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Superlattice engineering of topology in massive Dirac fermions
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We show that a superlattice potential can be employed to engineer topology in massive Dirac fermions in
systems such as bilayer graphene, moiré graphene-boron nitride, and transition-metal dichalcogenide (TMD)
monolayers and bilayers. We use symmetry analysis to analyze band inversions to determine the Chern number
C for the valence band as a function of tunable potential parameters for a class of C4 and C3 symmetric potentials.
We present a method to engineer Chern number C = 2 for the valence band and show that the applied potential
at minimum must have a scalar together with a nonscalar periodic part. We discover that certain forms of the
superlattice potential, which may be difficult to realize in naturally occurring moiré patterns, allow for the
possibility of nontrivial topological transitions. These forms may be achievable using an external superlattice
potential that can be created using contemporary experimental techniques. Our paper paves the way to realize
the quantum spin Hall effect (QSHE), quantum anomalous Hall effect (QAHE), and even exotic non-Abelian
anyons in the fractional quantum Hall effect (FQHE).
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I. INTRODUCTION

The discovery of the integer quantum Hall effect (QHE) in
two-dimensional (2D) systems has led to the classification of
the phases of matter by their topology [1–7], which is distinct
from Landau’s classification based on spontaneously broken
symmetries. The topological phase of matter is characterized
by its Chern number C that defines the quantization of its prop-
erties such as the Hall conductance and does not change unless
there is a topological transition. The topologically nontrivial
phases of matter are of interest for fundamental understanding
as well as for the future of technologies as they host edge
modes that are robust information carriers useful in spintronic
and computing applications [8–10]. Exotic topological states
of matter such as the non-Abelian anyons that are neither
bosons nor fermions, exhibit non-Abelian braiding statistics
foundational to topological fault-tolerant quantum compu-
tation and can emerge in systems displaying the fractional
quantum Hall effect (FQHE) [8,9,11,12].

Recently there has been considerable interest in the physics
emerging from the formation of a periodic moiré pattern
created due to stacking a 2D monolayer on top of another
with a small rotation or lattice mismatch. The interlayer
binding potential of the moiré pattern acts as a natural su-
perlattice potential forming minibands that significantly alter
the properties of 2D monolayer materials leading to exciting
new quantum phenomena [13–15]. In addition to moiré pat-
terns, contemporary experimental techniques have provided
the ability to apply an externally generated or “artificial” su-
perlattice potential to lattices, which can be more general than
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the naturally occurring potential and is largely unexplored
[16,17]. For example, one method of creating such an artificial
potential is by considering the LAO/STO (LaAlO3/SrTiO3)
interface that hosts a 2D electron gas [18–22]. An atomic force
microscopy (AFM) tip [23–25] or a low-energy electron beam
[26] can be used to distribute the charge density and “write”
arbitrary potentials, which can couple to the system of interest
[27–31]. Another method is by considering the twisted hexag-
onal boron nitride (h-BN) substrate, where an intrinsic charge
redistribution generates an external superlattice potential [32].
Other methods such as dielectric screening [33,34] can also be
used for the purpose.

In this article, we provide the minimal form of such
an externally-applied superlattice potential to engineer topo-
logical states in massive Dirac fermions that occurs in
multiple systems such as in bilayer graphene, moiré
graphene/hexagonal boron nitride, and transition-metal
dichalcogenide (TMD) monolayer and bilayer materials. For
a class of C4 and C3 symmetric potentials, we use symmetry
analysis to analyze band inversions to determine the Chern
number C for the valence band as a function of tunable po-
tential parameters. We present a method to engineer Chern
number C = 2 for the valence band and show that the applied
potential must have a scalar together with a nonscalar periodic
part. We discover that externally applied potential allows the
possibility of nontrivial topological transitions that can be dif-
ficult to achieve otherwise by only naturally occurring moiré
pattern produced by a twist or lattice mismatch. The topolog-
ically nontrivial band can be made nearly flat by increasing
the strength and the periodic length of the applied potential.
Partially-filled flat bands with nontrivial Chern numbers can
give rise to fractional Hall states as suggested by numerical
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papers [35–44]. Moreover, there is no equivalence between
the simple Landau levels and a higher Chern number such as
C = 2, which can occur in bands. Therefore engineering a flat
C = 2 band may lead to even more exotic and exciting FQHE
physics, which may not be realizable with the Haldane model
or an external magnetic field having Landau levels [45–49].
We finally discuss experimental implementation of our paper,
which allows for the possibility to realize QSHE, QAHE, and
even exotic non-Abelian anyons in the FQHE.

