo|2ω2n

3c3
, (5)

where c is the speed of light and �jo is the amplitude of
current’s oscillation. Integration in formula (4) over a closed
surface is carried out near the dipole. If n is taken as 1, then
formula (1) will describe the increase in the rate of spon-
taneous emission of dipoles relative to the same dipoles in
vacuum. However, since quantum dots or dye molecules in
real structures are located in a certain matrix, chemical prop-
erties of which often determine the very ability of emitters
to radiate, sometimes it is convenient to consider just such
a host matrix in formula (5) as a dielectric. In this case, the

Purcell factor will be determined by the presence of bound-
aries with other substances of this host matrix. In the above
paradigm, dipole’s emission for the most arbitrary systems
can be calculated in terms of a local density of optical states
using various difference methods such as finite difference
time domain [39,40]. Below we present semianalytical theory
focusing on layered systems with periodic spatial modulation
of dielectric permittivity.

In layered systems, integration over a closed surface in
formula (4) can be replaced by finding the algebraic sum
of the powers emitted by the dipole vertically upward and
downward:

Pcav =
‹

�Sd �A = P+ + P−, (6)

where the powers P± are calculated as integrals of the z-
components of the Poynting vector in the planes z = z0 ± 0,
taken at an infinitely small distance above and below the
dipole located at coordinate z0:

P±(ω) ≡ P(z0 ± 0) =
¨ +∞

−∞
Sz(ω, �ρ, z0 ± 0)d2 �ρ , (7)

where �ρ ≡ {x, y}. In two-dimensionally periodic layers, inte-
gration over the coordinate space can be conveniently replaced
with integration in the momentum space over the first Bril-
louin zone (see Appendix B for the proof of this fact). Thus,
the resulting formula for calculating the total Purcell factor
takes the form:

F tot
p (ω) = 3c3

| j0|2ω2n

¨
FBZ

[̃S+
z (ω, �q) + S̃−

z (ω, �q )]
d2 �q

(2π )2
, (8)

where S̃±
z (ω, �q ) ≡ Sz(ω, �q , z0 ± 0) is the z-projection of the

Poynting vector calculated in the momentum space using the
Fourier modal method [41,42] taking into account all Fourier
harmonics [see Eq. (B5)], and �q ≡ {kx, ky} is the in-plane
wave vector inside the first Brillouin zone. In homogeneous
layers, the first Brillouin zone is infinite, and the integration is
performed over the entire momentum space:

F tot
p (ω) = 3c3

| j0|2ω2n

¨ +∞

−∞
[̃S+

z (ω, �q ) + S̃−
z (ω, �q )]

d2 �q
(2π )2

.

(9)
Components of the Poynting vector Sz of oscillating

dipoles depend on the dipole orientation and its positions
within the structure and can be found by the Fourier modal
method in the scattering matrix form (see Appendix B and
Refs. [3,41–44] for details). In what follows, the integrand in
formulas (8) and (9) will be referred to as a near-field emis-
sivity of the dipole. It should be noted that in the framework
of classical electrodynamics, the total Purcell factor and the
near-field emissivity for point-dipoles can be calculated only
in non-absorptive media (see Appendix C for details).

It is obvious that a part of the power emitted by the dipole
is able to outcouple to the upper and (or) lower semi-infinite
media. Therefore, if in the integrands in formulas (8) and (9)
we take the Poynting vectors calculated in the planes located
at an infinitely small distance above and below the layered
structure, then as a result of integration we get an external
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FIG. 1. Schematics of (a) an “inverse” and (b) “direct” photonic crystal waveguides, consisting of a z-uniform periodic air-silicon layer on
a SiO2 substrate, infinite in the xy plane. (c) Top view and side view of the waveguides along with the high-symmetry points on the photonic
crystal unit cell. Photonic crystal slabs are characterized by the period a, thickness h, radius of cylinders r and the dipole position z.

part of the Purcell factor:

F ext
p (ω) = 3c3

| j0|2ω2n

¨
FBZ

[̂S+
z (ω, �q ) + Ŝ−

z (ω, �q )]
d2 �q

(2π )2
,

(10)

where

Ŝ−
z (ω, �q ) ≡ Sz(ω, �q , 0 − 0),

Ŝ+
z (ω, �q ) ≡ Sz(ω, �q , h + 0), (11)

and h is the thickness of the entire structure between substrate
and superstrate. By definition, the external Purcell factor is
responsible for that part of enhancement (or attenuation) of
spontaneous emission rate, which is determined by the power
outcoupled to the far field.

The corresponding integrand in Eq. (10) is called a far-field
emissivity in what follows. As in the case of the total Purcell
factor for a periodic structure, the integration is performed
over the first Brillouin zone regardless of the location of the
light cones of the upper and lower semi-infinite media, and
the Ŝ±

z values are calculated by summation over all diffrac-
tion channels. It should be noted that according to formula
(10) the external Purcell factor includes not only the power
propagating in the substrate or superstrate but also the power
which is absorbed in them. See Appendix C for the details of
calculation of the far-field emissivity.

