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Path-integral simulation of exchange interactions in CMOS spin qubits
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The boom of semiconductor quantum computing platforms created a demand for computer-aided design and
fabrication of quantum devices. Path-integral Monte Carlo (PIMC) can have an important role in this effort
because it intrinsically integrates strong quantum correlations that often appear in these multielectron systems.

In this paper we present a PIMC algorithm that estimates exchange interactions of three-dimensional electrically
defined quantum dots. We apply this model to silicon complementary metal-oxide-semiconductor (CMOS)
devices and we benchmark our method against well-tested full configuration interaction simulations. As an
application, we study the impact of a single charge trap on two exchanging dots, opening the possibility of using
this code to test the tolerance to disorder of CMOS devices. This algorithm provides an accurate description of
this system, setting up an initial step to integrate PIMC algorithms into development of semiconductor quantum

computers.
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I. INTRODUCTION

Silicon spin qubits are rapidly emerging as one of the top
contenders for quantum computing. Their similarities with
CMOS transistors are fueling expectations of having a fully
integrated quantum processor with millions of qubits, as re-
quired by current fault-tolerance thresholds [1,2].

With the technology still at its dawn, it is necessary to
guarantee that the key quantum operations will be repeatable
and efficient across devices. One of these key operations is
the exchange, which spin qubits rely on to execute entangling
gates [3,4]. This interaction is activated when two spins are
close enough to cause their wave functions to overlap. During
the execution of a quantum algorithm, qubits should be contin-
uously adjusted from an exchange OFF mode for single-qubit
gates to an exchange ON mode for two-qubit gate operation.

Since the first proposal of this model in 1998 [3], a vari-
ety of quantum dot spin qubit technologies has emerged in
semiconducting systems such as silicon and germanium [5].
Despite this, achieving repeatable and controllable exchange
coupling is a difficult problem that all of these platforms have
tackled with different levels of success. In the most successful
ones, the implementation of two-qubit gates followed soon
after the observation of exchange interactions [6—8], with con-
firmed realizations of high-fidelity two-qubit gates (>99%) in
spin qubits in silicon [9-12].

The exchange coupling depends exponentially on the sep-
aration between quantum dots [4,13]. That means that if the
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wave functions are too small or too distant from each other,
or if they are affected by destructive Bloch oscillations in
the lattice [14], the total overlap might be too small for
exchange to be observed. This is probably the main reason
for the success of gate-based quantum dots in this matter.
Gate-defined dots are relatively large (10-100 nm) and their
size and position can be controlled electrically. Even more, in
the last few years, interstitial exchange control gates between
neighboring dots have been implemented in quantum dot de-
vices with the objective of accurately controlling the interdot
barrier [15] [see Fig. 1(a)]. This adaptation has significantly
improved the success of these devices in creating controllable
quantum entanglement across multiple platforms [10,16-20].
Now, with more and more devices having large and control-
lable exchange interactions, the pursuit is for optimization,
extensive repeatability, and tolerance to disorder [21,22].
With these objectives in mind, we developed an exchange
estimation tool based on the path-integral Monte Carlo [23,24]
(PIMC) approach, which is an ideal tool to aid in the fabrica-
tion of spin qubit devices [25]. The main advantage of this
ab initio approach is its ability to tackle strongly interact-
ing systems. PIMC treats the electrons as pointlike particles
immersed in the three-dimensional (3D) potential repelling
each other by Coulomb interactions, meaning that there is no
need to compute costly Coulomb integrals. In this setup, the
code samples hundreds of random electron paths with close
to minimum action employing a Metropolis algorithm. Quan-
tum operators, such as the energy or the electron density, are
estimated from the mean values among the simulated random
paths. This makes the algorithm very suitable for extensive
parallelization. Each PIMC simulation runs individually and
with very little cost in memory and computing power. No
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FIG. 1. (a) Schematic of CMOS double quantum dot device. The
quantum dots are formed around the two potential minima, below the
oxide layer. (b) Path-integral simulation. The orange profile depicts
the potential in the x-y plane at z = 0. The x-y plane shows the
electron path density.

communication is needed between processor cores, meaning
that a large number of PIMC paths can be simulated in parallel
in a computational cluster.

