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The present work critically investigates the interplay between light irradiation, molecular helicity, and electron
hopping on spin-selective electron transmission, considering a magnetic helix as the functional element. Depend-
ing on the range of electron hopping, short-range and long-range ones, two different kinds of magnetic helices are
taken into account. The common examples of these two different ranges of electron hopping are single-stranded
DNA and protein molecules respectively. Each magnetic helix is subjected to a circularly polarized light which is
applied perpendicular to the helix axis. The transmission spectra associated with up and down spin electrons get
significantly modified, resulting in a high degree of spin polarization even when the Fermi energy is placed
near the band center. The performance becomes superior with increasing the range of electron hopping. A
tight-binding framework is given to describe the system, where the effect of light is incorporated through the
minimal coupling approach following the Floquet-Bloch ansatz. All the results are worked out based on the
standard Green’s function formalism. The degree of spin polarization and its phase can be monitored selectively
by means of light. To strengthen the impact of helicity, a comparative study is also made considering twist-free
geometry and other twisted magnetic systems. Finally, a brief outline of the possible routes of designing magnetic
helices is given, for the sake of completeness of work. Our analysis may provide some insights to achieve
controlled spin-based electronic devices using different types of light-driven magnetic helices that are described
beyond the conventional nearest-neighbor hopping model.
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I. INTRODUCTION

Over a long period of time, ferromagnetic (FM) materials
have been actively used for studying spin-dependent trans-
port phenomena [1–3]. Though there exist some unavoidable
limitations, like resistivity mismatch in contact interfaces and
regulation of electron spin by confining a magnetic field in
a small-scale region, such systems can always give a large
mismatch between up and down spin energy channels due to
high spin-dependent scattering strength [4], compared to other
spin-dependent scattering mechanisms [5–10].

For a purposeful design of spin-based electronic devices,
the separation of up and down spin electrons, more precisely,
we can say, the generation of polarized spin current from
an unpolarized electron beam is one of the prime require-
ments [11–14]. The researchers in this field have essentially
paid attention to this issue, and over the last several years,
no doubt a wealth of literature knowledge has already been
established [12,15–19]. However, the fact is that most of
the studies, especially theoretical ones, associated with spin
filtration are involved with linear shape geometries be they
one-dimensional or higher, and very little effort has been
given considering geometrical twisting. The latter type of
system has been triggered following the pioneering work
of Gohler et al. [20], where they have shown that chiral
molecules can have the capacity to produce a high degree of
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spin filtration due to their unique and diverse characteristic
features. In their experimental work, it has been established
that more than 60% spin polarization (SP) can be achieved
even for the limit of room temperature. They considered self-
assembled monolayers of double-stranded DNA (ds-DNA)
molecules and deposited them on a gold substrate. When
the substrate is irradiated with light, it emits photoelectrons.
Both up and down spin electrons are generated from the
substrate but when they pass through the molecular system,
one of the spin components is highly screened, depending on
the chirality of the molecule, i.e., whether the molecule is
right-handed or left-handed. This phenomenon is referred to
as chiral induced spin selectivity (CISS) [21–27]. Soon after
this experiment, several groups have started doing work on
spin selectivity using different kinds of helical molecules as
well as tailor-made helical systems, to understand the basic
mechanisms of getting a high degree of spin filtration [28–33].

Most of the available works using helical systems have
concentrated on spin-orbit (SO) coupling as the spin-
dependent scattering factor [31–35]. The SO coupling has of
course some additional advantages [36–41] compared to the
other sources of spin-dependent scattering, as the previous one
can be tuned at some level with the help of suitable external
electrodes placed in the vicinity of the sample. However, there
exist some important limitations. It has been checked that
the strength of SO coupling is too weak [42], especially for
the helical molecular systems (like DNA, protein, etc.), and
thus the misalignment of two different spin channels does
not occur appreciably which hinders a high degree of spin
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filtration even for moderate bias voltages. The other impor-
tant limitation is that, to have ordinary CISS effect we need
to impose “dephasing” into the system [31], as without de-
phasing time-reversal symmetry is not broken and then spin
polarization cannot be observed. However, dephasing, on the
other hand, strongly disrupts the phenomenon of quantum
interference which therefore reduces the response. So, elim-
ination of dephasing was a long standing story. Very recently
Phuc has explicitly shown that [43,44] CISS effect can be
observed in ‘achiral’ molecules and materials, driven by an
externally circularly polarized laser field, and here dephasing
mechanism is absolutely not required. The light-matter inter-
action effectively breaks the time-reversal symmetry which
leads to finite spin-dependent transport. This is referred to as
Floquet-engineered CISS in achiral matters and the prescrip-
tion is quite different than the ordinary CISS as observed in
chiral molecules. In Phuc’s prescription, the one important
restriction is that high degree of spin polarization in achi-
ral molecules can be obtained when the average chemical
potential of the two baths lies with a too narrow range due
to high frequency laser field. A broader energy range might
be expected by combining chiral molecules with light-matter
interaction, as noted by Phuc, but since in these cases, SO
coupling is the spin-dependent scattering factor, it will be
quite hard to get a high degree of spin polarization for a
reasonable bias window.

All the above facts have triggered us to find any other
alternative prescription where on one hand we can circumvent
the use of SO coupling and on the other hand we can achieve
Floquet-engineered CISS effect. To do that, in the present
work, we choose a helical magnetic system, which is referred
to as ferromagnetic helix, and we apply a circularly polarized
light perpendicular to the helix axis (see Fig. 1) that essentially
controls the transport behavior. For our helical system, we can
have two different ranges of electron hopping upon setting the
physical parameters. In one case we get a short-range hopping
(SRH) helix and in the other case a long-range hopping (LRH)
helix [32]. The most common and realistic examples where
we can have short-range and long-range hoppings of elec-
trons are DNA and protein molecules [32,33], respectively,
and nowadays with the help of sophisticated experimental
facilities different kinds of such helical systems are fabricated
(a brief discussion about the possibilities of designing helical
systems is available at the end of our analysis). The central
focus of our work is to inspect the interplay between helicity,
light irradiation, and different ranges of electron hopping on
spin filtration, which might be an interesting observation. Our
proposition may provide some important inputs to achieve
selective spin transfer by means of light irradiation through
different types of magnetic helices those are described beyond
the usual nearest-neighbor electron hopping.

