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Topological flat bands in rhombohedral tetralayer and multilayer graphene
on hexagonal boron nitride moiré superlattices
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We show that rhombohedral four-layer graphene (4LG) nearly aligned with a hexagonal boron nitride
(hBN) substrate often develops nearly flat isolated low-energy bands with nonzero valley Chern numbers. The
bandwidths of the isolated flat bands are controllable through an electric field and twist angle, becoming as
narrow as ∼10 meV for interlayer potential differences between top and bottom layers of |�| ≈ 10–15 meV
and θ ∼ 0.5◦ at the graphene and boron nitride interface. The local density of states analysis shows that
the nearly flat band states are associated to the nondimer low-energy sublattice sites at the top or bottom graphene
layers and their degree of localization in the moiré superlattice is strongly gate tunable, exhibiting at times
large delocalization despite the narrow bandwidth. We verified that the first valence band’s valley Chern numbers
are Cν=±1

V 1 = ±n, proportional to layer number for nLG/BN systems up to n = 8 rhombohedral multilayers.

DOI: 10.1103/PhysRevB.108.155406

I. INTRODUCTION

Nearly aligned van der Waals two-dimensional (2D) lay-
ered heterostructures lead to moiré superlattices [1–29] with
enlarged moiré lattice constants (�m) and reduced moiré
Brillouin zones (MBZ) where the bandwidth suppression
typically enhances the Coulomb correlation effects. Twisted
bilayer graphene (tBG) is a representative system showing a
variety of ordered phases near its magic angle (≈1◦) as a func-
tion of carrier doping [30–35]. Other related graphene moiré
systems such as twisted trilayer graphene (tTG) [36–46],
twisted monolayer-bilayer graphene (tMBG) [47–54], and
twisted double-bilayer graphene (tDBG) [55–62] are current
systems of interest. The gapped massive Dirac layer-based
heterostructures [63,64] including transition metal dichalco-
genides homo- and heterotwisted bilayers [65–72] achieve
reduced bandwidths at relatively large twist angles allowing
to enhance the Coulomb interactions.

Another interesting 2D layered moiré system is formed
by graphene on hexagonal boron nitride (G/BN) with moiré
superlattices [8,14,17,73–76] due to lattice mismatch [63,77].
When a graphene layer (aG = 2.46 Å) is aligned to the hexag-
onal boron nitride (ahBN = 2.5025 Å), the lattice mismatch
(ε = aG/ahBN − 1 ≈ 1.7%) generates a moiré pattern lead-
ing to secondary Dirac cone features [77–79] and a primary
Dirac point band gap forms [80,81] due to the moiré pat-
tern strains [82–84]. Those moiré strain profiles are tunable
with twist angle θ = 0◦–1◦ leading to superlattice lengths
�m ≈ aG/

√
ε2 + θ2 ≈ 14–10 nm that modify band properties

of the aligned single-layer graphene and multilayer graphene
[85–98]. The aligned ABC-stacked rhombohedral trilayer
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graphene on hexagonal boron nitride (3LG/BN) [88–95,97]
is one of the important systems that develop interface-
interaction-induced band isolation where a perpendicular
electric field can achieve narrow bandwidths comparable
to the Coulomb energy (U ≈ 25 meV) [88,89,92,94,95],
making it a powerful platform for studying flat-band-driven
phenomena.

In this paper we demonstrate that in rhombohedral four-
layer graphene on boron nitride (4LG/BN) and nLG/BN
systems up to n = 8 we can achieve even narrower nearly flat
bands than those of 3LG/BN whose bandwidths are typically
W ≈ 30–40 meV in the absence of an electric field. While the
low-energy bandwidths become progressively narrower for
increasing number of layers, n, in rhombohedral multilayers,
with 4LG narrowing between a factor of 2 to 4 over 3LG, com-
parison against 5LG, 6LG, 7LG, and 8LG systems aligned
on hexagonal boron nitride in the absence of perpendicular
electric fields reveals that 5LG systems can already host the
optimally narrowest bands comparable to those of 6LG to
8LG depending on the specific moiré substrate potential used.
The paper is structured as follows. In Sec. II we present
the full-band continuum model Hamiltonian, in Sec. III we
discuss the results on the bandwidths, Chern numbers, and
local density of states as a function of twist angles and electric
fields, and in Sec. IV we present the summary and conclu-
sions. Extended data for n = 5–8 systems are presented in the
Appendixes.

II. MODEL HAMILTONIAN

We model the rhombohedral tetralayer graphene on hexag-
onal boron nitride (4LG/BN) as

H = H4LG + HM (1)
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as a sum of the four-layer Hamiltonian H4LG and the effective
intralayer moiré pattern potential HM in the graphene layer
contacting BN. The H4LG term is a full-band tight-binding
model

H4LG =

⎛
⎜⎜⎜⎜⎜⎝

H11 H12 H13 02×2

H†
12 H22 H12 H13

H†
13 H†

12 H33 H12

02×2 H†
13 H†

12 H44

⎞
⎟⎟⎟⎟⎟⎠, (2)

whose hopping parameters are chosen to match the local
density approximation (LDA) density functional theory where
the intralayer (Hll )2×2 (l = 1, 2, 3, 4) and interlayer (Hi j )2×2

(i �= j = 1, 2, 3) Hamiltonian terms are given by

Hll (k) =
(

uAl υ0π
†

υ0π uBl

)
+ Vll1,

H12(k) =
(−υ4π

† −υ3π

t1 −υ4π
†

)
, (3)

H13(k) =
(

0 t2

0 0

)
,

where π = (νpx + ipy) is defined in terms of the valley index
ν = ±1 using the momentum vector p = (px, py) measured
from the principal Dirac points Kν = (ν 4π

3aG
, 0). The intralayer

nearest-neighbor sublattices (Al and Bl , where l = 1, 2, 3, 4
is the layer index) are connected through the t0 = −3.1 eV
hopping term whose magnitude is slightly larger than t0 �
−2.6 eV obtained from density functional theory (DFT) LDA
to partially account for the Coulomb-interaction-driven Fermi
velocity enhancement. We use the Fermi velocity parame-
ters υi = (

√
3aG/2h̄)|ti| in the Hamiltonian. The term Vll1

is used to introduce the interlayer potential difference (�)
between contiguous layers through a perpendicular external
electric field. For convenience we use equal-magnitude po-
tential drops proportional to � given by

V = �
(

3
2 , 1

2 ,− 1
2 ,− 3

2

)
(4)

such that the interlayer potential difference between top and
bottom graphene layers is given by (n − 1)� where n = 4
for a tetralayer. The remote interlayer hopping term between
sublattices Al and Bl+1 is t3 = 0.293 eV, and between Al (Bl )
and Al+1 (Bl+1) is given by t4 = 0.144 eV (see Fig. 2). The
hopping energy between the adjacent interlayer vertical sub-
lattices (Bl and Al+1) is t1 = 0.3561 eV, and for the sublattices
(Al and Bl+2) the hopping energy is t2 = −0.0083 eV, where
we ignore the other terms of tA1A3 = tB1B3 = 0.00723 eV and
tB1A3 = 0.0140 eV in H13, which do not affect the band proper-
ties within the energy range |E | � 0.05 eV. The diagonal site
potentials uAl (uBl ) at each sublattice of 4LG are

uA1 = uB4 = 0 eV,

uB1 = uA4 = 0.0122 eV,

uA2(A3) = uB2(B3) = −0.0164 eV. (5)