In the literature, a similar approach for calculation of the
Purcell factor by integration of the dipole’s emissivity over the
first Brillouin zone is referred to as the array scanning method
[45,46]. An advantage of this method is that it represents a
rigorous procedure independent on resonant properties of the
photonic crystal slab. This is in contrast to the approach based
on the representation of the local density of optical states
as a sum of contributions of known a priori resonances of
the system [40,47]. Using a resonant approximation for the
scattering matrix [48–51] one can bridge the gap between

Eq. (9) and a commonly used resonance-based formula for
the Purcell factor containing terms inversely proportional to
the group velocity.

The possibility of calculating the Purcell factor in photonic
structures makes it possible to predict the lifetime and inten-
sity of photoluminescence of quantum dots located in them,
as well as to evaluate their internal and external quantum
efficiency [4,52–54].

III. THEORETICAL RESULTS

To obtain high values of the Purcell factor in photonic crys-
tal slabs, we should place the electric dipoles into the hot spot
of the eigenmode with zero group velocity; the scalar product
of the dipole moment and the electric field in the eigenmode
must not be zero. A great variety of available patterns and
electric field profiles in two-dimensional metasurfaces makes
it possible to find appropriate geometry for any dipole moment
in a wide range of photon energies. In this work, we focus
on x-, y-, and z-oriented electric dipoles located in two types
of the photonic crystal slab: (i) an inverse one comprising air
pores in silicon layer and (ii) a direct one comprising silicon
rods in air (see Fig. 1). Both photonic crystal slabs have a
triangular lattice and lie on the silica substrate. The choice
of infinite “silica substrate” is an easy way to carry out the
calculations. Nevertheless, it reflects the situation rather well
because in reality the silicon-on-insulator substrates with a
thick oxide layer (∼3 µm) are often used for fabrication of
Si photonic structures. We denote the photonic crystal slab
thickness as h, the period as a, and the radius of pores or rods
as r. We place the electric dipole in points A, B, and C in the
middle of the silicon layer as shown in Fig. 1.

Without loss of generality, we design the geometry of the
photonic crystal slabs in such a way that at the photon energy
of h̄ω = 800 meV, the appropriate orientation of electric field
and the zero group velocity of the band-edge mode will be
demonstrated for the inverse photonic crystal slab; while the
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substrate light line
boundary of the FBZ

FIG. 2. In-plane wave-vector dependence of the near-field emissivity of horizontal dipoles (e)–(h) and vertical dipole (a)–(d), located in
vacuum (a), (e), homogeneous silicon layer on SiO2 substrate (b), (f), weak photonic crystal lattice (c), (g), strong photonic crystal lattice
(d), (g). Calculations are made at h̄ω = 850 meV for the inverse photonic crystal slab with h = 218 nm, a = 625 nm, r = 0.25a. In (b), (f)
the blue dashed line shows the light cone of the silica and the light blue dashed line indicates the light cone of the vacuum. (c), (d), (g), (h)
show the boundary of the first Brillouin zone with white and black lines. The dipoles are located on the plane z = 80 nm. The color scale is
logarithmic, shown in the inset below. The color scales in all parts are different. Dielectric constant of the pore substance of the weak lattice
εpores = 1.001εSi.

same effect but on another guided resonance mode (not at
the end of the first Brillouin zone) will be shown for the
direct photonic crystal slab. The corresponding geometrical
parameters of the inverse photonic crystal slab are the fol-
lowing: period a = 445 nm, pores’ radius r = 0.405a, and
slab thickness h = 230 nm. For the direct photonic crystal
slab, the parameters are: period a = 555 nm, pores’ radius
r = 0.4025a, and slab thickness h = 285 nm. In calculations
by the Fourier modal method (FMM) we use 85 Fourier har-
monics [55].

Before calculation of the Purcell factor, let us first con-
sider the dependence of the near-field emissivity of dipoles
on the horizontal projection of the wave vector, f (kx, ky).
For vertical (z-oriented) dipoles and horizontal (average of x-
and y-oriented) dipoles in vacuum, the near-field emissivity
looks as shown in Figs. 2(a) and 2(e): outside the light cone
this function is equal to 0, while inside the light cone it has
z-axial symmetry. For the dipoles located in a homogeneous
silicon layer without pores, the function f (kx, ky) is more
complicated, since the dipoles can radiate not only into the
propagating modes of the upper and lower semi-infinite me-
dia, but also into the waveguide modes lying below the light
cones of these media. Such waveguide modes in Figs. 2(b) and
2(f) are visible as rings centered at the origin (kx = ky = 0).