Here it is relevant to point out that in our earlier work
[28], we have studied spin-filtration in magnetic helices in
presence of a transverse electric field. That kind of field can
be produced with the help of suitable gate electrodes placing
near the vicinity of the helical system. An elaborate discussion
of it is given in Ref. [45], and we have followed that. In the
presence of the perpendicular electric field, the site energies
get modified in a cosine form (see Eq. (2) of Ref. [28]) which
makes the system a ‘correlated’ disordered one. As the system

FIG. 1. Spin polarized junction setup where a right-handed fer-
romagnetic helix is clamped between source and drain electrodes. A
circularly polarized light (red spiral curves) is applied perpendicular
to the helix axis that selectively controls the spin-dependent electron
transmission.

becomes more disordered with increasing the field strength,
we always need to restrict ourselves in the weak disordered
regime, otherwise all the energy eigenstates will be localized
and no spin dependent phenomena will be observed. In con-
trast to it, our proposed driven magnetic helix in the present
work is not a disordered one, rather the hopping integrals get
renormalized as per the Floquet-Bloch (FB) ansatz [46,47]
and more suitable control of spin transfer can be made in a
wide range of bias window.

To study transport phenomena through driven magnetic
helix, two contact electrodes, namely source (S) and drain (D)
are coupled to two end lattice sites of the helix (Fig. 1). The
full junction setup is described within a tight-binding (TB)
framework that always gives a simple level of description. The
light irradiation is included in the Hamiltonian through a min-
imal coupling scheme following the FB theory [46,47]. All the
results are worked out based on the standard Green’s function
formalism [48–51]. The important findings of our work are: (i)
achieving a high degree of spin filtration coefficient by means
of light and that is even possible when the Fermi energy is
placed very near to the band center, (ii) complete phase rever-
sal of spin polarization (100% up to down spin polarization
and vice versa) by tuning light, and (iii) all the results are valid
for a broad range of physical parameters. The present analysis
may lead to a possible route for designing efficient spin-based
electronic devices using irradiated magnetic helices, and can
be extended further for similar kinds of other helical magnetic
systems as well.

The rest part of the paper is arranged as follows.
Section II contains the description of the physical setup
for spin filtration, tight-binding Hamiltonian, and the
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theoretical framework for calculating the numerical results.
In Appendix A, a detailed derivation for calculating effective
hopping strength in presence of light irradiation following
the FB method is given, for the benefit of the readers. All the
essential results of SRH and LRH systems are presented and
thoroughly discussed in Sec. III. At the end of Sec. III, a brief
outline of experimental possibilities for achieving magnetic
helices is given. In Appendix B, a basic result is given for
the conventional nearest-neighbor hopping (NNH) model to
compare with the systems that are described beyond NNH.
The key findings of the work are summarized in Sec. IV.

II. QUANTUM SYSTEM, TIGHT-BINDING HAMILTONIAN
AND THEORETICAL FORMALISM

A. Spin polarized setup and the TB Hamiltonian

The schematic diagram of the functional element, i.e., the
magnetic helix system is shown in Fig. 1. The helix is com-
prised of N lattice sites, where each site contains a finite
magnetic moment (shown by the blue arrow). Any specific
orientation of these moments can be taken into account, and
the general orientation is described by usual polar angle θi and
azimuthal angle ϕi (i being the lattice site index), in spheri-
cal polar coordinate system. In our analysis, we assume that
all the magnetic moments are identical and they are aligned
along +Z direction (chosen spin quantized direction of our
analysis), without loss of generality.

Two most important physical parameters associated with
the helix system are (i) twisting angle �φ and (ii) stacking
distance �h. The twisting angle measures how one atomic site
is twisted with respect to the other and the stacking distance
describes how close the neighboring sites are stacked. Usu-
ally when �h is reasonably small, i.e., the atoms are closely
packed, electrons can easily hop from one site to all other
available sites of the helix, making the system a long-range
one. While for the other case, where the stacking distance is
quite large, electrons can hop to the few neighboring sites,
yielding the helix a short-range one. In our work, we con-
centrate on both these helices to have a clear understanding
of the role of electron hopping on spin dependent transport
phenomena. The other physical parameter R is also associated
with the helix that measures the radius of the circle when the
helix is projected in the X -Y plane. A circularly polarized
light is injected perpendicular to the helix axis, which plays
the central role of our analysis.

In order to study transport phenomena we need to couple
the magnetic helix with two contact electrodes. The electrodes
are refereed to as source (S) and drain (D), and they are
attached to the two end magnetic sites of the helix. The elec-
trodes are assumed to be nonmagnetic and one-dimensional.

The spin-polarized setup is simulated by a tight-binding
Hamiltonian. First we consider the situation where light is
not applied to the helix. Its inclusion into the Hamiltonian
is described in the subsequent part, as it is quite lengthy.
The Hamiltonian of the full system, i.e., source-helix-drain
nanojunction can be written as

H = HFM + HS + HD + Hcl, (1)

where different terms in the right hand side are associated
with different parts of the nanojunction, and they are explicitly

described as follows. The first term HFM corresponds to the
sub-Hamiltonian of the FM helix, and its general form looks
like (applicable both for SRH and LRH helices)

HFM =
N∑

n=1

c†
n(εn − �hn · �σ )cn

+
N−1∑
n=1

N−n∑
j=1

(c†
ntn jcn+ j + H.c.), (2)

where c†
n = (c†

n↑ c†
n↓). c†

nσ (cnσ ) is the fermionic creation
(annihilation) operator of an electron at site i with spin σ

(↑,↓). (εn − �hn · �σ ) is the effective site energy matrix, having
dimension (2 × 2), where εn = diag(εn↑, εn↓). εnσ is the site
energy in the absence of spin-moment scattering. �hn · �σ is
responsible for scattering, where �σ is the Pauli spin vector
and �hn is the spin dependent scattering factor. When an itin-
erant electron interacts with a local magnetic moment then
the scattering takes place. More explicitly, we can write the
term �hn · �σ as J〈�Sn〉 · �σ , where 〈�Sn〉 is the net spin at site n
and J is the coupling strength. tn j = diag(tn j, tn j), where tn j

corresponds to the electron hopping between the sites n and
(n + j) of the magnetic helix.