In Fig. 9 we confirm the close agreement of the DFT-LDA
bands with the full-band tight-binding model from 3LG up to

FIG. 1. The atomic structure of four-layer graphene (4LG) on
boron nitride moiré superlattices with two possible hexagonal boron
nitride (hBN) orientations for (a) ξ = 1 (4LG/BN) and (b) ξ = −1
(4LG/NB). The moiré superlattice formation due to lattice mismatch
is illustrated for the graphene layers (1LG, 2LG, 3LG, and 4LG)
where the local commensurate stacking is illustrated with labels AA,
AB, and BA. We show the local atomic structures illustrating the
rhombohedral stacking sublattices Al and Bl , where l = 1, 2, 3, 4
is the layer index, together with the intralayer (t0) and interlayer
(t1, t2, t3, t4) nearest-neighbor hopping terms. (c) The moiré Bril-
louin zone (MBZ) without (upper) and with (lower) a twist angle
next to the Brillouin zones (BZs) of graphene (red hexagon) and
hBN (blue hexagon) layers. The shaded hexagons indicate the MBZ
represented at the two valleys ν = ±1 of graphene. We define the
Dirac points of the pristine 4LG as the center of the MBZ (
̃), and
one of the corners of MBZ (K̃) corresponds to the Dirac points of
hBN for each valley ν = ±1.

8LG especially in the low-energy range of ±0.05 eV and near
the Dirac point |k| < 0.05(4π/3aG). We capture the effect of
the G/BN moiré superlattice by adding the effective intralayer
moiré potential H ξ

M acting at the bottom layer of 4LG:

H ξ
M (r) =V ξ

AA(r)

(
1 + ξσz

2

)
+ V ξ

BB(r)

(
1 − ξσz

2

)

+ V ξ
BA(r) · σ ξ

xy δν,1 + V ξ
AB(r) · σ ξ

xy δν,−1. (6)

Here, σξ
xy = (σx, ξσy) and σz are the Pauli matrices in the sub-

lattice basis. The 0◦ and 60◦ orientations of the hBN substrate
give rise to different moiré interlayer potentials. We use the
ξ = 1 label for the 0◦ orientation of the hBN sheet that for AA
stacking the B and N atoms are right below A1 and B1 sites,
respectively, while the AA stacking for ξ = −1 corresponding
to 60◦ orientation and the N and B atoms are below A1 and B1

sites [see Figs. 1(a) and 1(b)].
The modifications of the on-site potential and intersub-

lattice interaction in the bottom-layer graphene of 4LG
contacting hBN to capture the effective intralayer moiré po-
tential is given by the following equations [83,99,100]:

V ξ
AA(BB)(r) = 2CAA(BB)Re[eiφAA(BB) f ξ (r)], (7)
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FIG. 2. We present the band-structure plots of 4LG/BN for two hBN orientations (ξ = ±1) at twist angles of θ = 0◦ and θ = 0.54◦,
with � = 0 eV and for valley ν = 1 (ν = −1) shown using solid (dashed) lines. To facilitate analysis, we use a compact representation of
the local density of states, D(r, E ), along the local commensurate stacking (AA, AB, and BA). We observe that the Van Hove singularities
are either localized to AB (AA) stacking for ξ = 1 (ξ = −1), or spread within the moiré unit cell. Delocalization occurs at the isolated valence
bands, where the normalized density of states, D̃(E ) = D(E )/max(D(E )), clearly shows their band isolation. Additionally, we calculate the
Berry curvatures (�) of the valence (red) and conduction (blue) bands for valley ν = +1. The unequal positive and negative weights of Berry
curvatures near the MBZ corners result in nonzero valley Chern numbers, C+

C1 = 1 and C+
V 1 = 4.

V ξ
BA(r) = (

V ξ
AB(r)

)∗ = 2CAB(cos(ϕ)ẑ × 1 − sin(ϕ)1)

×
(

1

|G̃1|
∇Re[ei(−φAB+π/6) f ξ (r)]

)
, (8)

where the coefficients adopted from Ref. [17] are
CAA = −14.88 meV, φAA = 50.19◦, CBB = 12.09 meV,
φBB = −46.64◦, CAB = 11.34 meV, φAB = 19.60◦, cos(ϕ) �
ε/

√
ε2 + θ2, sin(ϕ) � θ/

√
ε2 + θ2, and the function as

f ξ (r) = ∑6
m=1 ( 1+(−1)m+1

2 )e−iξ G̃m·r. The moiré reciprocal
lattice vectors are defined as G̃m = R̂ π

3 (m−1)G̃1, where
G̃1 = ( aG

ahBN
R̂θ − 1)†[0, 4π√

3aG
] ≈ (ε1 − θ ẑ × 1)[0, 4π√

3aG
],

which is valid when
√

ε2 + θ2 � 0.1 for the small enough
lattice mismatch ε ≈ −1.7% and twist angles θ between the
graphene and hBN inducing an error of less than 1%. In
Fig. 1(c), we illustrated the MBZ with the original Brillouin
zone of the 4LG and hBN layers to show the effect of
the lattice mismatch and twist angle. The reduced size of
the MBZ leads to a repulsion gap at the MBZ corners in the
4LG/BN and isolates the bands near the Fermi level.

III. RESULTS AND DISCUSSION

In this section we present the valley Chern numbers, and
local density of states that are associated with the large
Ueff/W values where strong correlations can be expected in
the parameter space of twist angles and interlayer potential
differences.

The low-energy band structure of 4LG/BN has extremely
narrow bands near the charge neutrality point (CNP) thanks to
the ∼pN behavior of the band dispersion near the Dirac point
of the minimal model rhombohedral multilayer graphene as

the layer number N increases [101]. More realistic band
structures include distortions due to trigonal warping and
electron-hole symmetry-breaking terms included in the re-
mote hopping terms of the Hamiltonian as illustrated in the
LDA bands from 3LG to 8LG in Fig. 9 in Appendix A.
Addition of a moiré pattern introduces a band gap at the
charge neutrality and induces an avoided crossing near the
MBZ corners that removes the band crossing of the low-
energy valence and conduction bands from the adjacent bands
even in the absence of an external electric field (see Fig. 2).
The band structures are shown for 4LG/BN for two different
orientations of hBN, namely, 4LG/BN (ξ = 1) and 4LG/NB
(ξ = −1), and we considered the aligned θ = 0◦ and a small
finite twist angle of θ = 0.54◦. The low-energy bands have
bandwidths W ≈ 12–20 meV, where the bandwidth of the
first valence (V 1) or conduction (C1) band is calculated as
WV 1(C1) = EV 1(C1)

max − EV 1(C1)
min . We note that the low-energy va-

lence and conduction bandwidths of 4LG/BN and all the way
up to 8LG/BN are smaller than those of 3LG/BN [90] [see
Figs. 10(c) and 10(d)].