We introduce the general Hamiltonian describing massive
Dirac fermions in a periodic potential in Sec. II. We consider
the C4 symmetric potentials in Sec. III and show that both
the first and second star of Fourier components of the applied
scalar potential V0(r) are needed to induce C = ±1 for the
valence band. Subsequently, we show using symmetry anal-
ysis that C = ±2 can only be realized in the valence band
by considering both the scalar V0(r) together with a non-
scalar V1(r)σz. We then consider the C3 symmetric potential
in Sec. IV and similarly show that the scalar together with a
nonscalar potential can induce C = ±2 for the valence bands.
Finally, we discuss the experimental realizations of the theory.

II. MASSIVE DIRAC FERMIONS IN A PERIODIC
POTENTIAL

The low-energy physics and topological transitions in 2D
materials can be well understood by considering the massive
Dirac structure of the band dispersion at the high-symmetry
points. We consider a massive Dirac fermion under the in-
fluence of an external superlattice potential. We expand the
tight-binding Hamiltonian at each valley ±κ to obtain

Hτ,k = HD
τ,k + V (r), HD

τ,k = at (τkxσx + kyσy) + �

2
σz,

(1)

where a is the atomic lattice constant, t is the hopping param-
eter, τ is the valley index, HD

τ,k is the Dirac Hamiltonian, and
V (r) is the external superlattice potential. For example, in the
case of TMDs, the Pauli matrices describe the d-orbital basis
{|dz2〉, 1/

√
2(|dx2−y2〉 + iτ |dxy〉)}.

Since the entire system is time reversal symmetric, the val-
ley Chern number Cκ = −C−κ. The strong spin-orbit coupling
in TMDs leads to valley-polarized spins. The two degenerate
valleys will be equally populated and a nontrivial valley Chern
number will induce the QSHE [50,51]. However, if the bands
at both valleys are nearly flat and are half filled, the Stoner
instability will lift the spin degeneracy, separating spin up
from the spin down states. Consequently, only one of the
valleys will be populated, which can possibly induce QAHE
as well as FQHE if the bands are made sufficiently flat. We
shall only consider the valley τ = +1, referring to the valley
Hamiltonian Hτ,k as Hk and the valley Chern number Cκ as
Chern number C from here as it is understood that the other
valley is connected by time-reversal symmetry.

In this paper, we consider potentials that are experi-
mentally realizable and are compatible with translational
symmetry and certain rotational symmetries. Since we are
primarily interested in describing the topological transitions
of the lowest-energy valence band, which are experimentally
accessible, we can further constrain the potential by only

FIG. 1. (a) The scalar potential V (r) in real space is plotted for
V1 = 0, V0 = 0.14 eV, V ′

0 = −0.15 eV. (b) The first Brillouin zone
of the periodic C4 symmetric potential indicating the high-symmetry
points, with the green solid and dashed arrows marking the first
and second star of reciprocal lattice vectors respectively. (c) The
valence and conduction bands for the Hamiltonian with � = 1 eV,
t = 0.7 eV, a = 3.56 Å, and L = 10a.

considering the first and second star of Fourier components.
We will see that this is sufficient as they directly couple the
nearest high-symmetry points and can provide necessary band
inversions to obtain nontrivial topologies. Since valence bands
have negative energies, we use the term lowest-energy valence
band to be associated with the magnitude of energy or closest
to the Fermi level at zero.