The hopping integral tn j is written in the form [33]

tn j = t1e−(ln j−l1 )/lc (3)

where t1 is the nearest-neighbor hopping strength. The param-
eter ln j measures the distance between site n and (n + j) and l1
denotes the nearest-neighbor distance. lc is the decay constant.
In terms of the twisting angle �φ, stacking distance �h and
radius R, ln j is expressed as [33]

ln j =
√

4R2 sin2( j�φ/2) + ( j�h)2. (4)

(1) Inclusion of light irradiation. A uniform light is applied
along the perpendicular direction of the magnetic helix (red
spiral curves in Fig. 1). A minimal coupling scheme following
the Floquet-Bloch ansatz is used to incorporate the effect of
irradiation [46,47]. In our analysis, we assume a circularly
polarized light, and since the incident direction is along Y
axis, the vector potential �A(τ ) that summarizes the irradiation
can be expresses as

�A(τ ) = A0 cos ωτ î + A0 sin ωτ k̂, (5)

where A0 is the amplitude, ω is the frequency, and τ is the
time.

Due to irradiation, the hopping strength gets modified as
(complete derivation is provided in Appendix A)

t̃ p,q
n j = tn j

1

T

∫ T

0
e−iωτ (p−q)ei �A·( �Rn j− �Rn )dτe−(ln j−l1 )/lc , (6)

where T (= 2π/ω) is the time period of the incident irradia-
tion, �Rn j and �Rn are the radius vectors of (n + j)th and nth
sites, respectively, and p and q (integers) are associated with
the Floquet bands.

Calculation of ( �Rn j − �Rn). To calculate the distance be-
tween nth and (n + j)th sites, we start with component wise
evaluation. We assume that the first site of the magnetic helix
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is placed on the X axis. Thus the X, Y , and Z components of
the nth site can be written as

Xn = R cos{(n − 1)�φ},
Yn = R sin{(n − 1)�φ},
Zn = (n − 1)�h.

Similarly, for (n + j)th site, the components are

Xn+ j = R cos{(n + j − 1)�φ},
Yn+ j = R sin{(n + j − 1)�φ},
Zn+ j = (n + j − 1)�h.

Therefore the X, Y , and Z components of the radius vector
( �Rn j − �Rn) are given by

an j
x = Xn+ j − Xn

= −2R sin

(
n�φ − �φ + j�φ

2

)
sin

(
j�φ

2

)
,

an j
y = Yn+ j − Yn

= 2R sin

(
n�φ − �φ + j�φ

2

)
sin

(
j�φ

2

)
,

and

an j
z = Zn+ j − Zn = j�h.

Thus �Rn j − �Rn = an j
x î + an j

y ĵ + an j
z k̂, where î, ĵ, and k̂ are

the unit vectors along X, Y , and Z directions, respectively.
We assume that the light is applied along the Y direc-

tion. Now due to the geometry of the magnetic helix, the
incidence angle of the light changes along the circumfer-
ence, and hence the effective magnetic vector potential can be
written as

�Aeff = RZ (�φ) �A

=
⎛
⎝ cos �φ sin �φ 0

− sin �φ cos �φ 0
0 0 1

⎞
⎠

⎛
⎝Ax

0
Az

⎞
⎠

= Ax cos �φ î − Ax sin �φ ĵ + Az k̂.

Using this effective vector potential and substituting the com-
ponents of ( �Rn j − �Rn), we calculate the factor �A.( �Rn j − �Rn)
which simplifies to

�A.( �Rn j − �Rn) = � sin(ωτ + ψ ),

where

�= A0

√(
an j

z

)2+
(

an j
x

)2
cos2�φ +

(
an j

y

)2
sin2�φ −

(
an j

x

)(
an j

y

)
sin(2�φ)

and

ψ = tan−1

(
an j

x cos �φ − an j
y sin �φ

an j
z

)
. (7)

Plugging this term in Eq. (6) and doing some algebra, we get

t̃ p,q
n j = tn jJp−q(�)ei
e−(ln j−l1 )/lc ,

where 
 = (p − q) tan−1( an j
x cos �φ−an j

y sin �φ

an j
z

) and Jp−q(�)

corresponds to the (p − q)th order Bessel function of first
kind. Thus, in the presence of irradiation, the hopping in-
tegrals get changed, and accordingly, it is expected that the
spin-dependent transport phenomena will be modified.

Additional note. Here, it is important to emphasize that
in our current research, we exclusively focus on periodically
driven quantum systems for the sake of simplicity. For such
systems, the Floquet-based approach mentioned earlier is
highly applicable. However, the fact is that, Floquet theory
has some important limitations, particularly when we think
about the systems beyond periodic driving [52–54]. In their
study [52], Stefanucci et al. have shown that for nonperiodic
driving cases, Floquet formalism does not work, and they
have provided an alternative prescription that can safely be
used for different nonperiodic driving systems. Moreover the
computation cost is also not so heavy. We will try to ex-
tend our study in presence of any arbitrary driving field in
our forthcoming work. For time-dependent transport, several
other methodologies have also been given by Stefanucci and
coworkers, and for the details see Refs. [55–57].

The sub-Hamiltonians HS and HD are associated with the
source and drain electrodes. They are expressed in a simple
form (since magnetic interaction is not there and only NNH is
taken into account) as

HS = HD =
∑

i

a†
i ε0ai +

∑
i

(a†
i+1t0ai + H.c.), (8)

where a†
i = (a†

i↑ a†
i↓), ε0 = diag(ε0, ε0), and t0 =

diag(t0, t0). ε0 and t0 are the site energy and NNH integral,
respectively.

These electrodes are coupled to the sites 1 and N of the
magnetic helix. If τS and τD are the coupling strengths of the
helix with S and D respectively then the coupling Hamiltonian
reads as

Hcl = c†
1τSa−1 + c†

NτDaN+1 + H.c., (9)

where τS = diag(τS, τS) and τD = diag(τD, τD).