The real-space distribution of the wave functions associ-
ated with the nearly flat bands in 4LG/BN gives an idea about
the kind of broken symmetries that the system can host. We
calculated the density of states (DOS) D(E ) through

D(E ) =
∫

MBZ

dk
(2π )2

∑
n′

|ψn′ (k)|2 δ(E − En′ (k)) (9)

and the local density of states (LDOS) D(r, E ) through

D(r, E ) =
∫

MBZ

dk
(2π )2

∑
n′

|φn′ (k : r)|2 δ(E − En′ (k)) (10)
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FIG. 3. The low-energy bandwidth variation for the parameter set of interlayer potential difference (�) and twist angle (θ ) is presented
for the two orientations of hBN, (a) ξ = 1 and (c) ξ = −1. In (b) and (d), we present the corresponding primary (δp) and secondary gaps for
valence (δs (V 1)) and conduction (δs (C1)) bands, to estimate the isolation of valence and conduction bands at the CNP.

using information from the real-space wave functions φn′ (k :
r) = ∑

G̃ ψn′ (k + G̃) e−i(k+G̃)·r where the band indices n′ =
V n(Cn) refer to the nth valence (conduction) bands count-
ing from the charge neutrality point. In Fig. 2, we show
the compact representation of the LDOS, D(r, E ) at each
local commensurate stacking (AA, AB, and BA), along
with the normalized density of states defined as D̃(E ) =
D(E )/ max(D(E )). The density of states D̃(E ) plots show the
van Hove singularities (vHSs) of DOS peaks for the isolated
low-energy valence and conduction bands. Additionally, the
LDOS plots show that the vHS of the conduction band is
strongly localized at AB (AA) stacking for ξ = 1 (ξ = −1)
at both θ = 0◦ and 0.54◦. However, the valence-band states at
the vHS distribute the carrier densities almost equally at all
local commensurate stacking sites. These differences in the
localization behavior between the conduction- and valence-
band states should in turn lead to very different spin or charge
textures of the associated ordered phases upon inclusion of
Coulomb interactions.

Furthermore, the low-energy isolated bands show a non-
trivial topological nature. We calculated the valley-resolved
Chern number (Cν

V 1(C1)) of the first valence (conduction) band
using the following equations:

Cn′ =
∫

MBZ
d2k �n′ (k)/(2π ), (11)

where the Berry curvature �n′ (k) [102] is defined as

�n′ (k) = −2
∑
i �=n′

Im

[ 〈un′ | ∂H
∂kx

|ui〉〈ui| ∂H
∂ky

|un′ 〉
(Ei − En′ )2

]
, (12)

for the n′ = V n (Cn) valence (conduction) bands from the
charge neutrality point where |un′ 〉 are the moiré Bloch states
of index n′, and En′ are the band energies. The calculated
Berry curvatures for the low-energy bands are represented in
Fig. 2 for ξ = ±1 and θ = 0◦, 0.54◦. The Berry curvature
plots have hot spots near the MBZ corners, and the unequal
weights of Berry curvatures give rise to nonzero valley Chern
numbers Cν=±1

V 1 = ± 4 for the low-energy valence bands of
4LG/BN at twist angles θ = 0◦, 0.54◦ with ξ = ±1, and we
get Cν=±1

C1 = ± 1 for the low-energy conduction bands for
ξ = 1 but zero for ξ = −1. We will discuss later how the
valley Chern number phase diagram can change as a function
of interlayer potential difference.

A. Low-energy bands

In the following, we discuss the bandwidth of the low-
energy bands near the Fermi level of 4LG aligned to hBN in
the parameter space of twist angles (θ ) and interlayer potential
differences (�). In our previous reports [47,55,64,90], we
systematically demonstrated that the interlayer potential dif-
ference introduced through a perpendicularly applied electric
field is an effective control knob to tune the bandwidth and
band isolation of the low-energy bands. The interlayer poten-
tial difference (�) results from unequal intralayer potentials
Vii1 in each layer of 4LG/BN in Eq. (3). In Figs. 3(a) and
3(c), we show the variation of bandwidth as a function of �

and θ . The on-site Coulomb repulsion energy for graphene
on hBN is estimated to be U ≈ 25 meV for the moiré length
of ∼14.5 nm and the twist angle θ ∼ 0◦. We define the
on-site Coulomb repulsion energy U using the moiré super-
lattice constant �m ≈ aG/

√
ε2 + θ2 and a relative permittivity
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εr = 4,

U = e2

4πεrε0�m
, (13)

where e is the electron charge, and ε0 is the permittivity of
vacuum. From the bandwidth phase diagram, it is evident
that a large set of the parameter space of � and θ shows
a bandwidth smaller than ∼25 meV. Furthermore, we also
investigate the isolation of the low-energy flat bands from the
adjacent remote bands by calculating the gaps at the CNP
(δp) and secondary gaps (δs) as a function of � and θ (see
Fig. 3). Here, the primary gap at the CNP is defined as δp =
EC1

min − EV 1
max and the secondary gap [a gap between the valence

(conduction) band and its higher-energy bands] is defined as
δs = EC2

min − EC1
max for the conduction and δs = EV 1

min − EV 2
max for

the valence bands. A positive value denotes the magnitude of
the gap, and a negative value indicates the degree of band
overlap. The low-energy bands isolate when both secondary
and primary gaps are simultaneously positive. The primary
gap at the CNP is always open practically for all values of θ

and � except for a specific value of � (see Fig. 3).
A few important observations from the bandwidth and

band-gap phase diagrams are summarized below.
(i) Very narrow valence (conduction) bands (W < 5 meV)

are possible for positive (negative) values of � ≈ 0.012–
0.013 eV (� ≈ −0.025 to −0.038 eV) at zero twist (θ = 0◦)
for both ξ = ±1.

(ii) The small twist angles θ = 0◦–0.8◦ retain the smallest
bandwidths (W < 5 meV) for the valence and conduction
bands.

(iii) For ξ = 1, the conduction bands are isolated for
the specific conditions of θ ≈ 0.5◦–0.6◦ and � = 0.007–
0.027 eV while the valence bands are isolated for the
considered range of θ = 0◦–0.8◦ for � = −0.05 to 0.01 eV.

(iv) For ξ = −1, the conduction bands are isolated for
the range � = 0–0.04 eV and θ = 0◦–0.5◦ while the valence
bands are isolated when θ ≈ 0.5◦–0.6◦ and � = −0.004 to
−0.02 eV.

From the bandwidth and band-gap phase diagrams we can
observe that the narrowest bandwidths of W = 5–10 meV
for the isolated valence (conduction) bands is associated
with � = −0.009 (0.009) eV for ξ = 1 and � = −0.011
(0.015) eV for ξ = −1 for the twist-angle range θ = 0◦–
0.5◦. See Fig. 11, where we summarize band structures for
these selected system parameters. These observations help us
draw a few important conclusions on the possible Coulomb-
interaction-driven phases of 4LG/BN that we will discuss
further in the following section.