In this paper, we use this approach to perform exchange
coupling simulations in realistic 3D models of silicon CMOS
double quantum dots. These dots are confined electrically
against the Si/SiO, interface by the upper metallic gates
observed in Fig. 1(a). The exchange is controlled with the
J gate in the middle of two plunger gates (P1 and P2). To
simulate this system, our PIMC code samples 500 realizations
of two-electron paths inside the double quantum dot shown in
Fig. 1(b). Then building on top of the original approaches by
Ceperley [23] and Pedersen [26], we sample paths that can
exchange several times between the dots, which allows us to
estimate the exchange interaction from the relative increase in
the total energy.

We observed the expected exponential dependence of ex-
change versus interdot distance [4,13], and compared it with a
well-established full configuration interaction (FCI) approach.
Then, we proceeded to demonstrate one of the main applica-
tions of this software, which is understanding the potential
impact of impurities on this operation. Here, we show how a
single negatively charged interface trap can impact the two-
dot system in different ways depending on the position where
it is placed.

This approach is extendable to other sources of disorder
that are typical in CMOS technology. We have already used
it, for instance, to understand the impact of Si/SiO, rough-
ness on the exchange coupling, where we tested this method
against actual experimental data [22]. A deep understanding
of these sources of variability is essential in the design of re-
alistic strategies to tolerate disorder and scale semiconductor
quantum technologies [27].

In general, the exchange coupling in semiconductors can
be affected by Bloch oscillations in the lattice. This could be
important in materials like silicon, in which there is a sixfold
valley degeneracy. However, in CMOS qubits the asymmetric
confinement of the quantum dot against the (001) interface
lifts four of these degeneracies leaving only the two valley
states in the z axis [28,29]. This is very convenient for CMOS,
as the remaining Bloch oscillations are perpendicular to the in-
plane orientation at which the exchange is controlled. While
valley interference might still be a hurdle in CMOS quantum
dots [30], its impact is much smaller than in other technolo-
gies such as donor qubits [14,31,32] and can be compensated

with J-gate tunings. Because of this, in this initial approach
we ignore the valley physics and focus on the effects of the
architecture and J-gate tunability.

In this work, we employ an effective mass approximation
in which the full interacting Hamiltonian for a two-electron
double quantum dot is given by

| SR
H(r (1), @) = EU:Msﬂh + zv;Msﬂb

2
+ Voop (71) + Voop (72),
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where Ms; = diag(0.19, 0.19,0.98)m, is a diagonal matrix
with the effective mass of a silicon electron at each lattice
orientation, and €,, is the electrical permittivity of the material.
Here we use the permittivity of silicon, which is eg; = 11.7¢.
The potential of the 3D double quantum dot well is described
by a model potential Vpgp. The most accurate way to estimate
this term is by performing electrostatic simulations of realistic
qubit architectures with the tools available in COMSOL. For this
first part of the paper, we use a simple quartic potential model
in the x axis to form the double quantum well [see Fig. 2(a)]:

Vpop(x, ¥, 2) = cxxpxg — byd; (x] + x3)

+ wyyZ —zE, + ‘/slepU(Z)a 2)
where
d d
xL—x—E’, xR=x+5’ 3)

and d; (nm) is a physical variable of the model that we as-
sociate with a relative interdot distance. In addition, in the
other directions, the electrons are confined by a parabolic
potential in the y axis and an electric field E, in the z axis
[see Figs. 2(b)-2(e)]. We represent this barrier in Fig. 2(d)
as a soft step with height Vp = 3.1 €V mimicking the free
conduction band offset between Si and SiO, multiplied by a
sigmoid function

1
O‘(Z) = —(6—4(14-2)/00 n 1) (4)
at z = —2 nm, where ay = 0.543 nm is the silicon lattice

parameter.