B. Theoretical formalism: Green’s function technique

To study spin-dependent transport phenomena and to deter-
mine the degree of spin polarization, first we need to calculate
spin-specific transmission probabilities, and for that, we use
Green’s function (GF) technique [48–51]. This technique is
the most standard one compared to the other available ap-
proaches like transfer-matrix and wave-guide methods. The
classic advantage is that, in GF approach, the effects of contact
electrodes can easily be incorporated to the functional element
that is clamped between them, via the self-energy correction.
For a detailed calculation of self-energies due to contact elec-
trodes, see Refs. [48,49], and the references therein.

Two Green’s functions Gr and Ga, referred to as retarded
and advanced Green’s functions respectively, are used in or-
der to find transmission coefficients and they are expressed
as [48,49]

Gr = (Ga)† = [EI − HFM − �S − �D]−1,
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where E is the energy and I represents the identity matrix
having the dimension (2N × 2N). N being the total number of
lattice sites in the magnetic helix, and the factor 2 arises due
to up and down spins. �S and �D are the contact self-energies
for the source and drain, respectively. Using the retarded
and advanced Green’s functions, spin-dependent transmission
probability is determined from the expression [48,51]

Tσσ ′ = Tr
[
�σ

S Gr�σ ′
D Ga

]
, (10)

where �
σ (σ ′ )
S(D) is the coupling matrix, and, it is connected to the

self-energy as

�
σ (σ ′ )
S(D) = −2Im

[
�

σ (σ ′ )
S(D)

]
.

The factor Tσσ ′ measures the transmission probability of an
electron with spin σ ′ that is injected with spin σ in the mag-
netic helix. Depending on σ and σ ′, we have four possible
transmission coefficients, among which two are referred to
as pure spin transmission (σ = σ ′), and the other two repre-
sent spin-flip transmission (σ �= σ ′). From the coefficients we
eventually determine the net up and down spin transmission
probabilities following the relations

T↑ = T↑↑ + T↓↑ and T↓ = T↓↓ + T↑↓,

respectively.
Utilizing the transmission probability function, we com-

pute spin-dependent transport current through the junction
following the Landauer-Büttiker prescription. At zero temper-
ature and for a fixed bias voltage V , the spin-specific current
is expressed as [48]

Iσ =
( e

h

) ∫ EF + eV
2

EF − eV
2

Tσ (E ) dE , (11)

where e is the electronic charge, h is the Plank constant, and
EF is the equilibrium Fermi energy. Thus an integration of
the transmission function Tσ over the energy window EF −
eV/2 � E � EF + eV/2 has to be done to find the current.

Finally, we compute spin polarization coefficient through
the relation [58,59]

P = I↑ − I↓
I↑ + I↓

× 100%. (12)

When both the spin electrons propagate with identical prob-
ability, no spin polarization occurs i.e., P = 0. On the
other hand, if only up or down spin electrons propagate
through the magnetic helix, the polarization becomes maxi-
mum (viz., P = ±100%). For other cases, we get intermediate
values of P.

III. NUMERICAL RESULTS AND DISCUSSION

Our central focus is to discuss the impact of light irradi-
ation on spin-dependent electron transfer through magnetic
helix system and hence the spin polarization. We should try
to find out under which condition the spin polarization coef-
ficient reaches to the maximum value, and to check whether
it persists for a broad range of input parameters or not. Per-
sistence of favorable responses over a broad range of physical
parameters is highly important, considering the experimental
perspective of theoretical propositions.

TABLE I. TB parameters of SRH and LRH magnetic helices.

Molecule R (Å) �h (Å) �φ lc (Å)

SRH 7 3.4 π

5 0.9
LRH 2.5 1.5 5π

9 0.9

Before coming to the results, let us first specify the pa-
rameter values those are kept unchanged throughout the
calculations. All the energies are measured in units of
electron-volt (eV), and the vector potential is expressed in
units of (el1/ch̄). In the source and drain electrodes, the on-site
energy ε0 and NNH integrals t0 are set at 0 and 2, respectively.
The coupling strengths τS and τD are fixed at 0.75. In the
magnetic helix we take εn↑ = εn↓ = 0, and the NNH strength
t1 = 1. Unless specified, we choose the values of the physical
parameters R, �h, and �φ for the SRH and LRH systems as
mentioned in Table I. These are the most standard parameter
values taken for the SRH and LRH systems [60], and have
been considered in several other contemporary works. To
show the impact of helicity on spin filtration in a more general
way, we add a discussion by changing �φ in a wide range
including the situation where �φ is explicitly zero viz, in the
absence of any helicity. In our chosen magnetic systems, we
assume that all the magnetic moments are aligned along +Z
direction and they are of equal strength, i.e., hn = h∀ n. We
choose h = 0.5. All the helices are taken as right-handed and
the results are performed considering N = 30.

In computing the results, we set the “high-frequency
regime” for the incident light irradiation. This is an important
and realistic approximation, and it is defined by the condi-
tion h̄ω 
 4t1. Most of the studies available in the literature
involving electron and spin-dependent transport phenomena
essentially focused on the high-frequency regime, and here
also we follow it. In this regime, the Floquet bands are uncou-
pled, and only the zeroth order Floquet band dominates, i.e.,
p = q = 0. The other higher order terms associated with p and
q have vanishingly small contribution. Under this situation,
the quasienergy of each Floquet band is identical to the energy
bands of the undriven system with the renormalized hopping
strength

t̃ p=0,q=0
n j = tn jJ0(�)e−(ln j−l1 )/lc .

The factor J0(�) contains all the information of light irra-
diation. As the hopping integrals are directly influenced by
the light, the modification of transport behavior with light is
naturally expected.

On the other hand, in the low-frequency regime, we need
to consider the coupling of the parent magnetic helix with
its several virtual copies, since the contributions from the
higher order terms associated with p and q are not negligibly
small. The concept of virtual copies along with the parent
lattice comes from the fact that as per the Floquet formalism
a D-dimensional driven quantum system maps to a (D + 1)-
dimensional undriven system (for a clear demonstration of it,
see Ref. [47]). Once the several virtual copies are taken into
account, two situations can happen. In one case, due to the
large effective system size, the average energy level spacing
will be small compared to the thermal energy, and in the other
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FIG. 2. Up (cyan) and down (indigo) spin transmission proba-
bilities as a function of energy for the SRH (left column) and LRH
(right column) magnetic helices in the absence (A0 = 0) and presence
(A0 = 0.25) of light irradiation.

case, the effective system size becomes larger than the spin
coherence length [61]. Because of these facts, the getting of
favorable spin-dependent phenomena may be hindered.