B. Nearly flat bands (Ueff/W � 1)

Here we compare the on-site Coulomb repulsion energy
(U ) defined in Eq. (13) and bandwidth (W ) of valence and
conduction bands in the search for the narrow bandwidth
regime with strong effective Coulomb interactions where
Ueff/W  1. The greater the U compared to the band-
width W (U/W > 1) indicates higher chances of finding
Coulomb-interaction-induced correlated phases. In Fig. 4, we
summarize the ratio (U/W ) of the low-energy bandwidth W
versus the on-site Coulomb repulsion energy U as a function

FIG. 4. A phase diagram showing the ratio between the bare
on-site Coulomb repulsion energy (U ) and low-energy bandwidths
(W ) as a function of an interlayer potential difference (�) and twist
angles (θ ) for two orientations of hBN: (a) ξ = 1 and (b) ξ = −1.
The colored region represents the narrow bands where U/W > 1,
indicating strong electronic correlations. We find that almost all
the system parameters of twist angle θ = 0◦–0.8◦ and interlayer
potential difference |�| < 0.1 eV exhibit narrow bands satisfying
U/W > 1 for both ξ = ±1 hBN orientations, suggesting that strong
electronic correlations are present in a wide range of experimental
conditions.

of θ and �, where the colored area manifests the region for
the possible narrow bands (U/W > 1). Compared to the esti-
mated Coulomb repulsion energy (≈25 meV), the bandwidths
of valence and conduction bands in 4LG/BN are small enough
to satisfy the U/W > 1 condition for most of the considered
parameter space.

We further consider the screening effects by adding an
exponential decay term e−�m/λD [55] adequately when there
is band overlap. Here, the screened effective on-site Coulomb
repulsion energy (Ueff ) is redefined as

Ueff = U exp(−�m/λD), (14)

where λD = 2ε0/e2D(δp, δs) is the Debye length, which in-
cludes the 2D density of states D(δp, δs) = 4[|δp| u(−δp) +
|δs| u(−δs)]/(W 2AM ). AM = √

3�m
2/2 is the moiré unit cell

area, W is the bandwidth, and u(x) is the Heaviside step func-
tion such that u(−δp(s) ) enhances the screening in the presence
of band overlap (δp(s) < 0). We show that the screening effect
due to the band overlap reduces the narrow-bandwidth regime
(Ueff/W > 1) [see Fig. 5 where we summarized Ueff/W
for the parameter space of interlayer potential difference �

and twist angle θ , and specifically for θ = 0◦ (cyan) and
0.54◦ (magenta)]. For ξ = 1 [Fig. 5(a)], the valence band
shows Ueff/W  1 for a large span of the parameter spaces
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FIG. 5. A phase diagram illustrating the variation of the ratio
between effective on-site Coulomb repulsion energy (Ueff ) and band-
width (W ) as a function of interlayer potential difference (�) and
twist angles (θ ) for two orientations of hBN: (a) ξ = 1 and (b) ξ =
−1. On the right-hand side of the diagram, we show Ueff/W results
at two specific twist angles: θ = 0◦ (cyan) and θ = 0.54◦ (magenta).
For θ = 0◦, Ueff/W > 1 is only achievable for the valence band with
negative � for ξ = 1, and for the conduction band with positive �

for ξ = −1. However, at θ = 0.54◦, both valence and conduction
bands exhibit Ueff/W  1, with negative � required for the valence
band and positive � for the conduction band. Our results reveal that
Ueff/W > 1 for both conduction and valence bands can be achieved
at � = 0.009 eV for ξ = 1 and θ = 0.54◦.

(� ≈ −50 to 10 meV and θ = 0◦–0.8◦) while for the con-
duction band Ueff/W > 1 is only possible for the small island
at θ ≈ 0.5◦–0.6◦ and � ≈ 20–25 meV. In another substrate
configuration, ξ = −1 [Fig. 5(b)], the conduction band has
greater chances of achieving the flat-band regime at small
positive � = 0–40 meV compared to the valence band, which
has a limited area around � ≈ 20 meV and θ = 0.4◦–0.6◦.

Moreover, as shown in the phase diagram, the 4LG/BN
flat bands have different particle-hole-asymmetric behavior
for different θ . We found that at θ = 0◦ the valence (con-
duction) band only satisfies Ueff/W  1 for ξ = 1 (ξ = −1)
substrate orientation. On the contrary, at θ = 0.54◦, both va-
lence and conduction flat bands are possible, which requires
negative � for valence bands and positive � for the conduc-
tion bands. Also, the maximum values of Ueff/W are observed
when θ = 0.54◦, giving Ueff/W = 3.98 for the valence band
with ξ = 1 orientation and Ueff/W = 4.7 for the conduction
band with ξ = −1. Hence, we suggest that θ = 0.54◦ for the
4LG/BN device has greater chances of achieving Coulomb-
interaction-driven ordered states in a wider range of interlayer
potential differences. The obtained conditions are valid when
considering further remote hopping parameters but the lat-
tice relaxations and electrostatic Hartree corrections can alter
them. These detailed questions can be addressed in future
studies.

C. Valley Chern numbers

When the moiré bands are isolated through gaps, they can
acquire finite valley-resolved Chern numbers [90,91]. The

FIG. 6. The valley Chern number of the low-energy valence and
conduction bands is plotted as a function of interlayer potential dif-
ference (�) and twist angle (θ ) for two substrate orientations: (a) ξ =
1 and (b) ξ = −1. The dashed lines indicate two specific twist angles,
θ = 0◦ (navy) and θ = 0.54◦ (magenta), and the phase transition
between different Chern numbers is shown on the right-hand side of
the phase diagram. The red (valence) and blue (conduction) dashed
lines enclose regions where the effective on-site Coulomb repulsion
energy Ueff is greater than the bandwidths W , i.e., Ueff/W > 1.

lowest-energy bands of 4LG/BN in the absence of an exter-
nal electric field have finite valley Chern numbers for both
valence and conduction bands when ξ = 1, and for valence
bands only for ξ = −1, or in other words the valence band
has a finite valley Chern number CV 1 = 4 for both ξ = ±1
substrate orientations, while the conduction band has the val-
ley Chern number CC1 = 1 only for ξ = 1.