For a better approximation to realistic CMOS devices, we
fitted this model to potentials simulated in COMSOL for state-
of-the-art devices obtaining the values in Table I. The only
variable that we are going to sweep is d;, which is designed
to emulate the impact of a J gate. When J is pulsed on, the
interdot distance d; becomes smaller, which at the same time
increases the exchange interaction [see Fig. 3(a)]. Moreover,
because d; is also multiplied by the b, term in Eq. (2), the
interdot potential barrier decreases when J is pulsed [see
Fig. 3(b)]. This is confirmed in COMSOL simulations [22].
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II. MODEL OF A CMOS DOUBLE QUANTUM DOT (DQD)
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FIG. 2. (a)-(e) Comparison between electron density of the dou-
ble quantum dot, with a single PIMC sampling and with the potential
profile at each axis. (a) Cut along the x axis of the electrostatic poten-
tial. (b)—(c) Electron density in the xz (b) and in the x-y (c) planes.
The change in color in the electron paths indicates the shift in the
imaginary time. (d)—(e), Potential profile along the z axis (d) and the
y axis (e). The potential in the x axis is at different scales. The large
step of 3100 mV represents the gap in the conduction band between
Si and SiO2.

III. PATH-INTEGRAL MONTE CARLO (PIMC)

PIMC has multiple applications across physics and chem-
istry [24,33]. As such, there is extended literature about this
theory including instructions [34], methods [23], and limita-
tions [35]. It has also been applied with notable success to
the simulation of ideal multielectron quantum dot systems
[36,37], including estimates of interdot exchange coupling
in 2D dots [26]. However, a work does not yet exist, to our
knowledge, that incorporates the complexity of realistic 3D
quantum dot devices with the capacity of providing feedback
to the process fabrication of semiconductor quantum architec-
tures. This is the gap we are trying to fill. Here we summarize
some of the most important concepts for this paper and define
the notation that we are going to use.

Let us consider a time-independent Hamiltonian A with
kinetic (K), potential (V), and interacting H parts

H=K+V+I, 6)
such as the one in Eq. (1). The quantum evolution of a particle
|F, t) is described by the Schrodinger equation

d N
h—|F, t) = H|F, t 6
ih= 7. 1) |7, 1) (6)
solved as the unitary evolution

Y1) = e My (7, 0). )

The path-integral
operator into

formulation divides this unitary
infinitesimal time slices via Trotter’s

TABLE I. Model parameters for Eq. (2).

Parameter E, wy Cy b,
Units meV/nm  meV/nm?  meV/nm* meV/nm?3
Value 20 0.3 8.1 x 1073 6.48 x 107*

decomposition
= . ig\N
e H = lim (ehHT)
N—oo
= lim (e7Xre 7 e W)Y, 8)
N—o00

where 7 := L. The last step relies on e?™*8) ~x ¢™e™8 ag
result of Baker-Campbell-Hausdorff formula approximated to
first order in 7 « 1 [38—40]. After this, we can estimate the
propagator of a particle between positions 7y and 7y as all
possible sequences of these infinitesimal propagators that take
the particle from the initial to the end point

S a - _—
(P, t70, 0) = (Fyle 7)) = Z 1_[ (Fipile” iH TI7).
FieR3N j=0
)]
For N sufficiently large, the operators e X, ¢% ¥V and

e7 vl in (8) commute with each other (consequence of
Baker-Campbell-Hausdorff formula), meaning that they can
be applied directly to the wave functions in position space.
This allows us to express (9) as a composition of the following

propagators:
N V(7; V(7;
(FraIVIF) = w7

- - 2
L pa m||Fj1 =l
i |KIF) = — = ————— 10
Pl RIF)) = — - (10)
For two-electron interactions, we would require a second in-

dex to describe the particle number.

Frir 1) = - L :
ryLj+ildre ) == s-—\ = > > > .
24me \|[F1; — Pl |71 41 — P2, jpul

an

In total, the propagator can be estimated as

Z e S (12)

};eR3

(Pn, t[7o, 0)

where S({7};) is the accumulated action over a path {7}; in
the position space, such that

N
S(F) =Y TH(). (13)
Jj=0

One of the main aspects of this method is replacing ¢ by
an imaginary time i8/A. When this is done, Eq. (12) gains
an entire new significance as each individual term e7  is re-
placed by a Boltzmann term e* 2105 This transformation
creates a parallel between this unitary evolution and statistical
mechanics where the variable 8 can be thought as the inverse
of a temperature 1/kgT . In this paper, we simulate electrons
in temperatures down to 1 K, which is equivalent to simulated
total time lengths of five picoseconds.