The arguments presented above indicate that high-
frequency limit is recommended to have a favorable response.
In such a limit, the frequency of the incident light should be at

least ∼1016 Hz, and it belongs to the ultraviolet (UV)/extreme
UV regime. The intensity of the irradiation is ∼105 W/m2,
and it is well within the experimental reach. Light of much
higher intensities has already been taken into account in many
other contemporary studies [62,63], and thus, our chosen in-
tensity can safely be used and it will not damage the physical
system.

Now we present and analyze our results one by one.
We begin with Fig. 2 which displays the spin-specific trans-

mission probabilities as a function energy for the SRH and
LRH magnetic helices in the full available energy window.
In Fig. 3, we replot the transmission spectra of Fig. 2 in a
small energy region which is well inside the band (reason of
considering the energy zone well inside the full window is
given later) for better viewing of up and down spin transmis-
sion profiles and to examine the interplay between the helicity
and light irradiation more clearly. The results are worked out
both in the absence and presence of light irradiation. Several
important features are obtained those are as follows. First, in
each subfigure of Fig. 2 (and also of Fig. 3), a finite mismatch
is observed between the up and down spin transmission spec-
tra. This is due to the spin-dependent scattering of itinerant
electrons with the local magnetic

moments at different lattice sites of the helix. And, the
large shifting of up spin transmission spectrum with respect
to the other is due to the “strong” spin-dependent scatter-
ing strength h. It is important to mention here that such a
mismatch cannot be obtained in other spin-dependent scat-
tering processes as they are usually very small in strength
[4]. Second, in the absence of light irradiation, the resonant

FIG. 3. Replot of different spectra of Fig. 2 in a small energy window for better viewing of transmission profiles and to see more clearly
the interplay between the helicity and light irradiation. The colors of the transmission curves (T↑ → cyan color, T↓ → indigo color) and all the
parameters are exactly identical as used in Fig. 2.
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transmission peaks exhibit nearly uniform spacing in the case
of SRH magnetic helix [Figs. 2(a) and 3(a)]. Conversely, for
the LRH helix, the transmission peaks demonstrate nonuni-
form spacing. In the low-energy region, the peaks are closely
clustered, whereas in the high energy region, the spacing
between the peaks becomes more pronounced ([Fig. 2(b)].
The nonuniform spacing of the resonant transmission peaks
occurs due to the breaking of the electron-hole symmetry in
presence of higher order hopping. With increasing the range
of electron hopping the successive gap between the resonant
peaks enhances in the limit of high energies. Such nonuniform
distribution of resonant peaks may lead to enhanced spin po-
larization in the LRH system, that can be understood form our
forthcoming discussion. All these peaks are associated with
the available energy eigenvalues of the magnetic helices, and
thus, from the nature of transmission profile, the eigenspec-
trum of the helix can be estimated. Here it is worthy to note
that, the uniform spacing throughout the energy window is
available only for the nearest-neighbor hopping model (see
Fig. 13 of Appendix B), and for this case electron-hole sym-
metry is no longer violated.

Third, the transmission spectrum gets modified once the
helix is irradiated with light, and the effect becomes signifi-
cant for the LRH system. The spacing between the successive
transmission peaks is more nonuniform for the irradiated
LRH helix than the irradiation-free case, which is clearly
reflected by comparing the spectra given in the right col-
umn of Fig. 3. For the SRH helix, the effect of irradiation
is not so prominent. As already mentioned, the nonuniform
spacing of the resonant transmission peaks is solely due to
the breaking of electron-hole symmetry in presence of higher
order hopping. Now the origin of short-range or long-range
hopping of electrons and the role of irradiation can be clearly
understood by noting the hopping strengths between the first
few neighboring sites of the helices, both in the absence
and presence of irradiation. For the SRH helix, the first
few hopping strengths in the absence of light are 1, 3.19 ×
10−3, 1.99 × 10−5, 2.95 × 10−7, 1.07 × 10−8, and in the
presence of light these are: 0.661, 2.97 × 10−4, −8.035 ×
10−6, 8.41 × 10−8, −1.52 × 10−9. Whereas for the LRH he-
lix, the first few hopping strengths in the absence and presence
of lights are 1, 0.159439, 0.316866, 0.0942651, 0.0051797
and 0.909652, 0.131288, 0.201565, 0.045867, 0.00150171,
respectively. From these data, it is seen that for the SRH
helix, the hopping strength decreases sharply with increas-
ing the distance, while for the LRH case, finite strength is
available for far enough sites. The notable thing is that for
the irradiated LRH system, the rate of change of hopping
from the first neighbor hopping becomes less compared to
the irradiation-free situation, and we confirm it for several
other light parameters as well. It indicates that, in presence
of light, the LRH effect becomes more prominent than the
light-free condition, and accordingly, electron-hole symmetry
breaking becomes more evident, resulting higher gaps be-
tween successive transmission peaks. Because of this, larger
mismatch among up and down spin transmission profiles is
obtained due to light [Fig. 3(d)], and high degree of spin
polarization is favorable. The symmetry breaking in the SRH
helix is relatively weak, even in the presence of light, as all
the other hopping strengths compared to the first neighbor

FIG. 4. Up (orange curve) and down (dark green curve) spin
currents as a function of voltage for the SRH and LRH helices in
the absence (first row) and presence (second row) of light irradiation.
The currents are worked out for EF = 0.3 eV.

are too small. In addition to the above facts, for the SRH
helix, we find two distinct large gaps along the two edges
of the transmission spectrum, whereas for the LRH helix one
such large gap arises around the center of the spectrum. The
appearance of these gaps is connected to the modification of
energy eigenvalues of the magnetic helices in the presence of
light. The key observation is that, when there is a gap in the
transmission spectrum for (say) up spin electrons, the opposite
spin electrons can fully transmit through that region, and vice
versa. In such region(s), the 100% spin polarization is thus
expected.

