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Differential scattering cross section of the non-Abelian Aharonov-Bohm effect in multiband systems
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We develop a unified treatment of the non-Abelian Aharonov-Bohm (AB) effect in isotropic multiband
systems, namely, the scattering of particles on a gauge field corresponding to a noncommutative Lie group.
We present a complex contour integral representation of the scattering states for such systems, and using their
asymptotic form, we calculate the differential scattering cross section. The angular dependence of the cross
section turns out to be the same as that obtained originally by Aharonov and Bohm in their seminal paper [Phys.
Rev. 115, 485 (1959)], but this time, it depends on the polarization of the incoming plane wave. As an application
of our theory, we perform the contour integrals for the wave functions explicitly and calculate the corresponding
cross section for three nontrivial isotropic multiband systems relevant to condensed matter and particle physics.
To have a deeper insight into the nature of the scattering, we plot the probability and current distributions for
different incoming waves. This paper is a generalization of our recent results on the Abelian AB effect providing
an extension of exactly solvable AB scattering problems.
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I. INTRODUCTION

Aharonov and Bohm in their seminal paper [1] calcu-
lated how the incident plane wave of a spinless free particle
is scattered by an infinitely thin magnetic solenoid and the
differential scattering cross section. The experimental verifi-
cation of this quantum effect was reported by Chambers [2],
while the mathematical details of the theory were further
explored by Berry [3] and Berry et al. [4]. The scattering
problem was also generalized in the framework of relativis-
tic quantum mechanics by Alford and Wilczek [5], by de
Sousa Gerbert [6], and also by Hagen [7] and Hagen and
Ramaswamy [8]. The non-Abelian version of the Aharonov-
Bohm (AB) effect in which the magnetic field responsible for
the scattering is replaced by an SU(2) gauge field has been
studied by Wu and Yang [9], and by Horváthy [10]. They
discussed the analogies of both the original AB scattering
problem and the interference pattern forming in two-slit ge-
ometries such as in the experiment of Chambers [2]. Lately,
the theory was also extended to the case of time-dependent
gauge fields [11,12]. However, only a limited number of spe-
cific systems have been discussed, and a general formalism
has never been developed.

Recently, the realization of non-Abelian gauge potentials in
optical lattices was studied extensively [13–20], with special
interest toward the non-Abelian AB effect [21–26]. Addition-
ally, Yang et al. [27] reported the successful observation of the
SU(2) AB phase shift using optical interferometry. Therefore,
the role of gauge fields is becoming more and more significant
in the current research of condensed matter physics.

In our recent work [28], based on a contour integral for-
malism, we developed a general theory of the Abelian AB
effect for multiband systems possessing isotropic dispersion
relations to obtain the scattering states and the differential
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cross section. As a striking result, it turned out that the cross
section has the same functional form for all isotropic systems
and is identical to that derived by Aharonov and Bohm [1].
In this paper, as an extension, we develop a general theory
for the case of non-Abelian scattering potentials. We find that
the cross section again has the same dependence on the polar
angle ϕ as in the Abelian case and is given by

σAB,gen(ϕ) = �

2πk cos2(ϕ/2)
, (1)

where � is a numerical factor depending on the non-Abelian
nature of the flux and the incoming wave function. The de-
tailed derivation of this result is presented in the following
sections. To see how our approach can be used in practice,
we shall consider three simple examples relevant to both
solid-state and particle physics. However, more complicated
multiband systems can be treated in a similar fashion.

The paper is structured as follows. In Sec. II, we present
the general results of our theory. Specifically, in Sec. II A,
we introduce the basic notions of gauge theory needed to
define the scattering problem; in Sec. II B, we describe the
set of systems our approach is applicable to; in Sec. II C,
we give a general formula for the scattering states using an
integral representation; and in Sec. II D, we derive the dif-
ferential scattering cross section and discuss similarities and
differences compared with the Abelian case. In Sec. III, our
method is applied to one- and two-band systems, and explicit
expressions of both the scattering states and the differential
cross section are presented. We consider the case of an SU(2)
doublet in Sec. III A, an SU(3) triplet in Sec. III B, and a U(2)
doublet in Sec. III C.

II. GENERAL THEORY

In this section, we outline our approach to obtain the
scattering states and the cross section for the non-Abelian
AB effect. First, we define the most general Hamiltonian
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describing isotropic multiband systems. Then we propose our
contour integral representation of the scattering states which
is a generalization of that presented in Ref. [28]. Furthermore,
we calculate the differential scattering cross section.

A. Gauge potential

In the conventional AB effect, the physical space is taken
to be the two-dimensional plane with the origin removed; we
denote this by R2

◦. The scattering potential is introduced in the
form of the magnetic vector potential which is a (co)vector
field on the physical space [1,28]. Each component of this
field is real, so the target space is the set R which can be identi-
fied with the one-dimensional Lie algebra u(1) corresponding
to the Lie group U(1) of complex numbers with absolute value
one. In this way, one can think of the vector potential as a U(1)
gauge potential.