Here we analyze the phase diagram of the valley Chern
numbers in the parameter space of interlayer potential differ-
ences � and twist angles θ for the two different types of hBN
substrate orientations labeled through ξ = ±1, specifically for
θ = 0◦ (navy dashed) and 0.54◦ (magenta dashed) that we
summarize in Fig. 6. Upon application of a perpendicular
electric field, the valence-band valley Chern number CV 1 = 4
for ξ = 1 [Fig. 6(a)] remains within a large set of parame-
ter spaces of � ≈ 0–35 meV and θ = 0◦–0.8◦ and for the
larger electric field switches to CV 1 = ±1,±2 at zero twist
(θ = 0◦) and CV 1 = ±1, 2 at θ = 0.54◦. The conduction band,
however, shows a nonzero valley Chern number CC1 = 4 only
for the small angles θ ≈ 0◦–0.2◦ with negative � ≈ −20 to
−40 meV and CC1 = 1 for positive � ≈ 0–10 meV. In another
substrate orientation, ξ = −1 [Fig. 6(b)], the valence band
shows CV 1 = 4 with � = 0–35 meV and moves to CV 1 =
±1,±2 with a larger positive interlayer potential difference,
while the nonzero conduction-band valley Chern number
CC1 = 4 only appears for the negative � = −40 to 0 meV.
Hence, a single 4LG/BN device can have various topolog-
ical states (CV 1 = ±1,±2, 4, CC1 = 1, 4), easily controlled
through small changes in interlayer potential differences
of the order of |�| < 100 meV. Since we numerically inte-
grate the Berry curvature to get the valley Chern numbers,
some of the integrated values lead to the nonquantized valley
Chern numbers near the phase boundary or some parts of the
parameter spaces, even though we increase the k-point density
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FIG. 7. The normalized local density of states (LDOS) of the isolated valence (V 1) and conduction (C1) bands of 4LG/BN at their Van
Hove singularities (vHSs), which are defined as D̃(r, E ) = D(r, E )/max(D(r, E )). The LDOS is plotted for two twist angles, θ = 0◦ (left) and
θ = 0.54◦ (right), and two orientations of the hBN substrate, [(a), (b)] ξ = 1 and [(c), (d)] ξ = −1. We show the normalized LDOS for selected
interlayer potential differences � = 0.0, 0.009, −0.009 eV for ξ = 1, and � = 0.0, 0.015, −0.011 eV for ξ = −1. The energy value at the
vHS (EvHS) is listed at the bottom of each LDOS panel, and we label the LDOS maxima as AA, AB, or BA according to the local stacking
regions defined at the top right corner of panels (a) and (c). Our results show that the LDOS distributions at the vHS are influenced by system
parameters such as the substrate orientation ξ , the interlayer potential difference �, and the twist angle θ , and exhibit distinct features for the
valence and conduction bands.

up to 180 × 180 Monkhorst-Pack mesh. Here, we focused
on the conditions where the valley Chern numbers are well
defined.

Interestingly, we also found that rhombohedral stacked
nLG/BN [(n = 3–8)-layer graphene] for both substrate ori-
entations (ξ = ±1) has a finite valence-band valley Chern
number, CV 1 = n, when � = 0 eV (see Fig. 10). Simi-
lar to 4LG/BN, the conduction band of ξ = −1 has zero
valley Chern number, CC1 = 0, while multilayer 3LG/BN
through 8LG/BN systems for ξ = 1 show various valley
Chern numbers, CC1 = 2, 1, 1,−2, 0, and 0 at � = 0 eV.
Furthermore, we observed that the hBN-encapsulated 4LG
systems such as BN/4LG/BN, NB/4LG/BN, BN/4LG/NB,
and NB/4LG/NB exhibit various topological properties,
which are distinct from those of 4LG/BN and are easily
altered by inducing the small interlayer potential differ-
ence � = 5 meV (see Fig. 14). Our calculations sug-
gest that rhombohedral nLG/BN multilayers will be an
excellent platform to explore a variety of topological
phases with flat enough bands to find strong correlation
effects.

D. Local density of states

In this section, we discuss the LDOS of 4LG/BN at the
vHSs of the low-energy valence and conduction bands that
are most prone to form ordered phases. Knowledge of their
localization centers is helpful for anticipating and understand-
ing the nature of the ground states that we can expect when
Coulomb interactions are accounted for. We show that the
LDOS profiles associated to the valence or conduction bands
can be tuned by varying the system parameters such as elec-
tric fields, the twist angles, and the orientation of the hBN
substrate. Our results are summarized in Fig. 7, where we
show the unit normalized LDOS function D̃(r, E ) for twist
angles θ = 0◦, 0.54◦ for both orientations of the hBN sub-
strate ξ = ±1. We explicitly label with AA, AB, and BA the
local stacking configurations where the LDOS profiles show
maxima values. For zero electric fields and ξ = 1 substrate
orientation we notice that the LDOS accumulates at the AB
local stacking sites, while for ξ = −1 the localization center
switches to AA stacking sites for both valence and conduction
bands. This behavior is observed for both θ = 0◦ and 0.54◦
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twist angles considered and can be modified by applying an
interlayer potential difference �. We verified for these two
twist angles that these localizations require the pseudomag-
netic field B(r) ∝ ∇ × V ξ

AB(r) resulting from the off-diagonal
moiré potential in Eq. (6). This pseudomagnetic field en-
hances the small band gap that is opened by the diagonal
moiré potentials V ξ

AA(r) and V ξ
BB(r).

In the following, we discuss in more detail how an inter-
layer potential difference can alter the localization properties.
The electron accumulation at the topmost layer favored by
� > 0 should predominantly concentrate at the low-energy
B4 site, and likewise for � < 0 will concentrate mostly at
A1, and in opposite senses for holes. We will show that �

can modify the degree of localization of the states around
particular local stacking configurations. Let us consider the
ξ = 1 orientation for the hBN substrate [Fig. 7(a)] and focus
on the θ = 0◦ case for sake of definiteness. The valence-band
LDOS spread over all stacking configurations and are delocal-
ized, mildly concentrating at the AB regions when � = 0 eV.
The initially widespread LDOS profile concentrates at the AB
sites in the presence of interlayer potential differences either
positive or negative (see the plots for � = 0.009, −0.009 eV).
We thus expect that a finite � will enhance the chances of
triggering a Coulomb-driven transition. For the conduction
band, the LDOS concentrate initially at both AB and BA
regions when � �= 0, where AB is slightly favored. A pos-
itive � = 0.009 eV shifts the carrier densities from AB to
predominantly concentrate at the BA regions and also in-
creases the population of the AA regions, while for negative
� = −0.009 eV the LDOS profile spreads almost uniformly
for all possible stacking regions. Hence, vertical fields allow
transitions from a delocalized to AB-concentrated LDOS pro-
files in the valence bands, or from (AB/BA)-centered profiles
to delocalized phases for conduction bands depending on ap-
plied electric fields.

In the other substrate orientation, ξ = −1 [Fig. 7(b)],
with � = 0, the LDOS slightly (strongly) concentrate at AA
stacking for the valence (conduction) band. Unlike the ξ = 1
orientation, a positive � = 0.015 eV makes the valence-band
LDOS further spread over all stacking configurations while
the conduction-band LDOS from AA stacking concentrates at
AB stacking strongly. A negative � = −0.011 eV shifts the
conduction-band states towards the top-most layer, especially
at B4, delocalizing the conduction-band LDOS, while the
valence-band LDOS concentrating at A1 in the bottom layer
is strongly localized at AA.