Once we get the transmission spectra for up and down spin
electrons, then we can easily analyze the behavior of spin-
dependent currents as a function of voltage bias. The results
of spin-specific currents are given in Fig. 4. In determining
junction current, we need to specify the Fermi energy EF ,
and here we set EF = 0.3 eV which is well inside the energy
band. From the transmission spectra, displayed in Fig. 2, it is
clear that if we set the Fermi energy around any of the two
edges of the allowed energy window where only one type of
spin electrons can transmit, we get finite current for that spin
electrons and zero current for the other case, yielding a 100%
spin polarization. However, experimentally it is too hard to set
the Fermi energy at any of the two edges. On the other hand,
fixing of EF towards the center of the band is meaningful,
and achieving the large degree of spin polarization under this
situation is challenging. This is exactly our main focus of the
present work. For our chosen EF , we find that, the up and
down spin currents are almost comparable to each other for the
SRH helix when it is free from any irradiation [Fig. 4(a)]. This
can be understood from the transmission-energy spectrum
Fig. 3(a) which shows that within the chosen energy window
(EF − eV/2 � E � EF + eV/2), both up and down spin elec-
trons transmit, and hence the currents are almost comparable.
In all the sub-figures of Fig. 3 such an energy range is selected
for which the integration of the transmission curves is made to
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FIG. 5. Variation of spin polarization as a function bias voltage
for the SRH and LRH helices under the irradiation free and with
irradiation cases. The Fermi energy is same as mentioned in Fig. 4.

compute the spin-dependent currents presented in Fig. 4. The
maximum chosen voltage V = 1 V corresponds to the energy
range −0.2 eV to 0.8 eV. For the LRH helix, the currents
are quite different [Fig. 4(b)]. This is due to finite mismatch
of up and down spin transmission peaks within the above
mentioned energy window [Fig. 3(b)]. The difference between
the two currents increases once the light is injected to the
system, and the effect becomes more prominent for the case
of LRH helix, corroborating the transmission spectra given
in Figs. 3(c) and 3(d), respectively. In the low bias region,
while the up and down spin currents are quite comparable for
the SRH helix [Fig. 4(c)], they are largely different for the
LRH one [Fig. 4(d)]. Up to V = 0.4 V, down spin current is
vanishingly small, while finite current is achieved for the other
spin case [Fig. 4(d)]. Such a situation provides a high degree
of spin polarization.

From the dependence of spin currents with bias voltage, it
is now easy to follow the behavior of spin polarization. The
nature of P-V curves is given in Fig. 5, where the Fermi en-
ergy and all other physical factors remain same as mentioned
in Fig. 4. For the SRH magnetic helix, the response is too
weak throughout the voltage window taken into consideration
[Fig. 5(a)], reflecting the current-voltage curves plotted in
Fig. 4(a). A slight improvement occurs in the presence of
light irradiation [Fig. 5(b)]. The results for the LRH helix,
on the other hand, are quite interesting. Even when A0 =
0, more than 40% spin polarization is obtained [Fig. 5(c)],
and it persists over a moderate bias window. However, the
degree of spin polarization raises very close to 100% for
a reasonable bias region when the helix is irradiated with
light [Fig. 5(c)]. Thus the irradiation has a strong impact to
improve the spin filtration. This improvement is solely due
to the modification of up and down spin energy channels,
and thus, the transmission spectra. The above analysis clearly
suggests that in presence of spin-dependent scattering, the
electron-hole symmetry breaking caused by the higher order
hopping plays a central role to achieve a high degree of spin

FIG. 6. Density plot. Simultaneous variation of spin polarization
coefficient P with Fermi energy EF and the bias voltage V for the
LRH magnetic helix. Here we set A0 = 0.25.

polarization, and the effect becomes more superior with the
application of light as it enhances the symmetry breaking
mechanism.

Since the transmission spectrum is directly influenced by
the light parameter, and the choice of EF is also quite crucial,
it is pertinent to check the effects of all these factors on spin
polarization by varying them in a wide range, for the sake of
completeness of our analysis.

Figure 6 presents the simultaneous variation of spin polar-
ization coefficient as functions of Fermi energy EF and the
bias voltage V . Here we take the LRH magnetic helix, and
set the amplitude of light irradiation A0 = 0.25. Interestingly
we find that, there exists several parameter zones where the
degree of spin polarization reaches almost to 100%. Moreover,
a complete phase reversal of P (+100% to −100%, and vice
versa) is also obtained upon changing the physical parameters.
All these issues are associated to the availability of up and

FIG. 7. Density plot. Simultaneous variation of P with A and V
for the LRH magnetic helix. Here we choose EF = 0.25 eV.
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FIG. 8. Density plot. Simultaneous variation of P with EF and A
for the LRH case, when the bias voltage is fixed at 0.2 V.

down spin energy channels, and how one type of spin channel
dominates the other.

Next, in Fig. 7, we show the dependence of P on the light
amplitude A0 and bias voltage V , when the Fermi energy is
fixed. The results are really fascinating. For a wide range of A0

and V we can have a very large value of P. And most impor-
tantly, the phase of spin polarization can be tuned selectively
by monitoring the light amplitude. With the change of A0,
hopping integrals are modified, and accordingly, the up and
down spin energy channels which gives the modification in P.

Figure 8 displays the dependence of P on A0 and EF , when
the bias voltage is fixed. Like Figs. 6 and 7, here also we
consider long-range hopping helix system. As expected, P
can have +100% or −100%, depending on the choices of EF

and A0. With increasing A0, the hopping integrals get reduced,
following the zeroth order Bessel function, and hence, the al-
lowed energy window decreases. The energy band narrowing
is reflected from this density plot.

In Fig. 9, we present a density plot where the variation
of P is shown with respect to the light amplitude A0 and the
stacking distance �h. The other three parameters of the helix
viz, R, �φ, and lc remain unchanged with the LRH helix
given in Table I. The aim of this plot is to show how the
response gets modified with the hopping strengths, as �h is
directly involved on these. It is clearly noticed from Fig. 9
that for a broad range of �h, favorable spin polarization can
be obtained, and selectively adjusting the light amplitude, we
can have up or down spin polarization.

(1) Role of helicity: dependence of spin polarization on
�φ. To explore the role of helicity in a more rigorous way, in
this section, we discuss the dependence of spin polarization
on twisting angle �φ by varying it in a wide range, and,
also compare the results with twist-free magnetic systems viz,
when �φ is exactly zero. From this analysis, the importance
of helicity can be understood more clearly.