In this new representation, we can think that the statistics
of the operators are related to the electron paths {r}; which are
distributed with a probability ¢~* 21 Because of the ex-
ponential, only the electron paths that have a relatively small
action are going to be relevant. PIMC makes an importance
sampling of these paths employing a Metropolis algorithm.
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FIG. 3. (a) Scheme of the operation of an exchange J gate. When the J gate is tuned the interdot barrier falls bringing the dots close
enough to create exchange interactions. (b) Cross section of the x axis of the potential in equation (2) for four values of d,. (¢c) Sampling of
two-electron paths with 0, 4, 10 and 16 crossings. The color in the paths represents the variation in the imaginary time iz, for comparison with
Figs. 2(d)-2(e). (d) Action S (13) versus a number of crossings for the potentials in (b). (e) Exponential dependence of the exchange coupling
versus interdot distance. We benchmark PIMC results with full CI codes [41,42]. (f) Position density of the electron paths with four crossings

for d; = 15 nm and d; = 30 nm.

The Metropolis sampling starts with a random trajectory,
which is to be optimized for minimal action S through a series
of random updates that are proposed after each iteration. At
each one of these, the software proposes a modification to a
section of the electron paths. Then, depending on its impact on
the action, the software accepts or rejects the update according
to the following rule. If the resulting action is smaller than
before, it is always accepted. In contrast, if it is higher, the
algorithm accepts the update with probability

p=er, (14)
where §S is the difference between the new and the old action.
This last part is required to achieve a static balance in the
algorithm [23]. Today, there exists a variety of updates used in
PIMC algorithms (single slice, center-of-mass displacement,
etc.). For this paper, we chose a specific set of them, which we
described in the Appendix.

Once the Metropolis algorithm is implemented, it is possi-
ble to sample a varied set of random paths {7}; with relatively
small action. The mean of an operator O can be computed
from the average of the output among the sampled random
paths P [34]

1 S
(0) = 5= D (0G). (15)
{FlieP
where Ny is the total number of paths simulated. In addition,
it is also possible to compute statistical errors §O from the
variance of operators as

2\ 2
50 = Zogy 212D _ 5 [0~ (O

95%
VN Ng
where Zgsq, A 1.96 is the z score for the 95% confidence
interval. This allows us to estimate uncertainties in our
computations.

. (106

IV. COMPUTATION OF THE EXCHANGE COUPLING
WITH PATH-INTEGRAL MONTE CARLO

To simulate a system with two electrons we replaced in
Eq. (13) the two-electron Hamiltonian (1). A visual repre-
sentation of one of the sampled electron paths is observed
in Fig. 2(b). The bulk of the trajectories will be concentrated
close to the minimums of the parabolic potentials, with certain
paths crossing from one dot to the other. In addition to this,
PIMC also provides a proper way to visualize the electron
density. This can be done by creating a histogram of the
position of the electrons over all realizations. The result is
shown in Figs. 2(d)-2(e) and compared with the potential
profile in the different axes.

To compute the exchange coupling explicitly, we build on
top of the original approach of Pedersen et al. [26] in two
dimensions. Their method is based on a type of bosonization
of the paths. Traditionally, the simulation of fermionic paths
requires a consideration of all possible path-exchanging elec-
trons, which gain a negative sign in their action upon exchange
and lead to what is known as the sign problem. In the special
case of only two electrons, however, one is able to break down
the time evolution (or, equivalently, the partition function)
into paths that result in an even or odd number of exchanges
(considering spins as completely separable from the orbital
part of the wave function). Sampling the two types of paths
separately as if they were bosonic particles and comparing
them allows us to determine their energy difference. This
reflects the difference in energy between singlets (spatially
symmetric paths) and triplets (spatially antisymmetric paths),
which defines the two-particle exchange. This trick would
fail in the most general case with either more electrons or
if spin-orbit coupling made the breakdown between spin and
orbital parts of the wave function impossible.
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Then, the actual numerical calculation becomes very ef-
ficient by simulating two types of paths. The first type is
when both electrons are confined below their own dot without
exchanging. Let us call Sy the average action for these paths.
In the second type, the electrons are allowed to exchange a
single time from one dot to the other and have an action that
we call S;. It is then expected that S; is larger than Sy by
an amount 65 because in S; the electrons are forced to pass
through the interdot barrier that has a higher potential. This
difference is related to the exchange coupling by