The functions f (�q ) shown in Figs. 2(a), 2(b), 2(e), 2(f) have
axial symmetry, therefore the double integral in the formula
(9) can be replaced with a single one, thereby the time of
numerical integration can be greatly reduced:

Fp(ω) = 3c3

| j0|2ω2n

¨ +∞

−∞
f (�q )d2 �q = (12)

3c3

| j0|2ω2n

∞̂

0

f (kx, 0)kxdkx (13)

Let us now consider the inverse photonic crystal slab and
assume that the emitting dipole is located at point A in the unit
cell (see Fig. 1), the most symmetrically located point between
the pores. Let us start with a weak photonic crystal lattice, i.e.,
a structure similar to that shown in Fig. 1, but with pores filled
with a substance with a dielectric constant slightly different
from the dielectric constant of silicon (εpores = 1.001εSi). The
weak contrast of such a grating almost does not change the
dispersion of the waveguide modes, but diffraction on the
periodicity folds the waveguide modes into the first Brillouin
zone, as shown in Figs. 2(c) and 2(g). Integration performed
inside the first Brillouin zone over the near-field emissivity
in a weak grating will give a value of the total Purcell factor
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FIG. 3. (a) and (b) Near-field emissivity in the first Brillouin zone calculated at the photon energy of h̄ω = 800 meV for B point and x dipole
in the inverse photonic crystal slab and B point and y dipole in the direct photonic crystal slab. (c) and (d) Photon energy and in-plane wave-
vector dependence of the near-field emissivity of the inverse and direct photonic crystal slabs. High-symmetry points of the first Brillouin zone
�, M, and K are defined in (a) and (b). Blue and green lines in (c) and (d) denote light-lines of air and silica, correspondingly. (e) and (f) Electric
field intensity profiles in some of the eigenmodes. In (e) the fields are calculated for M point, while in (f) for (kx, ky ) = (0.704k0, 1.272k0 ) (left
part) and for � point (right part). Blue circles in (c) and (d) denote eigenmodes for which the fields in (e) and (f) are plotted.

very close to the value in the original nonperiodic waveguide.
Finally, in a strong photonic crystal lattice, where the etched
pores are filled with air, the waveguide modes folded into
the first Brillouin zone hybridize, which results in a rather
complex profile of the C6-symmetric function f (kx, ky) shown
in Figs. 2(d) and 2(h) for horizontal and vertical dipoles. Note
that for dipoles that are located not at high symmetric point
A, the function f (�q ) will no longer have the symmetry C6.
Integration of such a profile with a number of harmonics
sufficient for FMM convergence can take a long time in the
case of high-Q resonances. To avoid this, as mentioned in
Appendix C, we add a small imaginary part to the dielectric
constant of the substrate (0.001i) for calculation of the total
Purcell factor and to the dielectric permittivity of silicon for
calculation of the external Purcell factor (0.05i) [56]. There-
fore, Fig. 2 describes the genesis of the near-field emissivity
starting from the homogeneous slab through the weak pho-
tonic crystal to the strong photonic crystal. It bridges the gap
between a well-known donutlike angular emission diagram of
an oscillating dipole in free space and an emissivity profile
inside the first Brillouin zone for the same dipole in a photonic
crystal slab.

Next, we calculate the photon energy and wave-vector
dependences of the near-field emissivity for the x dipole at
point B of the inverse photonic crystal slab and for the y
dipole at point B of the direct photonic crystal slab (Figs. 3(c)
and 3(d). The resulting spectra of the total Purcell factor

are shown in Figs. 4(d) and 4(f) by the red line. One can
see from Fig. 3 that in both cases there are several modes
with the zero group velocity, while the peak values of the
Purcell factor are achieved only at the photon energy of
h̄ω = 800 meV (4). This is because only some of the modes
have electric field distributions with local maxima at dipoles’
positions [see Figs. 3(e) and 3(f) for field distribution in some
of the modes). Thus, the enhancement of Purcell factor in
our structures is indeed associated with Van Hove singular-
ities. See Appendix D for the analytical expressions for the
local density of optical states containing group velocity of the
resonances.

Depending on the photon energy and the in-plane wave
vector, the electric dipole can dissipate its energy via one
of several channels [see sketch in Fig. 4(a)]. For example, if
the point (ω, �q ) in Figs. 3(c) and 3(d) is below the substrate
light line and the substrate is lossless, then the emitted light
is coupled only to the guided modes. However, if the point
(ω, �q ) is between the substrate and air light cones, then the
emitted light can outcouple to the substrate far-field via the
main or diffraction channels; in the case of lossless substrate,
it can also couple to the guided modes. Finally, for the points
(ω, �q ) above the air light line, all mentioned energy dissi-
pation channels are available. As it has been stated in the
previous section, in the case of a lossy substrate, the wave will
eventually be absorbed in it, although this process may occur
via coupling to guided modes.
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FIG. 4. (a) The sketch showing channels of energy dissipation of an emitting dipole located in a photonic crystals slab. (b) The first
Brillouin zone of the triangular photonic crystal lattice superimposed on the light cones with photon energies corresponding to two diffraction
thresholds. (c) The spectrum of the total Purcell factor (black line) and its partial contributions from different energy dissipation channels
(colored areas) calculated for the inverted photonic crystal slab. Definition of colors is shown by arrows in (a). (d) The spectra of the total
Purcell factor (red solid line) and external Purcell factor (blue dashed line) of the inverted photonic crystal slab in comparison to those of
the homogeneous Si slab on silica substrate. (e) and (f) the same as (c) and (d) but calculated for the direct photonic crystal slab. In (c)–(f)
vertical green and black dashed lines denote energies of the upper and lower diffraction thresholds. Parameters of the inverted photonic crystal
slab: a = 445 nm, h = 230 nm, r = 0.405a, z = h/2. Parameters of the direct photonic crystal slab: a = 555 nm, h = 285 nm, r = 0.4025a,
z = h/2.