A twist angle tilts the moiré unit cell and affects the
localization of the valence- and conduction-band LDOS in
4LG/BN. For ξ = 1 at θ = 0.54◦ [Fig. 7(c)], similar to the
zero-twist-angle system, the valence-band LDOS spreads over
the moiré unit cell and the conduction-band LDOS resides
at AB and BA, slightly favoring AB stacking for � = 0,
0.009 eV, while the valence-band LDOS resides on AB
stacking sites and the conduction-band LDOS spreads within
the moiré unit cell for � = −0.009 eV. A positive � =
0.009 eV shifts the localization center of the conduction-band
LDOS from BA to AB. However, for ξ = −1 at θ = 0.54◦
[Fig. 7(d)], the carrier densities of valence and conduction
bands move to the AA stacking site regardless of the electric
fields (� = 0, 0.015, −0.011 eV) where the conduction-band

FIG. 8. We calculate the k-point-projected LDOS |φV 1(C1)(k :
r)|2 at twist angle θ = 0◦ and high-symmetry points K̃ , K̃ ′, 
̃, and M
for two different hBN substrate orientations: (a) ξ = 1 and (b) ξ =
−1. We normalize the values by the maximum value, and define M
as (M̃ + M̃ ′ + M̃ ′′)/3. We consider selected interlayer potential dif-
ferences � = 0.0, 0.009, −0.009 eV for ξ = 1, and � = 0.0, 0.015,
−0.011 eV for ξ = −1, and plot the LDOS for a given k point that
contributes significantly to the LDOS, as labeled in the upper left
corner of each figure. Our results reveal that the LDOS projected
onto K̃ , K̃ ′, and M tends to localize in one of the local stackings, AA,
AB, or BA. However, the 
̃-projected LDOS, especially associated
with the B4 band, shows delocalization for zero � in the valence
bands and negative � in the conduction bands, regardless of the hBN
substrate orientation ξ = ±1.

LDOS at the negative � = −0.011 eV spreads almost uni-
formly over the moiré unit cell like in the other hBN substrate
orientation and twist angles.

In the remaining part of this section, we further discuss the
delocalization in the isolated nearly flat bands of 4LG/BN,
which has some analogies to double-bilayer graphene [103].
We found that the selective sublattice and k-point-projected
LDOS at the vHS is helpful for the study of the delocal-
ization in 4LG/BN. From the sublattice-projected LDOS
(Fig. 12), we found that most of the low-energy states are
associated with the A1 site in the bottom-most graphene
layer and the B4 site in the top-most layer, and the states
from B4 are most important for the flat bands’ delocaliza-
tion where the conduction- or valence-band LDOS almost
equally spreads over all stacking configurations. Also, from
the layer-dependent sublattice-projected LDOS calculation of
3LG/BN, 4LG/BN, and 5LG/BN (see Fig. 13), we verified
that the delocalization of the states is associated with the
Bn site located far away from the hBN substrate but the
degree of localization shows a nonmonotonic behavior as n
increases in nLG/BN for both ξ = ±1. When we analyzed
the k-point-projected LDOS we found that the states from
the 
 are the most delocalized. In Fig. 8, we illustrate the
k-point-projected LDOS at the specific k points, 
̃ or M̃,
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where the vHS states dominantly come from. Here, M̄ is de-
fined as M̄ = (M̃ + M̃ ′ + M̃ ′′)/3 and we calculate |φ(k : r)|2
in Eq. (10) as the k-point-projected LDOS by extracting the
wave function at the select k points, k = K̃, K̃ ′, 
̃, or M̃ (′,′′).
The 
̃-projected LDOS, especially associated to the B4 site,
show delocalization for zero (negative) � in the valence (con-
duction) bands regardless of the hBN substrate orientation
ξ = ±1, while the LDOS contribution from the other symmet-
ric k points K̃ , K̃ ′, and M̃ (′,′′) are localized at either AA, AB,
or BA.

IV. SUMMARY AND CONCLUSIONS

In summary, we investigated the parameters giving rise to
isolated nearly flat bands in rhombohedral four-layer graphene
aligned to boron nitride (4LG/BN) and nLG/BN multilayer
systems using full-band continuum models. We found that
4LG/BN (ξ = 1) and 4LG/NB (ξ = −1) alignments with
zero-degree twists have naturally narrow low-energy band-
widths (12–20 meV), and further explored the parameter
space of interlayer potential difference (�) and twist angles
(θ ). The bandwidths of the 4LG/BN are generally smaller
than the estimated on-site Coulomb repulsion energy U ≈
25 meV for a large parameter space up to � = ± 0.1 eV and
θ = 0◦–0.8◦, where U/W > 1 indicates regions of possible
onset of Coulomb ordered phases in 4LG/BN. Very narrow
bandwidths (<5 meV) are possible with appropriate � values
for a range of twist angles θ = 0◦–0.5◦ for both ξ = ±1.

We also found that isolated flat bands are achievable for
specific ranges of θ and � where both primary (δp) and
secondary (δs) gaps are open. In the narrow-band regime
(Ueff/W  1), we estimated the screened on-site Coulomb
repulsion energy Ueff = U e−�m/λD , taking into account the
screening effect due to band overlap. As a result, we observe
strong particle-hole-asymmetric behavior in the 4LG/BN nar-
row bands. Narrow valence bands for the ξ = 1 substrate
orientation can be found for a large range of parameters
� ≈ −50 to 10 meV and θ = 0◦–0.8◦, while the conduc-
tion bands flatten only near � ≈ 7–27 meV and θ ≈ 0.5◦.
In contrast, the ξ = −1 alignment has a larger parameter
space for the conduction narrow-band regime than the valence
narrow-band regime. Conduction narrow bands can exist for
� = 0–40 meV and θ = 0◦–0.8◦, while valence narrow bands
are only possible near � ≈ 20–25 meV and θ ≈ 0.5◦–0.6◦.
We found that the maximum value of Ueff/W occurs when
θ = 0.54◦, in the valence band with ξ = 1 alignment tak-
ing Ueff/W = 3.98, and in the conduction band with ξ =
−1 alignment giving rise to Ueff/W = 4.7. Therefore, we
suggest that the twist angle of θ ≈ 0.5◦ for the 4LG/BN
device has the chance of exhibiting Coulomb-induced or-
dered states for a wider range of perpendicular electric
fields.

Furthermore, we showed that the isolated valence and con-
duction flat bands have well-defined valley Chern numbers
of Cν=±1

V 1 = ±4 for both ξ = ±1 and Cν=±1
C1 = ±1(0) for

ξ = 1 (ξ = −1) even without any external electric fields. The
valence-band valley Chern number remains Cν=±1

V 1 = ±4 for
both ξ = ±1 orientations for � = 0–0.035 eV and similarly
for the conduction bands we have Cν=±1

C1 = ±1 for ξ = 1 for
� = 0–0.010 eV. By increasing |�| < 100 meV, the valence

FIG. 9. We compare the F1G0 tight-binding model bands
[TB(F1G0)] to those obtained from first-principles calculations
within the local density approximation (DFT(LDA)) for 3LG–8LG
along the k path from M to K to 
. The bands from both methods
are in good agreement in the energy range −0.05 to 0.05 eV and the
k-space range |k| < 0.05( 4π

3a ) near the Dirac points Kν=1.

and conduction bands can have various topological states
(CV 1 = ±1,±2, 4, CC1 = 1, 4). Also, we found in nLG/BN
(three- to eight-layer graphene) that the valence-band valley
Chern number of nLG/BN is the same as the number of
graphene layers (CC1 = n) for both ξ = ±1 alignments when
� = 0 eV and θ = 0◦.