—So/h —S1/h
_ e — e
e P =

= (17)

which means that
-1 e S0/l _ p=Si1/h - 2 s

1= () e
where the last approximation is valid as long as e~%/7 is small,
as we usually find in the simulations. These two states Sy and
S1 can be associated with the spin-singlet (symmetric wave
function in position space) and spin-triplet state (antisymmet-
ric wave function in position space) [23], which correlates
this method with the traditional interpretation of exchange
coupling.

While the initial results for 2D quantum dots were success-
ful [26], implementing this idea for more realistic 3D silicon
quantum dots turned out to be problematic as the statistical
dispersion of the sampled paths measured, for instance, by
their standard deviation o (S) was significantly higher than
their difference o (Sy) ~ o (S;) > 4S5, making it hard to esti-
mate §S accurately. We solved this with a modification to the
algorithm. Instead of just simulating paths that crossed one
single time, we simulated paths that exchanged multiple times
in the system. We verified that each exchange carried an addi-
tional constant value to the action, implying that Sy, increased
by a linear rate with respect to the number of exchanges
between the electrons N,. This is observed in Fig. 3(d) in
which we show the dispersion of N, versus Sy, of 500 paths
simulated for each of the four potential configurations in
Fig. 3(b). The slope of each of these regressions gives and
estimate for &S, from which we can compute the exchange
coupling using Eq. (18). This also provides a natural way to
compute the error bars as the standard deviation of the slope
in the linear regression multiplied, in this case, by 1.96 (the z
score associated to the 95% confidence interval).

Figure 3(e) shows the output values of our exchange
calculations. Notice that the exchange coupling decreases ex-
ponentially with the interdot distance as expected [13]. To
ensure that our estimates were accurate enough we compared
our results with two Full CI algorithms implemented indepen-
dently [41,42]. Details of Full CI calculations can be found in
these references.

‘We have a deeper look into what is happening in Fig. 3(f).
The plot compares the histogram of the position of the elec-
trons for paths that exchanged four times in the system. While
this metric is not the same as standard electron density in
quantum mechanics, it is still useful to understand how the
electrons distribute across the double dot when performing ex-
change. Notice that the density at the interdot region increases
significantly when the d; decreases from 30-15 nm, which

Temperature (Kelvin)

50 10 5 2 1
| I : :
L I
< O
=
~e
<
> -10f d] [nm]
o 20
= | 25
'20' I 30
1 2 3 4 5
Bh (ps)

FIG. 4. Convergence of exchange estimate versus time length
Bh, which also represents the inverse of the temperature § = 1/kgT .
Simulations align with an exponential convergence in . We fit the
results to the formula log,,(J) = a — be~?" to find statistical confi-
dence intervals.

contributes to a strong enhancement of the exchange coupling
at a rate of 0.25 decades/nm. In particular, note that when
the dots are more separated from each other, the exchange
is as low as 10 kHz. At this scale, the exchange is usually
not visible in a standard qubit spectroscopy experiment as
other effects such as disorder or spin-orbit coupling become
dominant [22]. An important challenge for this architecture is
to fabricate devices in which it is always possible to turn ON
and OFF the exchange coupling consistently. And here we see
that CMOS devices rely on this high tunability of the interdot
distance to perform this operation.

A final concern in this algorithm is the role of temperature,
which is inversely related to the variable . In Fig. 4 we show
that the exchange simulations converge for S > 2 ps. At this
point, the simulated temperature is lower than 2 Kelvin. As
qubit measurements occur at temperatures ranging from tens
of mK and up to 1 K, we can assume that the temperature
will not have a significant role in the value of the exchange
coupling.