Figures 4(c) and 4(e) plots the spectral dependences of the
total Purcell factor along with the resulting spectra of partial
contributions from all energy dissipation channels. One can
see from Fig. 4(c) that for the inverse photonic crystal slab, the
increase of the total Purcell factor in range 600–860 meV is
attributed only to the enhanced coupling of the emitted wave
to the waveguide modes. This is because the corresponding
waveguide mode lies entirely below the substrate light line
[see Fig. 3(c)]. Note that this mode gives rise to the h̄ω =
800 meV peak in the Purcell factor spectrum, both for x and
y dipoles located at B and C points [56]. However, the peak
value of the Purcell factor exceeds 10 only in the case of x
dipole located at point B. This fact is attributed to specific
orientation of electric vector in the mode at this photon energy.
For the direct photonic crystal slab, the situation is different.
The mode with a zero group velocity intersects the air and sub-
strate light cones at h̄ω = 800 meV [Fig. 3(d)], which results
in the increase of coupling of the emitted light not only to the
waveguide modes but also to the air and substrate via the main
channels. The local maxima of the Purcell factor spectrum
h̄ω = 800 meV in the case of x and y dipoles located at A,
B, and C points are also present [56], but their peak values
are not so high as for the x dipole at B point, which is also
explained by the direction of the electric vector in the mode.

Another important feature in the spectra of different energy
dissipation channels, is that there is a photon energy range

where with the increase of the photon energy, the coupling to
waveguide modes decreases to zero, while the outcoupling to
substrate via diffraction starts to increase [see green and red
areas in Figs. 4(c) and 4(d)]. This energy range is bounded
by two diffraction thresholds. An upper diffraction thresh-
old corresponds to the case when the first Brillouin zone of
the photonic crystal lattice is fully inside the substrate light
cone{Fig. 4(b)]. It means that for h̄ω > E (2)

th , a wave emitted
with any wavevector will eventually diffract to the substrate.
There is also a lower diffraction threshold, when the light
cone is tangent to the first Brillouin zone. For E (upper)

th > h̄ω >

E (lower)
th , diffraction to the substrate occurs too, but not for all

points inside the first Brilloiun zone. For a triangular photonic
crystal lattice of period a, the photon energies of the upper and
lower diffraction thresholds are

E (upper)
th = 4π

3n

h̄c

a
, E (lower)

th = 2π
√

3

3n

h̄c

a
, (14)

where n is the refractive index of the substrate.
The sum of partial contributions of energy dissipation

channels to the air and substrate corresponds to the external
Purcell factor. The total and external Purcell factors of the di-
rect and inverse photonic crystal slabs are shown in Figs. 4(d)
and 4(f) in comparison with those of the homogeneous silicon
slab of the same thickness. From these figures one case see
in the case of the homogeneous silicon slab, the total Purcell
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FIG. 5. Spatial distributions of the total Purcell factor of x, y, z polarized dipoles located on the plane z = h/2 calculated for the
inverse [(a), (b), (c), (e)] and direct [(f), (g), (h), (j)] photonic crystal slabs at the photon energy h̄ω = 800 meV in the xy, xz, and yz
cross sections passing through the center of the cell. (d) and (i) Electric field distribution in the eigenmodes (h̄ωinverse

em = 797 − 0.03i meV,
h̄ωdirect

em = 799 − 0.02i meV) of the inverse and direct photonic crystal slabs. Color denotes intensity, arrows show electric vector. Parameters of
the inverted photonoic crystal slab: a = 445 nm, h = 230 nm, r = 0.405a, z = h/2. Parameters of the direct photonic crystal slab: a = 555 nm,
h = 285 nm, r = 0.4025a, z = h/2.

factor greatly exceeds the external Purcell factor. This effect
is well known and is explained by the fact that radiation
from an homogeneous layer outcouples to the far field only
from a small solid angle. The structure periodicity gives rise
to the external Purcell factor due to the diffraction coupling
between the near and far fields. At h̄ω > E (upper)

th , the exter-
nal Purcell becomes equal to the total Purcell factor, as it
has been discussed above. As for the total Purcell factor, in
the photonic crystal slab it can be larger or smaller than in the
homogeneous slab depending on the photon energy and the
structure.