III. THE C4 SYMMETRIC POTENTIAL

The most general form of a C4 symmetric scalar potential
is V0(r) = 1/2

∑
G V0(G)eiG·r, where G are the set of the star

of Fourier vectors connected by C4 symmetry and V0(G) are
real. We will first show that it is necessary to consider both the
first and second star of Fourier components to induce C = ±1
for the valence band. We will then go on to show that C =
±2 can only be realized in the valence band with a minimal
potential having the scalar part together with the nonscalar
part that couples to σz. We consider the C4 symmetric potential
given by

V (r) = (V0I + V1σz )
2∑

i=1

cos(Gi · r) + V ′
0I

4∑
i=3

cos(Gi · r),

(2)

such that the reciprocal lattice vectors are G1 = 2π/L
[1, 0]T , G2 = 2π/L[0, 1]T , G3,4 = G1 ± G2, and L is the
period of the applied external potential. The real coefficients
V0,V ′

0 correspond to the first (G1,2) and second (G1 ± G2)
stars of the scalar potential marked by green solid and dashed
lines in Fig. 1(b) respectively. The coefficient V1 corresponds
to the strength of the nonscalar part of the potential.

For a C4 symmetric Hamiltonian, the Chern num-
ber C j for the nondegenerate band j can be calculated
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by [52]

iC j = ξ j (�)ξ j (M)ζ j (Y ), (3)

where ξ j (�), ξ j (M) are the eigenvalues of the C4 operator at
points �, M respectively, and ζ j (Y ) is the eigenvalue of the C2

operator at Y point for the jth energy band. The total Hamilto-
nian Hk commutes with the rotational operators at respective
high-symmetry points such that [C4, Hk] = 0 for k ∈ {�, M}
and [C2, HY ] = 0, and therefore has common nondegenerate
eigenvectors. We find the common eigenvectors by diagonal-
izing Hk and use them to find the corresponding eigenvalues
of the rotational operators. Compared to the direct calculation
of the Chern number by numerically integrating the Berry
curvature over the Brillouin zone, symmetry analysis provides
a great inexpensive and insightful method that can be used to
engineer Chern numbers.

We write the Hamiltonian using degenerate perturbation
theory by considering sufficient number of Bloch vectors to
achieve convergence in describing the low-energy physics.
For the lowest-energy valence band it suffices to take Bloch
vectors within the first Brillouin zone at �, {Y 1,Y 2}, and
{M1, M2, M3, M4} as shown in the inset of Fig 1(b). We
can further simplify the calculation by only considering the
valence band states, which are of our interest and neglect the
conduction bands as � � V0,V ′

0,V1.
We now express the potential in the basis |uk〉, which are

the eigen Bloch vectors of the Dirac Hamiltonian HD
k such

that HD
k |uk〉 = −

√
�2/4 + (atk)2|uk〉 at the respective high-

symmetry points. At the � point, we only consider the Bloch
vector at a single rotationally invariant point and therefore
ξ (�) = 1. At the Y point, we express the matrix potential in
the basis {|uY 1〉, |uY 2〉} to obtain

VY =
[

0 u
u 0

]
, (4)

such that u = 〈uY 1 |V |uY 2〉 = V0

2
√

1+s/2
− V1

2 , where s =
8π2t2a2/(L�)2. We diagonalize it to obtain the eigenenergies

E±1 = ±
(

V0

2

1√
1 + s/2

− V1

2

)
, (5)

which are labeled by their C2 eigenvalues. Therefore we
calculate ζ (Y ) = λ, where EY

λ = max{EY
1 , EY

−1}. Similarly
at M point we express the matrix potential in the basis
{|uM1〉, |uM2〉, |uM3〉, |uM4〉} to obtain

VM =

⎡
⎢⎢⎣

0 w v w∗
w∗ 0 w v

v w∗ 0 w

w v w∗ 0

⎤
⎥⎥⎦, (6)

where w = 〈uM1 |V |uM2〉 = V0
2 ( 1+i

2 )(1 − i√
1+s

) + V1
2 ( 1

2 +
i
2 )(i − 1√

1+s
), and v = 〈uM1 |V |uM3〉 = V ′

0

2
√

1+s
. We diagonalize

it to obtain the eigenenergies

E±1 = + V ′
0

2
√

1 + s
± 1

2
(V0 − V1)