We have then investigated the local density of states asso-
ciated with the Van Hove singularities (vHSs) of the 4LG/BN
flat bands. In the absence of an interlayer potential differ-
ence and twist angle, the valence-band states at the vHS
are spread over all local stackings, slightly favoring the AB
stacking for ξ = 1 and AA stacking for ξ = −1. Meanwhile,
the conduction-band states for ξ = −1 are strongly localized
at AA stacking, while for the ξ = 1 substrate orientation,
they reside mainly at the AB and BA stackings, with the AB
stacking being slightly favored. The position and degree of
localization vary with the substrate orientation, interlayer po-
tential difference, and twist angle. A negative � = −0.009 eV
for ξ = 1 and � = −0.011 eV for ξ = −1 enhances the lo-
calization strength of the valence-band vHS states without
moving the localization center, while a positive � = 0.009 eV
for ξ = 1 and � = 0.015 eV for ξ = −1 move the localiza-
tion center from AB (AA) to BA (AB) for ξ = 1 (ξ = −1)
substrate orientation.

We can modify the localization of the 4LG/BN nearly flat
band states with an electric field. Through sublattice-projected
LDOS calculations, we confirmed that the states at the vHS
mostly come from the low-energy nondimer sublattice sites,
specifically A1 from the bottom-most graphene layer contact-
ing hBN and B4 from the top-most layer. The delocalized
states are related with the B4 sites in 4LG/BN. We examined
the LDOS data for other multilayers such as 3LG/BN and
5LG/BN and found that the states populating the farthest Bn

site away from the hBN substrate tend to be delocalized at
all local stackings, either for the conduction or valence band
depending on the sign of �. However, there is seemingly no
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FIG. 10. The band structure of nLG/BN, where n = 3–5 layers of graphene on (a) ξ = 1 and (b) ξ = −1 hBN substrates. The band
structures for two valleys are shown with solid (ν = 1) and dashed (ν = −1) lines. We observe that the valley Chern number for the nLG/BN
valence band matches the number of layers, Cν=±1

V 1 = ±n, while those for the conduction bands are CC1 = 2 for the 3LG/BN and CC1 = 1 for
the 4LG/BN and 5LG/BN. To investigate the trend in bandwidths of low-energy valence and conduction bands, we plot the bandwidths as a
function of the number of graphene layers for nLG/BN, where n = 3–8. [(c), (d)] The bandwidths for ξ = 1 and ξ = −1, respectively. We
observe that the bandwidths of the valence and conduction bands decrease from W ≈ 40 meV (3LG/BN) to a minimum value of W ≈ 5 meV
(5LG/BN) for ξ = ±1. The bandwidths remain constant when further increasing the number of graphene layers for nLG/BN, where n = 6–8.

direct relation between layer number and localization, consid-
ering that the B3 in 3LG/BN or B5 in 5LG/BN both show
stronger localization compared to 4LG/BN. Furthermore, we
examine the k-point projected LDOS in 4LG/BN, which

shows that the delocalized B4 state mainly originates from the

̃ point in the MBZ.

In summary, the 4LG/BN has narrow bands in a large
parameter space of twist angles and interlayer potential

FIG. 11. We investigate the impact of interlayer potential difference � on the band structure of 4LG/BN for the two hBN substrate
orientations (ξ = ±1). We consider two twist angles (left, θ = 0◦; right, θ = 0.54◦) and three values of � for each orientation: (a) � = 0.0 eV,
(b) � = 0.009 eV, and (c) � = −0.009 eV for ξ = 1, and (d) � = 0.0 eV, (e) � = 0.015 eV, and (f) � = −0.011 eV for ξ = −1. We plot the
band structure for both valleys, denoted by solid and dashed lines for ν = 1 and ν = −1. Our results show that the bandwidth of the valence
band decreases with increasing twist angle and interlayer potential difference, while the valley Chern numbers for each low-energy valence
(conduction) band are unaffected by the twist angle at a given interlayer potential difference.
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FIG. 12. The sublattice-projected local density of states (LDOS) of 4LG/BN for various interlayer potential differences (�) at the Van
Hove singularity (vHS) of low-energy valence and conduction flat bands. Specifically, we consider (a) � = 0.0, 0.009, −0.009 eV for ξ = 1,
and (b) � = 0.0, 0.015, −0.011 eV for ξ = −1, at θ = 0◦. We also show the corresponding results for θ = 0.54◦ in (c) and (d). Our analysis
reveals that the dominant states in the LDOS stem from B4 and A1 sublattice sites, as denoted by the solid black and open red triangle symbols,
respectively. Furthermore, the dominant A1 states are primarily localized at AB (AA) stacking sites for ξ = 1 (ξ = −1), while the B4 states
spread within the moiré unit cell.

differences, has various associated valley Chern bands, and
the localization of the wave functions can be easily controlled
by applying relatively small interlayer potential differences
of |�| < 0.1 eV. The low-energy states in 4LG/BN are par-
ticularly delocalized compared to other layer numbers that
will impact the ground states when we explicitly account for
Coulomb interactions. Given the high tunability of the system
and narrow bandwidths as small as 10 meV we believe that
the 4LG/BN and larger-n multilayer nLG/BN are excellent
systems to study flat-band physics provided that the hurdles
for preparing rhombohedral graphene multilayers can be over-
come.
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FIG. 13. We present the normalized local density of states (LDOS) at the Van Hove singularity (vHS) of the conduction (C1) and valence
(V1) bands for 3LG/BN, 4LG/BN, and 5LG/BN for two different hBN orientations: (a) ξ = 1 and (b) ξ = −1. Interestingly, we find no clear
trend in the localization of states with increasing number of graphene layers. Additionally, we compare the sublattice-projected LDOS of these
systems calculated at the vHS of flat bands for the (c) ξ = 1 and (d) ξ = −1 hBN orientations. Our analysis reveals that the dominant states
originate from the low-energy Bn and A1 sublattice sites. We find that the Bn states far from the hBN substrate exhibit delocalization in the case
of nLG/BN.