From Fig. 4 an important conclusion can be made that
the photonic crystal lattice is especially effective in terms
of increasing the external Purcell factor, since it connects
the near and far fields due to diffraction. At the same time,
to increase the total Purcell factor, a photonic crystal lattice
can also be used, but for this, the cell must be designed in
such a way that (a) it had the flattest possible dispersion
curve at the photon energy of interest; (b) dipoles should be

located in the modes hot spots; (c) orientations of the dipole’s
moment and electric vector in the eigenmode should match.
Low-dispersion waveguide modes can be obtained using, for
example, superlattices with a double period.

Finally, the spatial maps of the total Purcell factor for x, y,
z dipoles inside the photonic crystal cell are shown in Fig. 5
for the photon energy h̄ω = 800 meV along with the profile of
electric field in the eigenmode. One can see that the presented
maps manifest hot spots where the dipole’s orientation
matches that of the electric field. In these hot spots, the Purcell
factor reaches a value of Fp = 63 for the x dipole at the B
point in the direct photonic crystal slab and a value of Fp = 15
for the y dipole at the B point in the inverse photonic crystal
slab. Also, in Figs. 5(e) and 5(j) one can see that the Purcell
factor is distributed over the z direction quite uniformly.
The nonuniformity of the spatial distribution of the Purcell
factor is one of the reasons for non-mono-exponentiality
of the photoluminescence decay profile observed in
experiments.
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IV. CONCLUSION

In conclusion, we have presented a model for theoretical
description of the Purcell effect in photonic crystal slabs.
Using this theoretical model, we have calculated and ana-
lyzed the total and external Purcell factors for x, y, and z
dipoles located in different points of silicon photonic crystal
slabs with triangular lattice. We have demonstrated that at
the photon energies corresponding to zero group velocities of
waveguide modes, the Purcell factor of dipoles located at the
modes’ hot spots, can be greatly increased in comparison to
the homogeneous silicon waveguide. We have found geomet-
rical parameters of the photonic crystal slab to obtain high
values of the Purcell factor at the photon energy of 800 meV.
We also have shown the spectra of different energy dissipa-
tion channels contributing to the total Purcell factor and have
demonstrated that at photon energies larger than the upper
diffraction threshold, the total and external Purcell factor are
equal. Finally, we have presented the spatial maps of the total
Purcell factor within the cell of the photonic crystal lattice.
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APPENDIX A: DIPOLE IN SEMICLASSICAL
THEORY OF RADIATION

In order to utilize formula (1) for calculation of the Purcell
factor, we will use the result of the semiclassical theory of
radiation, which states that the quantum mechanical rate of
radiative decay is proportional to the total power dissipated
by classical dipole emitters. Let us show this by considering
the classical model of a scattering dipole with energy E and
total power flux P. The total energy stored in the dipole
is proportional to the square of the amplitude of the dipole
moment p [47]:

E = αp2, (A1)

where α is the proportionality coefficient. Here we assume
that the dipole is not infinitesimal. This important assumption
solves the problem of the diverging energy density of electric
field near the dipole. The dissipated power of the dipole is
also proportional to the square of the amplitude of the dipole
moment:

P = βp2, (A2)

where β is the proportionality coefficient. Since Ė = −P, we
get the following differential equation:

2α ṗ = βp (A3)

with solution

p(t ) = p0e− β

2α
t . (A4)

Consequently, the energy and power flux decrease as

E (t ) = αp2
0e− β

α
t , P(t ) = βp2

0e− β

α
t , (A5)

with the same decay constant �r :

� = β

α
= P

E
. (A6)

Replacing E with the energy of the emitted photon h̄ω, we
obtain the required ratio between the power dissipated and the
radiative decay rate:

�r = P

h̄ω
. (A7)

APPENDIX B: CALCULATION OF DIPOLE RADIATION
IN MOMENTUM SPACE BY FOURIER MODAL METHOD

In order to prove that the total power emitted by a dipole
can be represented as an integral over the momentum space,
we start with an arbitrary (i.e., not necessarily periodic) slab.
The electric and magnetic fields in such a slab can be ex-
pressed as an inverse Fourier transform:

�E (�ρ , z) =
ˆ

�E (�q , z)ei �q �ρ d2 �q
(2π )2

,

�H (�ρ , z) =
ˆ

�H (�q , z)ei �q �ρ d2 �q
(2π )2

, (B1)

where �ρ ≡ {x, y}, �q ≡ {kx, ky}. An expression for time-
average the total power flux through the horizontal plane
z = z0 reads

P = c

8π

ˆ
Re[ �E (�ρ ) × �H∗(�ρ )]zd

2 �ρ

= c

8π

ˆ
d2 �q

(2π )2

d2 �q ′

(2π )2
Re[ �E (�q )× �H∗(�q ′)]z

ˆ
d2 �ρ ei(�q −�q ′ )�ρ

= c

8π

ˆ
Re[ �E (�q ) × �H∗(�q )]z

d2 �q
(2π )2

. (B2)