(
1 + 1√

1 + s

)
,

E±i = − V ′
0

2
√

1 + s
± 1

2
(V0 + V1)

(
1 − 1√

1 + s

)
,

(7)

FIG. 2. (a) The C4 eigenvalues denoted by ξ (M) and (b) the C2

eigenvalues ζ (Y ) of the lowest-energy valence band as a function of
V0,V ′

0 , where V0 	= 0. We know that ξ (�) = 1, then Eq. (3) is used to
calculate (c) the Chern number C for the lowest energy valence band.

which are similarly labeled by their C4 eigenvalues. Similarly
we get ξ (M) = λ such that EM

λ = max{EM
1 , EM

−1, EM
i , EM

−i}.

A. Scalar potential

We first analyze the case when the external potential acts as
a scalar by setting V1 = 0. This is typically easier to achieve
as the applied field varies slowly over multiple monolayer unit
cells and couples to the two orbitals identically. We see that
the second star Fourier component of the potential V ′

0 is nec-
essary to break the degeneracy between E1(E−1) and Ei(E−i )
at M point as can be seen from Eq. (7). We now show that it is
also essential to induce topological transitions with C = ±1.
To see this, let us analyze the condition for band inversion
given by Eq. (3) that implies ξ (M)ζ (Y ) = ±i. Using Eqs. (5)
and (7), it can be shown that V ′

0 < −V0 or |V ′
0 | > |V0| such that

sign(V ′
0 ) = −1. Therefore, not only is the second star of the

Fourier component essential to realize a nontrivial topological
transition, it must be bigger than the magnitude of the first
star of the Fourier component of the potential. Typically, this
is not possible in naturally occurring moiré potentials, which
are well described by only the first-order component where
V ′

0 = 0. Therefore our result showcases the unique freedom
provided by the externally applied potential that is not found
in potentials created by the intrinsic or natural moiré pattern.

As an example, we take values typical of TMD monolay-
ers by choosing � = 1 eV, t = 0.7 eV, and a = 3.56 Å. We
take the external scalar potential V (r) parameterized by V0 =
0.14 eV, V ′

0 = −0.15 eV, and L = 10a shown in Fig. 1(a).
To obtain the band structure, we represent the Hamiltonian
using a sufficient number of Bloch vectors for convergence
and solve the central equation to obtain the valence and con-
duction bands shown in Fig. 1(c). The nontrivial coupling
V (r) lifts the degeneracy of the Dirac bands at high-symmetry
points. In Fig. 2 we calculate the Chern number for the
lowest-energy valence band using symmetry analysis. For
each V0,V ′

0 , we calculate the band inversions at Y and M
points. We use Eqs. (7) and (5) to obtain the eigenvalues ξ (M)
and ζ (Y ) shown in Figs. 2(a) and 2(b) respectively. The Chern
number C shown in Fig. 2(c) is then obtained using Eq. (3). We
see that the nontrivial Chern number arises when |V ′

0 | > |V0|,
which is consistent with our discussion above and have also
verified the same numerically by diagonalizing the Hamilto-
nian to obtain its eigenvectors and using the standard formula
of integrating the Berry curvature over the first Brillouin zone.

We can also immediately see that the Chern number C =
2 is not possible to obtain with the scalar potential of the

155409-3



SURI, WANG, HUNT, AND XIAO PHYSICAL REVIEW B 108, 155409 (2023)

FIG. 3. The Chern number C of the valence band taking (a) V1 =
−0.04 eV and (b) V ′

0 = 0.05 eV.

above form. We can obtain the condition for C = 2 given by
ξ (M)ζ (Y ) = −1 from Eq. (3). Considering the case when
ξ (M) = 1 and ζ (Y ) = −1, we obtain V0 < 0 from Eq. (5)
and V0 > 0 from Eq. (7) leading to a contradiction as both
equations cannot be satisfied simultaneously. We can similarly
show that the other case with ξ (M) = 1, ζ (Y ) = −1 also
leads to the same contradiction.