APPENDIX A: F1G0 TIGHT-BINDING MODEL
FOR MULTILAYER GRAPHENE

The effective tight-binding F1G0 model [104] utilized
in this study is based on grouping the hopping amplitudes
by the hopping distances, where the effective Hamiltonian
only includes the structure factor functions of g0(k) for
the zero-distance intrasublattice hopping and f1(k) for the
first-nearest-neighbor intersublattice hopping. To construct
the ABC stacked rhombohedral multilayer graphene Hamil-
tonian, we adopted the trilayer graphene (3LG) hopping
parameters since they provide a highly accurate tight-binding
fit to the first-principles calculations band structure in the
low-energy range near the charge neutrality point (CNP). The
resulting band structures of the F1G0 tight-binding model
for multilayer graphene, as shown in Fig. 9, are in good
agreement with those obtained from density functional the-
ory (DFT) calculations, within the energy range of |E | <

0.05 eV and the k vector range of |k| < 0.05 ( 4π
3aG

) measured
from the Dirac points Kν=±1. We also extended the effec-
tive tight-binding model Hamiltonian to 4LG, 5LG, 6LG,
7LG, and 8LG by modifying the adopted 3LG hopping
parameters. To obtain the DFT band structures, we used

Quantum ESPRESSO with local density approximation (LDA)
parametrization (C.pz-rrkjus.UPF), where the graphene lattice
constant and the interlayer separation are set to a = 2.46 Å
and c = 3.35 Å. A 60 Ry energy cutoff and a 30 × 30 × 1
Monkhorst-Pack k-point grid were used.

APPENDIX B: BANDWIDTH IN MULTILAYER
GRAPHENE-BORON NITRIDE MOIRÉ

SUPERLATTICES (nLG/BN)

Our investigation revealed that the low-energy valence
and conduction bands in 4LG/BN exhibit significantly flat-
ter bandwidths compared to those in 3LG/BN [90]. To gain
deeper insights into this trend, we examined the bandwidths
for nLG/BN where n varies from 3 to 8. For this purpose,
we added the effective moiré potential H ξ

M (k : r) described
in Eq. (6) to the F1G0 Hamiltonian of nLG, as detailed
in Appendix A. Our analysis is summarized in Fig. 10,
where we show [Figs. 10(a) and 10(b)] the band structures
of 3LG/BN, 4LG/BN, and 5LG/BN and [Figs. 10(c) and
10(d)] the bandwidths of the low-energy valence and con-
duction bands as a function of the number of graphene
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FIG. 14. The band structure and valley Chern number of each flat band for the possible hBN-encapsulated 4LG systems, BN/4LG/BN,
NB/4LG/BN, BN/4LG/NB, and NB/4LG/NB, where the signs of the mass term induced in the bottom and top graphene layers differ from
each other, leading to the various topological phases. Upper and lower panels correspond to the case of � = 0 and 5 meV at θ = 0◦, where the
slight � = 5 meV can induce primary (green) or secondary (blue or red) band gaps denoted by the shaded regions.

layers for both orientations of the BN substrate (ξ = 1). We
observed a nonzero valley Chern number C+

V 1 = +n for the
valence bands in nLG/BN for both ξ = ±1, matching with
the number of graphene layers. Meanwhile, the conduction
bands for ξ = 1 have a nonzero valley Chern number C+

C1 =
+2 for 3LG/BN and C+

C1 = +1 for 4LG/BN and 5LG/BN,
while C+

C1 = 0 for ξ = −1. Our analysis also revealed that
the bandwidths of the valence and conduction bands decrease
from W ≈ 0.03–0.04 eV (3LG/BN) to W ≈ 0.005–0.010 eV
(5LG/BN) and remain unchanged for further increases in
the number of graphene layers up to eight (8LG/BN), as
shown in Figs. 10(c) and 10(d). Among the nLG/BN moiré
superlattices, the 5LG/BN with a narrow bandwidth of W ≈
0.005–0.010 eV is the most attractive candidate, but the
4LG/BN with a bandwidth of W ≈ 0.01 eV is still one of the
most attractive candidates. This is because, as the number of
layers increases, it becomes more challenging to prepare the
samples.

APPENDIX C: EFFECTS OF A TWIST ANGLE

Our study demonstrates that a small twist angle θ = 0.54◦
between graphene and boron nitride has a significant impact
on the 4LG/BN band structure. Specifically, we observe that
this twist angle leads to the opening of a secondary band
gap for both conduction and valence bands, compared to the
θ = 0◦ case. These changes are facilitated by the presence of
finite interlayer potential differences. To further illustrate the

effect of the twist angle and interlayer potential differences,
we present the band structures of 4LG/BN in Fig. 11 for
twist angles of θ = 0◦ and θ = 0.54◦, with select interlayer
potential differences of � = 0, 0.009, −0.009 eV for ξ = 1
and � = 0, 0.015, −0.011 eV for ξ = −1. Notably, we find
that the conduction-band (valence-band) isolation for ξ = 1
(ξ = −1) is present at θ = 0.54◦ in the presence of a small
positive (negative) �, which is difficult to achieve at θ = 0◦.
This underscores the critical role of the small finite twist angle
in achieving band isolation while maintaining the band flat-
ness. In addition, we discover that the twist angle θ = 0.54◦
reduces the asymmetry between the two minivalleys at K̃
and K̃ ′ without modifying their topological phases. This adds
another intriguing feature to the impact of the twist angle on
the electronic properties of 4LG/BN.

APPENDIX D: SUBLATTICE-PROJECTED
LOCAL DENSITY OF STATES

To understand the delocalization observed in 4LG/BN, we
analyzed the sublattice-projected LDOS of the low-energy
flat bands. Our results, shown in Fig. 12, indicate that the
localized states originate from nondimer low-energy sites,
such as A1 and B4. In particular, A1 states are well localized
at AB (AA) stacking sites for ξ = +1 (ξ = −1), while B4

states exhibit delocalization. The population of the sublattice-
projected LDOS depends on the interlayer potential difference
(�), with more B4 states occupying the valence bands for zero
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and positive �, and the conduction bands for negative �. To
confirm that the delocalization of B4 states is related to the
distance from the hBN substrate, we calculated the sublattice-
projected LDOS for 3LG/BN, 4LG/BN, and 5LG/BN, as
shown in Fig. 13. Our analysis reveals that valence-band states
are spread over the moiré unit cell for all systems, with the
delocalized states mostly originating from B3, B4, and B5 for
3LG/BN, 4LG/BN, and 5LG/BN, respectively. However, the
extent of localization is not linear with the distance from the
hBN substrate, as the delocalized states of 4LG/BN are much
more spread over the moiré unit cell than those of 5LG/BN.
This result suggests that the delocalization of B4 states is
influenced not only by the distance from the hBN substrate
but also by other factors, such as the interlayer potential
difference.

APPENDIX E: hBN-ENCAPSULATED 4LG SYSTEMS

In Fig. 14, we show the band structure and valley Chern
number of each flat band for hBN-encapsulated 4LG sys-
tems, namely, BN/4LG/BN, NB/4LG/BN, BN/4LG/NB,
and NB/4LG/NB. We found that the hBN-encapsulated 4LG
systems except the BN/4LG/NB exhibit nontrivial topologi-
cal properties, which are distinct from those of 4LG/BN, even
in the absence of external electric fields and twists. Also, a
small electric field that induces the small interlayer potential
difference � = 5 meV can alter the topology of the systems,
and easily open the primary and secondary band gaps when
the signs of mass terms induced in the bottom and top layers
are opposite, such as in the NB/4LG/BN and BN/4LG/NB,
as illustrated in Fig. 14.
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