V. IMPACT OF STATIC TRAPPED CHARGE
ON THE SYSTEM

To test additional applications of this PIMC algorithm we
make an initial approach to describe the impact of disorder
on exchange interactions. Here we calculate the effect of a
static charge trap by adding a Coulomb interaction term to our
Hamiltonian, that describes the repulsion between the charge
trap and the dot electrons as previously described in Ref. [43].
For each electron i € 1, 2, we include in Eq. (2)

Hta(7) = (19)
r)=-———",

TN A |7 — ol

where 7. = (x., Y., z.) is the position of the trap.

As the focus of this paper is only to show the potential
of PIMC to tackle these problems, we limit this paper to the
simulation of a single negative interface trap (z. = —1 nm,
the same level as the SiO; oxide barrier) placed in the dot line
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FIG. 5. (a) Schematic view of the position of the negative trap charges that are analyzed in these simulations. (b) Exchange coupling vs
trap position. (c) Impact of trap location on the rate of exchange control (M) in decades per volt. (d)—(e), Electron densities at xc = 35 nm
and xc = 0 nm for PIMC paths that exchange ten times between both quantum dots. d; = 20 nm. (f) Cut of the electron trap density at the

interdot channel for x. = 35 nm and x. = O nm.

(y. = 0 nm) that passes through the middle of both quantum
dots. Here, x, is left as the only variable. This is already the
worst-case scenario as any charge that is outside the dot line or
that is more deep into the oxide would have a smaller impact
on the potential configuration.

We performed exchange simulations for traps located a
the positions shown in Fig. 5(a) and presented the results
in Fig. 5(b) for different values of d;. Notice that when the
electron is far enough (x. ~ 40 nm) we recover the pristine
simulation without any trap. In contrast, when the trap is
slightly closer to the system we can see that exchange in-
creases or decreases depending on whether the trap is inside or
outside the double quantum well. This occurs asymmetrically
for the different values of d;, which explains why there is also
an impact on the exchange control rate dloi}ou) [see Fig. 5(c)].
All this makes sense because the negative trap pushes the dots
closer together when it is outside of the double quantum well,
while it drives them apart when it is inside [Figs. 5(d)-5(e)].
The most critical scenario is when the trap is exactly inside
the interdot channel. But even in this case, we can see that
at d; = 20 nm there is still an acceptable exchange coupling
because of the existing electron density the interdot channel
surrounding the negative trap [Figs. 5(e)-5(f)].

VI. PROSPECTS FOR PATH INTEGRAL IN THE
SIMULATION OF QUANTUM DOT QUBITS

We have demonstrated that PIMC can be applied to the
simulation of interacting effects on quantum dot qubits. How-
ever, our initial success with this protocol is in part because

the electrons that we simulated lie in different quantum dots,
and the paths only crossed each other when exchange is per-
formed. That means that at the current stage we can perform
multielectron simulations as long as the electrons remain in
separate dots for most of the time.

Even with these constrains, this approach can be used sim-
ulate quantum dots chains (or grids), which are of high interest
in large-scale quantum computing. As long as the electrons
do not lie in the same dot, PIMC is able to simulate all of
them interacting with each other with only a linear impact on
memory and complexity. This can be used to study interdot
correlations, which could help to understand the crosstalk
effects between electron charges at different dots.

For a more general perspective we would like to simulate
systems in which multiple electrons can occupy the same
quantum dot. This is very interesting for the field as it has been
shown that it is possible to control spin qubits at the outer shell
of multielectron quantum dots, with possible improvements in
the coherence of single qubits [44] and also on the strength of
the exchange interactions between two qubits [20].