Let us start with the situation when the system is free from
any helicity, i.e., �φ = 0. Under this condition, the helical
magnetic systems transformed into the linear magnetic ones.

FIG. 9. Density plot. Simultaneous variation of P with �h and A,
with EF = 0.25 eV and V = 0.2 V. For the helix system considered
here, the other three physical parameters, �φ, R, and lc are kept
constant with the LRH helix.

For such linear systems, the results of spin-specific currents
and the corresponding spin polarization coefficients, in pres-
ence of light irradiation, are shown in Fig. 10. Here we also
set EF = 0.3 eV, as earlier.

For the SRH magnetic system, the up and down spin
currents are almost comparable to each other [Fig. 10(a)],
reflecting the transmission curves given in Fig. 11(a), which
yields very weak spin polarization for the entire bias window
[Fig. 10(c)]. For the LRH case, whereas, the up and down spin
currents are slightly different (Fig. 10(b)), associated with the
transmission curves shown in Fig. 11(b), and hence a finite
spin polarization appears [Fig. 10(d)], though it is very less

FIG. 10. Up (orange curve) and down (dark green curve) spin
currents (first row) and variation of spin polarization (second row) as
a function of voltage for the SRH and LRH magnetic systems in the
absence of any helicity, i.e., when �φ = 0. Here we set A0 = 0.25
and compute the currents for EF = 0.3 eV.
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FIG. 11. T↑ (cyan) and T↓ (indigo) in a small energy window as
selected in Fig. 3, for the physical systems with identical parameter
values as considered in Fig. 10.

compared to the results discussed above for the magnetic
systems in presence of finite helicity. When �φ is set to zero,
all the higher order hopping integrals are too small compared
to the first-neighbor hopping. Thus the original LRH helix
moves towards the NNH system, and the SSH helix goes more
closer to the NNH one. Therefore much less electron-hole
symmetry breaking effect is observed, resulting quite uniform
spacing among the successive transmission peaks, as clearly
noticed from the spectra given in Fig. 11. Because of this
fact, the degree of spin polarization is reasonably small for the
twist-less systems than the twisted ones. It clearly proves that
helicity has a significant role as the factor � which is responsi-
ble to modulate the hopping integrals contains the components
an j

x , an j
y , and an j

z , among which the first two components are
directly involved with the twisting angle �φ in a large extent
(details are available in our theoretical formulation).

To have a direct impact of helicity and light on spin
polarization, in Fig. 12, we present a density plot where the si-
multaneous variation of P is shown with respect to the twisting
angle �φ and the amplitude A0. The interplay between A0 and
�φ is really very interesting. When �φ is zero and very small

FIG. 12. Density plot. Simultaneous variation of P with �φ and
A, with EF = 0.25 eV and V = 0.2 V. For the helix system consid-
ered here, the other three physical parameters, �h, R, and lc are kept
constant with the LRH helix.

(close to zero), the degree of spin polarization is vanishingly
small, corroborating the results discussed in Fig. 10. With
increasing �φ, the blue colored region starts dominating for
higher A0 indicating −100% spin polarization, and a complete
phase reversal takes place upon increasing the twisting angle.
Around �φ = 5π/9, we get a very good response (almost
+100% spin polarization) for a specific range of A0. Thus
the modification of � with the factors �φ and A0 is really
important which is clearly reflected from our results.

(2) Possible routes of achieving ferromagnetic helices. A
discussion about the possibilities of achieving ferromagnetic
helices is indeed required for the sake of completeness of our
analysis. Recent advances in experimental techniques have
allowed us to design different kinds of magnetic helices. For
instance, by electrodeposition and laser printing mechanism,
Maurenbrecher et al. [64] have designed CoNi ferromagnetic
helices. Quite a long ago, another researcher Ikuta has given a
completely different prescription for generating helical mag-
netic configurations with the help of helical electromagnets
[65]. In a work, Pati and his coworker have found helical
magnetic configuration in vanadium-benzimidazole-modified
sDNA sample [66], and they have shown that the system can
exhibit half-metallic behavior in presence of the electric field.
In 2016, Fust and coworkers have shown that topologically
stabilized magnetic helices can be designed under suitable
conditions and the magnetic ordering can persist even at large
temperature limit [67]. Many other such references are avail-
able in the literature [68–73] which gives us confidence that
our proposed magnetic helices can be substantiated in suitable
laboratories.

IV. CLOSING REMARKS

In the present communication, we have investigated spin-
dependent transport phenomena in magnetic helix systems,
subjected to light irradiation. Two different kinds of helical
systems have been taken into account, depending on the range
of electron hopping. The central focus of the work is to ex-
plore the interplay between the helicity, different ranges of
electron hopping and the light irradiation on spin selectiv-
ity. A tight-binding framework has been given to describe
the Hamiltonian of the system, where the effect of light has
been incorporated through Floquet-Bloch prescription within
the minimal coupling scheme. The spin-specific transmission
probabilities have been obtained following the well-known
Green’s function formalism, and the currents have been com-
puted through the Landauer-Büttiker prescription. All the
results have been carried out in the high-frequency limit,
where the Floquet bands are decoupled and only the lowest or-
der band contributes. For the benefit of the readers, a detailed
mathematical description has been provided for the derivation
of effective hopping in presence of light irradiation based on
the FB method. Finally, we have given relevant experimental
references where magnetic helices have been realized.

The key finding of our study are as follows. (i) A high
degree of spin polarization can be obtained by adjusting the
light amplitude. (ii) From 100% up spin polarization to 100%
down spin polarization, and vice versa, can be made by means
of light. (iii) All the results are valid for wide range of phys-
ical parameters which proves the robustness of our analysis.
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The underlying mechanism of getting large response is solely
associated with the breaking of electron-hole symmetry in
presence of higher order hopping, and this effect becomes
superior when the helix is subjected to light irradiation. With
reducing the helicity the symmetry breaking effect gradually
decreases, and in the limiting situation when �φ = 0, there is
no electron-hole symmetry breaking for the system described
with only nearest-neighbor hopping. Thus both the helicity
and light irradiation are important.