In slabs with an arbitrary distribution of the refractive index
and with a finite number of dipole sources, the integration
in formula (B2) is rather complicated. However, in periodic
slabs considered by the Fourier modal method, the situation
is much simpler because of two facts. First, the fields are
represented by a finite-size hypervector of the Floquet-Fourier
components. Second, in the FMM, the infinite set of os-
cillating dipoles (currents) is considered. The corresponding
hypervector of oscillating currents has the form

Jαγ (�q ) = jαe−i�ρ d ( �q +�gγ ), (B3)

where jα are the components of current in real space (α =
x, y, z), �gγ is a vector in reciprocal space, representing γ -th
harmonic (γ = 1 . . . Nγ , where Nγ is the number of Fourier
harmonics). Therefore, the integration over the entire q space
in formula (B2) can be replaced with the integration over
the first Brillouin zone and summation over the entire set of
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harmonics:

P(z) = c

8π

ˆ

FBZ

Nγ∑
γ=1

Re[�Eγ (�q , z) × �H∗
γ (�q , z)]z

d2 �q
(2π )2

. (B4)

The final expression for the total Purcell reads

F tot
p (ω) = 3c3

| j0|2ω2n

¨
FBZ

[̃S+
z (ω, �q ) + S̃−

z (ω, �q )]
d2 �q

(2π )2
, (B5)

where “FBZ” stands for the first Brillouin zone, n is the refractive index of the dielectric (for example, emitter’s host matrix or
vacuum), relative to which the Purcell factor is calculated, and the z components of the Poynting vector are found as

S̃±
z (ω, �q ) = c

16π

⎡⎣ Nγ∑
γ=1

(E∗
xγ (ω, �q , z0 ± 0) · Hyγ (ω, �q , z0 ± 0)) +

Nγ∑
γ=1

(Exγ (ω, �q , z0 ± 0) · H∗
yγ (ω, �q , z0 ± 0))

−
Nγ∑

γ=1

(E∗
yγ (ω, �q , z0 ± 0) · Hxγ (ω, �q , z0 ± 0)) −

Nγ∑
γ=1

(Eyγ (ω, �q , z0 ± 0) · H∗
xγ (ω, �q , z0 ± 0))

⎤⎦. (B6)

In formula (B6), Exγ , yγ and Hxγ , yγ are the Nγ × 1 hypervectors of electric and magnetic field radiated by oscillating currents.
These hypervectors are found from the hypervectors of currents Jαγ [3,43,57–60]:⎡⎢⎢⎢⎢⎣

Ex

Ey

Hx

Hy

⎤⎥⎥⎥⎥⎦
z=z0+0

=F

⎡⎣ (
I − Su

12S
d
21

)−1 −(
I − Su

12S
d
21

)−1
Su

12

Sd
21

(
I − Su

12S
d
21

)−1 −Sd
21

(
I − Su

12S
d
21

)−1
Su

12

⎤⎦F−1

⎡⎢⎢⎢⎢⎣
+Kx ε̃

33Jz/k0

+Kyε̃
33Jz/k0

+Jy − ε̃23ε̃33Jz

−Jx + ε̃13ε̃33Jz

⎤⎥⎥⎥⎥⎦, (B7)

⎡⎢⎢⎢⎢⎣
Ex

Ey

Hx

Hy

⎤⎥⎥⎥⎥⎦
z=z0−0

=F

⎡⎣−Su
12

(
Sd

21S
u
12 − I

)−1
Sd

21 Su
12

(
Sd

21S
u
12 − I

)−1

−(
Sd

21S
u
12 − I

)−1
Sd

21

(
Sd

21S
u
12 − I

)−1

⎤⎦F−1

⎡⎢⎢⎢⎢⎣
+Kx ε̃

33Jz/k0

+Kyε̃
33Jz/k0

+Jy − ε̃23ε̃33Jz

−Jx + ε̃13ε̃33Jz

⎤⎥⎥⎥⎥⎦, (B8)

where F is the material matrix of the layer where the currents
are located, indices “+” and “-” mean that corresponding
quantities are taken below or above the plane z = z0. In
Eqs. (B7) and (B8) the upper and lower partial scattering
matrices (Su and Sd) are calculated at given ω, z and �q [3,41].
The matrix ε̃ is the 3 × 3 block matrix with components that
evolve from the Fourier transform of dielectric permittivity
tensor (or its inverse) [61] calculated in accordance with Li’s
factorization rules [62]; Kx,y are the diagonal matrices of x-
and y-components of photon quasimomentum vector of dif-
ferent diffraction orders; k0 is the photon wave number in
vacuum.