B. Scalar and nonscalar potential

Figure 2 shows that both ξ (M), ζ (Y ) together undergo
band inversion when V0 changes sign and in turn can never
realize the condition ξ (M)ζ (Y ) = −1 for C = 2. Motivated
by this insight and realizing that this band-inversion symme-
try must be broken, we introduce the nonscalar term V1 that
affects M,Y points differently as confirmed from Eqs. (5) and
(7). We show in Fig. 3 that the nonscalar term along with the
scalar potential can obtain C = 2.

In fact, we remark that the C4 symmetric potential V (r)
given in Eq. (2) is the minimal form necessary to obtain C = 2.
To see this, we analyze the case when ξ (M) = 1 and ζ (Y ) =
−1, then Eqs. (5) and (7) together imply

V1 >
V0√
1 + s

, V0 > V1, V0 >
V1 − V ′

0√
1 + s

,
V ′

0 + V0√
1 + s

> V1. (8)

If we take V ′
0 = 0, we obtain the constraints V0/

√
1 + s > V1

and V0/
√

1 + s < V1, which is a contradiction. Despite the
nonscalar term, we see that the second Fourier component V ′

0 ,
which does not occur in natural moiré potentials is necessary
to induce C = 2. Similarly, if we chose V0 = 0, we obtain the
constraints V1 < 0 and V1 > 0 thus obtaining another unsatis-
fiable condition. It is then evident that the equations can only
be simultaneously satisfied when all three terms with V0,V ′

0,

and V1 are present. Therefore, the potential given in Eq. (2)
has the minimal form to obtain C = ±2.

IV. THE C3 SYMMETRIC POTENTIAL

In this section, we analyze the C3 symmetric potential and
show that C = 2 can be realized similarly by having a scalar
together with a nonscalar periodic potential. It is worthwhile
to note that the symmetry analysis method applied to a system
with symmetry Cn can only predict Chern number modulo
n. Therefore for the C4 system, the symmetry method could
not distinguish between C = ±2. Similarly, for a C3 system, it

FIG. 4. (a) The scalar part of the potential V (r) in Eq. (9) with
V0 = 0.1 eV and φ0 = π/3. The inset shows the first Brillouin zone
created by the C3 symmetric potential indicating high-symmetry
points and lines. The nonscalar part (not shown) is taken as V1 =
0.099 eV and φ1 = 5.5π/16. (b) The valence and conduction bands
for the Hamiltonian with � = 1 eV, t = 0.7 eV, a = 3.56 Å, and
L = 10a. (c) Chern number for the lowest-energy valence band by
numerical integration of the Berry curvature over the Brillouin zone.

cannot distinguish between C = 2,−1. We nevertheless show
in this section that it is in fact possible to infer when the
C = 2 phase transition happens indirectly. We achieve this by
using the symmetry method that takes into account the band
inversions at high C3 symmetric points K,−K, together with
analyzing other points that are connected by the reciprocal
lattice vectors of the applied potential that can also cause band
inversions.

We write the potential with a scalar and a nonscalar cou-
pling up to the first star of Fourier vectors that is allowed by
C3 symmetry as

V (r) = V0

3∑
i=1

cos(Gi · r + φ0) + V1σz

3∑
i=1

cos(Gi · r + φ1),

(9)

where G1,2 = 2π
3L [1,±√

3]T , G3 = −G1 − G2 are the recip-
rocal lattice vectors of the Honeycomb lattice, V0, and V1 are
the strengths of the scalar and nonscalar parts of the periodic
potentials respectively. Reference [53] considered the scalar
part of the potential that naturally occurs in MoTe2/WSe2