However, simulating multielectron quantum dots can be
problematic in PIMC due to the infamous fermion sign prob-
lem [23]. Despite this concern, it is noteworthy that methods
to tackle this issue have significantly improved in recent years
[35,37] with encouraging results in simulating 2D multielec-
tron quantum dots [36]. Additionally, to fully simulate silicon
dots, valley physics must be included in the model as in
a well-closed shell structure, a third electron would occupy
the upper valley state, and not the first p orbital as usual
[44,45].
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VII. CONCLUSIONS

We demonstrated here a method to compute exchange
coupling in realistic 3D silicon quantum dots, which can be
applied to the optimization of device architectures and studies
of tolerance of disorder in silicon qubits. Our results agreed
with equivalent simulations with full configuration interaction
algorithms, which are considered to be a current standard
in simulating strongly correlated systems. We also showed
that PIMC provides proper methods to visualize the electron
density, thus allowing us to study features in the quantum dot
structure. This is well observed in the trap simulation where
the electron density curves around the negative trap.

We expect that this initial approach motivates the further
applications of PIMC algorithms in semiconductor qubits,
either by studying charge correlations in large grids of single-
electron quantum dots or by leveraging the code to simulate
the exquisite physics of multielectron spin qubits. If it is well
combined with standard electrostatic simulation software such
as COMSOL MULTIPHYSICS, PIMC algorithms could provide
substantial support to the fabrication of optimal and highly
repeatable CMOS spin qubit devices.
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APPENDIX A: PATH INITIALIZATION

Each initial position of an electron in the ith quantum dot
(i € {1,2}) at time ¢ is initialized from a random sampling
of the normal distribution (N)(x;, 0;)(t), where x; is the mini-
mum of the potential of dot i and o; is chosen to be sufficiently
large to cover for both dots. Here we chose o; = 30 nm. We
did not observe a substantial dependence of this variable on
the output of the algorithm as long as it is big enough to cover
an important region around the dots.

To simulate paths with multiple exchanges in the double
quantum dot we alternate the position of the electrons during
the imaginary time. For instance, to initialize an electron
path with four exchanges, we can divide the time frame S
in four sections: (i) t < B/4, (ii) B/4 <t < B/2, (ii1) B/2 <
t <3B/4,(1v) 38/4 <t < B.In sections (i) and (iii) the first

electron is sampled at the center of dot 1 and the second
electron is sampled in dot 2. Instead, in sections (ii) and (iv)
the first electron is initialized in dot 2 and the second electron
is initialized in dot 1. This will guarantee that the electrons
are most likely going to perform four exchanges after the
simulation.

This is, however, not a strict rule. Some electron exchanges
can disappear or emerge during the Metropolis iteration of the
PIMC simulation. To avoid that this happening so often that
it becomes intractable the parity of the number of exchanges
is protected during the PIMC simulations. This is done by
fixing periodic boundary conditions in the time axis (|7, =
0) = |F,t = B)). By doing this, a path initialized to have four
exchanges, for instance, can only end in a path with the same
parity.

Because of this reason, changes in the number of electron
exchanges during the PIMC simulation are not so common,
and they are usually easy to track. We implemented a quick
algorithm during the postprocessing to read the sampled elec-
tron paths and estimate the real number of crossings after
the simulation. As observed in Fig. 3(d) most of the paths
coincide with one of the original number of crossings in the
initialization (0, 4, 10, 16). The remaining paths that do not
coincide with this number are those ones where the number of
crossings changes during optimization of the PIMC paths.

APPENDIX B: UPDATES

The current implementation only includes two types of
updates in the simulation [23] that provided the best config-
uration for our purposes:

1. Staging update

For a time step ¢; chosen randomly, the algorithm time slice
subsection starting at #; and with a defined length of T > 3,
such that it ends at #; + 7. The update replaces all middle
positions r; of the electron, witht' € (f; + 1,#; + 6T — 1), by
new positions sampled with a normal distribution N (u,, o)
where

1 , :
re = 2@+ T =+ @ 1]

) th 2
o= — (B1)
M= +

=)t

Here m is the effective mass on the direction of motion.
This update already covers for the convergence in the kinetic
energy and then the acceptance criteria only checks for the
difference in action attributed to the change in potential en-
ergy. Meaning that if the action increases the code accepts the
update with probability

p = e VIR Gtit TI=V R i+ T, (B2)
where V[R, (%, t; + T)] accounts for the potential energy
between #; and t; + T of the old (R,) and the new (R,) path,
respectively. During the algorithm the length of the subpaths
T changes to obtain a better estimator for the kinetic energy.
Thus, we initially set 7 = 27 and when the algorithm reaches
convergence T is updated to 9 and finally to 7 = 3. This has
a double purpose. At the beginning of the algorithm, it is
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necessary that the paths have a large range of movement to
be able to explore varied types of paths. T = 27 is ideal for
this. When the algorithm converges, the estimate for the action
will be more accurate if paths updates are finely tuned. This is
done with 7 = 3. The code switches between these modes.