APPENDIX C: NOTES ON CALCULATION OF PURCELL
FACTOR IN PHOTONIC CRYSTAL SLABS

It should be noted that the near-field emissivity diverges if
a point dipole is located in absorbing material. This is due to
the fact that the absorption of the electromagnetic field emitted
by the point dipole inside a small sphere around this dipole
tends to infinity as the radius of the sphere decreases to 0 (see,
e.g., in Refs. [3,63]). To handle this problem, we must assume
that either the emitter is not a point dipole, or that its host
matrix is nonabsorbing. Despite the fact that the assumption
that the emitter is not a point dipole that is closest to physical

reality, we will use the second approach. It means that we will
solve Maxwell’s equations, in which the current density of
the oscillating dipole appears in the form of a delta function,
and the medium in which this current is located has a zero
imaginary part of the dielectric permittivity. This approach to
handling the problem of the diverging field of a dipole has
its advantages. First, Maxwell’s equations with a current in
the form of a delta function are solved quite simply, and the
solution itself can be easily incorporated into many solvers,
including the formalism of the FMM. Second, this approach
avoids additional fitting parameters associated with the size
and shape of the nonpoint dipole. Finally, if the concentration
of emitters is low enough, ellipsometric studies of a substance
with an emitter do indeed give a very small imaginary part of
the permittivity, which can be neglected.

Let us make a number of important remarks concerning the
calculation of Purcell factors in layered structures.

(1). According to the definitions given above, the following
inequality always holds:

F ext
p � Fp. (C1)

The external and total Purcell factors are equal in the follow-
ing cases:

(a) Nonabsorbing (homogeneous or periodic) layers are lo-
cated between two semi-infinite media, at least one of which is
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absorbing; in such a structure, a wave emitted by a dipole will
be absorbed with 100% probability in one of the semi-infinite
media;

(b) The first Brillouin zone of a two-dimensional periodic
structure, consisting of non-absorbing materials, is entirely
located inside the light cone of at least one of two semi-infinite
media; in this case, all eigenmodes of such a periodic structure
are connected with the far field of this semi-infinite medium
due to diffraction, which also provides a 100% probability for
a wave to outcouple into the corresponding far field (this case
will be considered in the next paragraph).

(2). A structure (homogeneous or periodic), consisting of
nonabsorbing materials, located between two nonabsorbing
semi-infinite media, can have its guided modes that are not
connected with the far field. These modes would have an infi-
nite Q factor. We can say that these modes appear as infinitely
narrow peaks in the in-plane wave-vector dependence of the
near-field emissivity, which must be integrated to calculate
the full Purcell factor. To integrate such a dependence, we
introduce a small material absorption into the system, thereby
setting the finite width of such waveguide modes. Since, as
already mentioned, for the convergence of the integral, some
vicinity of the dipole must be nonabsorbing, it is convenient
to add a small imaginary part Imε to the permittivity of the
substrate. When choosing the imaginary addition, it is neces-
sary to find the tradeoff balance between the integration time
(the larger Im ε the faster integration) and the convergence of
this procedure with respect to the parameter Im ε (the smaller
Im ε the less the Purcell factor is affected by it). Note that
when calculating the external Purcell factor, the indicated
problem of infinitely narrow peaks, cannot arise by definition,
since only the modes connected with the far field are involved
in the external Purcell factor, thereby having a noninfinite
Q factor. Nevertheless, sometimes the radiation bandwidths
of the modes are too small for integration to be complete
in a reasonable time. For this reason, and also according to
Remark (1), when calculating the external Purcell factor, an
artificial imaginary addition may be added to the permittivity
of the photonic crystal slab. Note that in contrast to the total
Purcell factor, the integral for the external Purcell factor does
not diverge.

In addition to the radiative decay rate �r , there is also
a nonradiative decay rate �nr , which is attributed to non-
electromagnetic recombination channels, i.e., which cannot
be described by Maxwell’s equations [63]. By definition, non-
radiative decay occurs without emission of real photons and
does not depend on the optical modes of the structure [63].
The total decay rate in the cavity is the sum of the radiative
and nonradiative parts:

�cav
tot (ω, �r) = F tot

p (ω, �r)�r + �nr . (C2)

In formula (C2), the values of �r and �nr depend only on
the type of emitters and such properties of the host matrix

as temperature, chemical composition, presence of impurities
and defects and so on. It should be noted that sometimes in the
literature (for example, in the Refs. [64,65]) the nonradiative
decay rate is also understood as the component of the total
Purcell factor corresponding to the integration in formula (B5)
below the light cone.