TMD heterobilayer.
We consider an example by taking values typical of TMD

monolayers by choosing � = 1 eV, t = 0.7 eV, and a =
3.56 Å. We take C3 symmetric potential V (r) parameterized
by V0 = 0.1 eV, φ0 = π/3, V1 = 0.099 eV, φ1 = 5.5π/16
and L = 10a where the scalar part is shown in Fig. 4(a) and
the first Brillouin zone shown in the inset. Figure 4(b) shows
the band structure for the total Hamiltonian with the valence
and conduction bands. In Fig. 4(c), we vary V1, φ1 and obtain
the Chern number C for the lowest-energy valence band nu-
merically by integrating the Berry curvature over the Brillouin
Zone. We, therefore, present the potential parameters that can
be tuned to achieve the C = 2 phase. However, this purely
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numerical exercise is not only expensive but offers no insight
into finding the potential parameters to obtain C = 2, which is
very difficult even when the potential is parameterized with
only five parameters as in this case. In fact, we found the
relevant parameters using the symmetry method described
below.

For a C3 symmetric Hamiltonian, the Chern number C j for
the nondegenerate band j can be calculated up to modulus 3
by using symmetry analysis [52,53]

ei 2π
3 C j = η j (�)η j (K )η j (−K ), (10)

where η j (k) denotes the C3 eigenvalue of the corresponding
band j, at the high-symmetry point K. For the lowest-energy
valence band, it suffices to consider Bloch vectors within
the first Brillouin zone at �, and ±K = {±K1,±K2,±K3}
as shown in the inset of Fig. 4(a). We similarly simplify our
calculation by only considering the valence bands by working
in the regime where � � V0,V ′

0,V1.
We again express the potential in the basis |uk〉, which are

the eigen Bloch vectors of the Dirac Hamiltonian HD
k . At

the � point, we only consider the Bloch vector at a single
rotationally invariant point and therefore η(�) = 1. At ±K set
of points, we write the matrix V±K in the basis of the Bloch
vectors {|u±K1〉, |u±K2〉, |u±K3〉} as

V±K =
⎡
⎣ 0 v(±φ) v∗(±φ)

v∗(±φ) 0 v(±φ)
v(±φ) v∗(±φ) 0

⎤
⎦, (11)

where the overlap v(±φ) = 〈uK1 |V |uK2〉 is

v(±φ) = V0

2
ei(±φ0+π/3)

(
1

2
− i

√
3

2
√

1 + s′

)

+ V1

2
ei(±φ1+π/3)

(
i

√
3

2
− 1

2
√

1 + s′

)
, (12)

where s′ = 64π2t2a2/(27L2�2). The eigenvalues of the
above matrix are

E0 = 2Re(v) E±1 = −Re(v) ±
√

3Im(v), (13)

with corresponding eigenvectors |Eα〉, such that C3|Eα〉 =
e−iα2π/3|Eα〉, where α ∈ {0,±1}. We can now find η(K ) =
e−iα(K )2π/3 by taking v = v(+φ) and finding α(K ) : Eα =
max{E0, E1, E−1} and take v = (−φ) to similarly obtain
η(−K ). We can obtain the Chern number C modulo three of
the lowest-energy valence band by using Eq. (10). Figures 5(a)
and 5(b) show α(±K ) as a function of tunable potential pa-
rameters V1, φ1 and Fig. 5(c) shows the Chern number C for
the lowest energy valence band as calculated from Eq. (10).

Since the C = 2 phase is rare and nontrivial, finding the
potential parameters to engineer it requires being able to
reliably distinguish between C = 2,−1. We realize that the
external C3 potential is also mirror-symmetric from Fig. 4(a),
and thus the high-symmetry lines �,�′ shown in green in
the inset are also connected by a reciprocal lattice vector of
the applied potential. Therefore, varying the potential param-
eters can in principle also cause a band inversion anywhere
along �, which is an indicator of a phase change between
C = 2,−1. We can calculate the band inversions along �

by parametrizing the lines �,�′ : �(β ) = −K2 + β(K1 +

FIG. 5. The Hamiltonian is parameterized with � = 1 eV, t =
0.7 eV, and a = 3.56 Å. The potential parameters V0 = 0.1 eV, φ0 =
π/3, and L = 10a are fixed. The phase (a) α(K ), (b) α(−K ), and
Chern number (c) C of the lowest-energy valence band as a function
of tunable potential parameters V1, φ1. (d) The minimum band gap
along the line � given by minβ δ(β ) as a function of V1, φ1.