Before an end, we would like to mention that the driven
magnetic systems can be utilized as suitable functional ele-
ments for future spintronic applications. Similar kinds of other
fascinating driven magnetic helices can also be taken into
account to have several nontrivial signatures.

APPENDIX A: FB THEORY: DETERMINATION
OF EFFECTIVE HOPPING STRENGTH IN PRESENCE

OF LIGHT IRRADIATION

Using the FB prescription, here we demonstrate the de-
tailed mathematical steps to reach Eq. (6) that is mentioned
in Sec. II A. We mostly adhere to the theoretical descrip-
tion given in Refs. [46,47], and the references therein. For
any general Hamiltonian H (say) that is invariant under
time and lattice translations viz, H (�x + �d, τ + T ) = H (�x +
�d, τ ) = H (�x, τ + T ), the eigenfunctions can be expressed
following the FB ansatz as

|�α,k (�x, τ )〉 = ei�k·�xe−iεα,kτ/h̄|Uα,k (�x, τ )〉. (A1)

Here |Uα,k (�x, τ )〉’s are the FB states those are periodic both in
�x and τ , �k is the wave vector and εα,k denotes the quasienergy
for the αth FB state. |Uα,k (�x, τ )〉 is associated to the composed
Hilbert space (referred to as Sambe space) and it is formed by
taking the direct product of the space related to time periodic
function and the conventional Hilbert space.

To reach to Eq. (6), i.e., in order to determine the
effective hopping in presence of irradiation, let us start
with a general tight-binding Hamiltonian in the absence
of any spin-dependent scattering (spin-dependent interaction
does not have any effect in our forthcoming mathemati-
cal steps), for the sake of simplification. The prescription
can then be utilized to any physical system. We choose the
Hamiltonian as

H =
∑

α

∑
m,n

γm,nc†
α,m(τ )cα,n(τ ), (A2)

where c†
α,m(τ ) and cα,m(τ ) are the usual time-dependent

creation and annihilation operators respectively, and γm,n cor-
responds to the hopping strength between the lattice sites m
and n. Defining the Fourier transform

c†
α,k (τ ) =

∑
m

c†
α,m(τ )e−i�k· �Rm , (A3)

we express the operators as

c†
α,m(τ ) =

∑
k

c†
α,k (τ )ei�k· �Rm (A4)

FIG. 13. T↑ (cyan) and T↓ (indigo) for a small energy window
as selected in Fig. 3, for a ferromagnetic chain described with only
NNH in the (a) absence and (b) presence of light.

and

cα,n(τ ) =
∑

k

cα,k (τ )e−i�k· �Rn . (A5)

Substituting these forms of the operators we get the Hamilto-
nian

Hk =
∑
α,k

∑
m,n

γm,nc†
α,k (τ )cα,k (τ )ei�k·( �Rm− �Rn ). (A6)

Due to time periodicity, we can expand the operators c†
α,k (τ ),

cα,k (τ ) in Fourier series as

c†
α,k (τ ) =

∑
p

c†
αkpe−ipωτ , (A7a)

cα,k (τ ) =
∑

q

cαkqeiqωτ . (A7b)

Plugging Eqs. (A7a) and (A7b) into Eq. (A6), we get

Hk =
∑
α,k

∑
m,n

∑
p,q

γm,nei�k·( �Rm− �Rn )e−iωτ (p−q)c†
α,k,pcα,k,q

=
∑
α,k

∑
m,n

∑
p,q

|Uα,k,p〉γ̃m,ne−iωτ (p−q)〈Uα,k,q|, (A8)

where

γ̃m,n = γm,nei�k·( �Rm− �Rn ).

Performing the composed scalar product, the quasienergies
are calculated using Hk and mathematically expressed as

εα,k = 〈〈Uα,k,p|Hk|Uα,k,q〉〉

= 1

T

∫ T

0
〈Uα,k,p|Hk|Uα,k,q〉dτ, (A9)

where Hk = Hk − ih̄ ∂
∂τ

. Following a long calculation, from
Eq. (A9), we reach to the expression

εα,k =
∑
m,n

1

T

∫ T

0
γm,nei�k·( �Rm− �Rn )e−iωτ (p−q)dτ + qh̄ωδp,q

=
∑
m,n

γ̃ p,q
m,n + qh̄ωδp,q, (A10)

where

γ̃ p,q
m,n = 1

T

∫ T

0
γm,nei�k·( �Rm− �Rn )e−iωτ (p−q)dτ. (A11)
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Thus eventually we get an effective time-independent Hamil-
tonian [Eq. (A10)] with the site energy qh̄δp,q and hopping
strength γ̃

p,q
m,n . Applying the condition of the minimal coupling

scheme [46,47], the effective hopping boils down to

γ̃ p,q
m,n = 1

T

∫ T

0
γm,nei �A·( �Rm− �Rn )e−iωτ (p−q)dτ. (A12)

Equation (A12) can now easily be generalized for our chosen
helical systems. The hopping factor γm,n will be replaced by
tn je−(ln j−l1 )/lc , ( �Rm − �Rn) will be changed to ( �Rn j − �Rn), and
γ̃

p,q
m,n will be replaced by t̃ p,q

n j . Thus the effective hopping of
the helix in presence of light irradiation gets the form

t̃ p,q
n j = tn j

1

T

∫ T

0
e−iωτ (p−q)ei �A·( �Rn j− �Rn )dτe−(ln j−l1 )/lc , (A13)

which is exactly mentioned in Eq. (6).

APPENDIX B: TRANSMISSION SPECTRA OF A
FERROMAGNETIC CHAIN DESCRIBED WITH NNH

For a 1D ferromagnetic chain described with only nearest-
neighbor hopping, the hopping strength t1 (say) gets modified
due to light in a very simple form which reads as t1J0(A0l1)
(l1 being the lattice spacing). Thus a 1D chain with nearest-
neighbor hopping remains 1D with renormalized nearest-
neighbor hopping in the presence of light, and hence, the
electron-hole symmetry still persists. Therefore, both in the
absence and presence of light, the spacing between the neigh-
boring transmission peaks is uniform, as reflected from the
spectra shown in Fig. 13. As the mismatch between the two
spin-dependent transmission curves is too small, the degree of
spin polarization will be very less.
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