To characterize how efficiently the emitters can radiate
in a given dielectric environment, one can use quantitative
measures referred to as an internal quantum efficiency (IQE)
and an external quantum efficiency (EQE) defined as

IQE = �r

�r + �nr
, EQE = �rF ext

p

�rF tot
p + �nr

. (C3)

By this definition, the external quantum efficiency is a char-
acteristic of both the host matrix and the resonator where
the dipole is located, while the internal quantum efficiency
is a characteristic only of the host matrix. At �nr 	 �r [54],
high values of EQE can be obtained when the external Purcell
factor is not small compared to the total Purcell factor. In
particular, in photonic crystal slabs at frequencies larger than
the upper diffraction threshold, the total and external Purcell
factors are equal to each other F tot

p = F ext
p , which at small

�nr leads to almost 100% external quantum efficiencies. In
plasmonic nanoparticles the situation is different: they can
provide very large spontaneous emission rates (much larger
than those in photonic crystal slabs), but in order to attain
high external quantum efficiencies, one have to choose the
geometry of nanoparticles properly to ensure that the near-
field modes are coupled to the far field [4–6]. The possibility
of the latter is not guaranteed in plasmonic nanoparticles in
contrast to photonic crystal slabs.

APPENDIX D: PURCELL FACTOR OF DIPOLES IN
ONE-DIMENSIONAL AND TWO-DIMENSIONAL

PHOTONIC CRYSTAL SLABS

An alternative way of considering the Purcell factor is
based on the resonant approximation for the system. It means
that in calculation of the Purcell factor at a given frequency,
one should gather contributions from the resonances nearest to
this frequency, neglecting the background (i.e., neglecting the
contribution from other resonances). In practice, this proce-
dure sometimes appears to be rather challenging because one
should know everything about the nearest resonances, which
is not always an easy task. From the other hand, expansion
over the resonances enables simple analytical expressions of
local densities of optical states, which could give us insight
on general properties of the system. To demonstrate this, let
us obtain analytical expressions of the local density of optical
states containing dependence on the group velocity. It should
be noted that the very fact of using the concept of a group
velocity already implies that we are using a resonant approx-
imation for our system. We start from the following formula
for the local density of optical states:


(�r, ω) = 1

(2π )2

∑
n

¨
FBZ

d2 �q δ[ω − ωn(�q)]| �En(�r, �q)|2, (D1)
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where ωn is the frequency of nth resonance, �q = (kx, ky) is the in-plane wave vector of the resonance, �En(�r, �q) is the electric field
of nth resonance at position �r and in-plane wave vector �q. Then,


(�r, ω) = 1

(2π )2

∑
n

¨
FBZ

d2 �q δ[ω − ωn(�q)]| �En(�r, �q)|2 = 1

(2π )2

∑
n

¨
δ[ω − ωn(�q)]| �En(�r, �q)|2

∣∣∣∣ ∂ (kx, ky)

∂ (ωn, �n)

∣∣∣∣dωnd�n, (D2)

where �n is the isofrequency countour of the nth mode. Taking into account that∣∣∣∣∂ (ωn, �n)

∂ (kx, ky)

∣∣∣∣ =
∣∣∣∣∣det

(
∂ωn
kx

∂ωn
ky

∂�n
kx

∂�n
ky

)∣∣∣∣∣ = ∣∣(Vgr
n × τn

)
z

∣∣ = ∣∣Vgr
n (ωn, �n)

∣∣, (D3)

where τn = ∂�n/∂q is the unitary vector tangent to the isofrequency contour, we obtain finally:


(�r, ω) = 1

(2π )2

∑
n

¨
δ[ω − ωn(�q)]| �En(�r, �q)|2

∣∣∣∣ ∂ (kx, ky)

∂ (ωn, �n)

∣∣∣∣dωnd�n = 1

(2π )2

∑
n

ˆ | �En(�r, ω, �n)|2∣∣Vgr
n (ω,�n)

∣∣ d�n. (D4)

Despite the group velocity of the resonances at some points (ωn, �qn) equals to zero, the integral (D4) is not diverging, in general,
even at resonant frequencies ωn, due to the integration over the entire first Brillouin zone. In one-dimensional chains the situation
is different, because the final formula for the local density of states contains summation over the resonances:


(�r, ω, �ed ) = 1

2π

∑
n

ˆ
d �q δ[ω − ωn(�q)]| �En(�r, �q)|2 = 1

2π

∑
n

| �En(�r, qn(ω), ϕ)|2∣∣ ∂ω(qn (ω),ϕ)
∂ �q

∣∣ = 1

2π

∑
n

| �En(�r, qn(ω), ϕ)|2
|Vgr (ω, qn(ω), ϕ)| . (D5)

Since the group velocity vanishes at resonance frequencies
on the edge of the first Brillouin zone, the local density of
states in one-dimensional chains diverges. This situation is
considered in Refs. [17,20]. We emphasize, that the formu-
las (D1)–(D5) applicable only to resonant systems, optical
properties of which can be more or less conveniently de-
scribed by considering a set of resonances. In contrast to
this, formula (8) in our manuscript represents a rigorous

procedure for calculating the Purcell factor in any two-
dimensional photonic crystal slab without point or line defects
with arbitrary unit cell consisting of arbitrary number of
layers. Therefore, despite the visual simplicity of formu-
las for the Purcell factor containing the group velocity (as
well as other effective parameters), the use of them some-
times is not at all easier than evaluating the integral in
expression (8).
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