K2) and �′(β ) = −K1 + β(K2 + K1), where 0 < β < 1 and
writing the potential V (r) in the basis of Bloch vectors
{|u�(β )〉, |u�′(β )〉} as

V�(β ) =
[

0 δ(β )
δ∗(β ) 0

]
(14)

where δ(β ) = 〈u�(β )|V |u�′(β )〉 and can be calculated analyt-
ically with its form [54]. The eigenvalues of the matrix are
±|δ(β )| and there is a band closing at point �(β ) when
δ(β ) = 0. In our example, we plot the minimum band gap
along � given by minβ δ(β ) as a function of V1, φ1 in Fig. 5(d)
and notice that the black line represents band closings some-
where along �. Therefore, we can determine an additional
crossing at �, which was not captured by Eq. (10) missing
the Chern transition between C = 2,−1. We represent this
crossing with a dashed line in Fig. 5(c), which dovetails the
numerical result in Fig. 4(c).

V. EXPERIMENTAL REALIZATION

We saw that for both C4,C3 symmetric potentials, the
scalar part is enough to induce C = 1 for one valley. This
opens the door to realize QSHE as TMDs have strong spin-
orbit coupling with the other valley having opposite spin and
Chern number. As mentioned in the Introduction, experimen-
tal realizations of this can be achieved with devices created by
placing a monolayer TMD on either an LAO/STO substrate,
a twisted h-BN substrate or by considering dielectric super-
lattices. We focus our discussion on the LAO/STO example
in this section. A superlattice potential is induced by using
an electron beam to write conductive nanostructures at the
insulating LAO/STO interface [26] for substrates having three
layers of LAO. This experimental system can be used to create
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the external scalar superlattice potential with the first and
second Fourier components as shown in Fig. 1(a). The terms
V0 and V ′

0 in the scalar potential can, in principle, be achieved
by writing the two regions in Fig. 1(a) using different doses
of the electron beam. This external potential created by the
LAO/STO will couple identically to both sublattices in the
TMD monolayer. Poisson’s equation may be solved to obtain
the exact charge density required at the LAO/STO interface,
which can be tuned using a back gate.

We saw that for both C4 and C3 symmetric potentials, the
scalar together with a nonscalar part is necessary to induce
nontrivial topological transitions such as C = 2. Although the
scalar part is easily achieved by the external potential, it may
be hard to introduce a nonscalar C4 symmetric coupling. In
principle this may be possible by strong corrugation or by
sandwiching the TMD between two external potentials with
LAO/STO setup on top and bottom. For the C3 symmetric
potential, the nonscalar coupling might be easier to realize as
it is naturally present in bilayer graphene or graphene-hBN
bilayer.

Making bands flat with a nontrivial Chern number such
as C = 2 will lead to strongly correlated phenomena and
FQHE physics potentially producing non-Abelian anyons not
possible with an external magnetic field. Bands can be made
flatter by increasing the coupling strength of the potential and
the periodic length. Taking the charge density at the interface
of LAO/STO to be σ = 2 × 1013 e

cm2 and approximating the

2-DEG as an infinite charged sheet V0 = σd
2ε0

, where d =
1.2 nm, the length of three LAO layers and ε0 is the electric
vacuum permittivity. We find the rough estimate V0 ∼ 2 eV,
which should be strong enough to produce flat bands. This is
possibly the upper limit as the 2DEG may not be very large as
compared to the TMD.

In summary, we considered Dirac fermions under exter-
nally applied potentials that can be created and controlled
using contemporary experimental techniques. We analyzed a
class of C4 and C3 symmetric potentials and provided their
minimal forms to realize nontrivial topological phases of mat-
ter, discovering nontrivial transitions that may be difficult to
realize with natural moiré potentials. We showed that C = 2
can be realized for both classes of potentials by considering
a scalar together with a nonscalar coupling based on symme-
try analysis and provided numerical verification. Our paper
opens up the possibility to realize QSHE, QHE, and even non-
Abelian Anyons in FQHE physics using current experimental
hardware.
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