2. Center-of-mass update

We also implement a center-of-mass update. It takes
the entire path and moves it in the direction »’ where
r’ is obtained from a random uniform distribution in the
ranges ([—ay, acl, [—ay, ay], [—a;, a;]) where we set a, =
ay = 5nm and a; = 1 nm. The code is given a probability of
0.05 of implementing this update, and the update is accepted
according to the rule in Eq. (B2) as it does not involve a

change in the kinetic energy.

APPENDIX C: CONVERGENCE AND OPTIMIZATION

To obtain the results displayed in Fig. 3 we first had to ver-
ify for the convergence of the algorithm at low temperatures
(high B) and number of time slices. We show in Fig. 4, that
for paths with 8000 time slices the PIMC exchange results
get stable after 8/ > 2 ps, which corresponds to temperatures
lower than 7 K. In all cases, we computed exchange with
500 path samplings with the initialization equally distributed
between 0, 4, 10, and 16 exchanges. In the first simulations
(Bh < 1 ps) we observed that the time length was too small
for the exchange number to be preserved. In consequence the
final number of crossings of the output PIMC simulations was
significantly lower than the initialized number. Hence most
of the PIMC paths had either zero or two crossings, which
contributed to a wrong estimate of the exchange coupling.
This changes after B/i = 2 ps when the time length is long
enough for the electrons to exchange multiple times.

Once we know that the algorithm converges for 8, we also
tested the Trotter convergence in Ny. Taking 8 = 4 ps, we
create Fig. 6(a) by simulating the convergence of the exchange
coupling versus the number of time slices. We can observe
the exchange rate converges at around 5000 time slices. As
it commonly happens in other PIMC algorithms the error
bars do not significantly increase with the number of time
slices. This happens because the uncertainty in the exchange
depends on the standard deviation of the slope of the linear
regression of S versus number of exchanges. This does not
depend significantly on Ny.

Also, simulating longer paths implies a longer runtime
of the algorithm. This is shown in Fig. 6(b), which depicts
the runtime of single PIMC simulations at different path dis-

(a) Bh = 4ps d, [(nm]
~ &y ] 20
N 125
Z 6 130
S
o 4 I~ + +
§ e ety

4 t R I'

—_
O
~

Runtime of a single
path (minutes)

0 2000

4000 6000 8000 10000

Number of time slices (Nr)

FIG. 6. Convergence of exchange (J) simulations, for 500 PIMC
sampling paths. (a) Convergence J versus number of time slices N,
for B = 4 ps. Simulations align with an exponential convergence
in Ny. We fit the results to the formula log,,(J) = a + bN¥ to find
statistical confidence intervals. (b) Dependence of the runtime of
individual path simulations versus number of time slices. At about
8000 time slices where we run most of the simulations, the PIMC
runtime of a single path is about 5 min. With ten cores running in
parallel in a cluster, 500 paths can be simulated in 50 min.

cretizations. Then we performed a quadratic fit of the function
showing that the runtime of the algorithm scales at ~N?.

For this paper, we perform all of the simulations with 8000
time slices, which accounts for a five-minute runtime per path.
The simulations were simulated with extensive paralleliza-
tion in Katana (UNSW) and Gadi (NCI) clusters, each one
with with low memory requirements <1 MB and without any
communication between multiple cores. This allowed us to
perform large amounts of exchange simulations in an amount
that is suitable for random variability studies (hundreds of
simulations with varying parameters) [22].

There is also plenty of space for optimization in this code.
It was fundamentally written in PYTHON, with proper vector-
ization, but could be improved systematically if written in
C or C++. Optimizing the set of updates used during each
path simulation and the number of paths sampled could also
significantly improve the performance of the code.
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