This description allows us to create the concept of gauge
potentials corresponding to a more general non-Abelian Lie
group G. For our investigation, we restrict ourselves to groups
that are locally isomorphic to a subgroup of U(N ) around the
identity element. In this case, each component of the gauge
potential is an element of the Lie algebra g ⊆ u(N ), that is,
a self-adjoint N × N complex matrix. Along these lines, the
generalization of the AB vector potential to the G case is
straightforward, in Cartesian components given by

Âx(x, y) = − �̂y

2π (x2 + y2)
, (2a)

Ây(x, y) = �̂x

2π (x2 + y2)
. (2b)

Here, the non-Abelian version of the flux �̂ is an element of
g. Self-adjointness implies that �̂ is diagonal on a suitable
orthonormal basis, and its eigenvalues �n are real for all n ∈
{1, . . . , N}.

The gauge field is an antisymmetric rank-2 tensor field that
serves as the generalization of the magnetic field. Thus, in two
dimensions, it has a single independent component given by

F̂xy = ∂xÂy − ∂yÂx + [Âx, Ây] = 0. (3)

Like before, this field vanishes on R2
◦. This simple model of

an infinitesimally thin flux tube could be extended to a more
realistic, experimentally feasible one where the gauge field
is nonzero in a finite region around the origin. However, we
believe that our model captures the most relevant features of
the scattering provided that the characteristic wavelength of
the particles is much larger than the tube.

For the Abelian case, the line integral of the gauge potential
equals the flux for an arbitrary closed curve C once encircling
the origin anticlockwise. For the non-Abelian case, however,
we should instead use the path-ordered exponential of the
gauge potential called the Wilson loop operator:

Ŵ = P exp

[
ie

h̄

∮
C

Â
]

= exp (2π iα̂), (4)

where we introduced the dimensionless flux α̂ = �̂/�0 with
�0 = h/e. In summary, the infinitesimal flux tube has similar
properties in the Abelian and non-Abelian cases, but for the
latter, the matrix nature of the flux must be kept in mind.

B. Hamiltonian operator

The most general Hilbert space of the systems we study
in this paper takes the form H = L2(R2) ⊗ CN ⊗ CD, con-
sisting of the two-dimensional spatial, N-dimensional gauge,
and a D-dimensional internal degrees of freedom. The gauge
degree of freedom is also referred to as polarization. Further-
more, we limit ourselves to studying Hamiltonians satisfying
the three requirements mentioned in our previous paper [28]:
polynomicity, isotropy, and regularity. Thus, the Hamiltonian
operator in the absence of the gauge field takes the form:

Ĥ =
I∑

i=0

J∑
j=0

p̂i
x p̂ j

y ⊗ ÎN ⊗ T̂i j, (5)

where T̂i j is a D × D self-adjoint matrix for each i, j, and ÎN is
the N × N identity matrix. In the presence of the gauge field,
we need to introduce the kinetic momentum operators acting
on the direct product Hilbert space L2(R2) ⊗ CN :

	̂x = p̂x ⊗ ÎN + Âx(x̂, ŷ), (6a)

	̂y = p̂y ⊗ ÎN + Ây(x̂, ŷ). (6b)

Here, the components of the gauge potential from Eq. (2) are
used. Then the total Hamiltonian in the presence of the gauge
field reads

Ĥ =
I∑

i=0

J∑
j=0

	̂i
x	̂

j
y ⊗ T̂i j . (7)

C. Scattering states

As in our previous work [28], here, we construct the con-
tour integral representation of the scattering states for the
non-Abelian AB effect. To this end, we need the eigenvectors
of the Hamiltonian in Eq. (7) in the absence of the gauge field.
These are plane waves with wave number k = k(cos ϑ, sin ϑ ),
definite polarization wn ∈ CN , and internal degree of freedom
us(k) ∈ CD given by

�s,n,k(r, ϕ) = exp[ikr cos(ϕ − ϑ )]wnus(k). (8)

The corresponding eigenvalues Es(k) consists of N-fold de-
generate bands owing to the different polarizations. Without
the loss of generality, we can choose the vectors wn such that
they are eigenvectors of α̂ with eigenvalues αn = �n/�0:

α̂wn = αnwn. (9)

This implies that they are eigenvalues of the Wilson loop
operator Ŵ as well:

Ŵ wn = exp(2π iαn)wn. (10)

Now, the scattering states satisfying the necessary require-
ments (i)–(iii) detailed in our paper [28] are given by

�
(+)
s,n,k(r, ϕ) =

∞∑
m=−∞

ε(m + αn)

2π

∫
�(m+αn,ϕ)

dξ �s,n,K(r, ϕ)

× exp [im(ξ − ϑ ) − iαn(ϕ − ξ )], (11)

where ε(x) is the sign function defined as ε(x) = 1, if x � 0,
and ε(x) = −1, if x < 0. Furthermore, K = k[cos ξ, sin ξ ],
with ξ being a complex integration variable. The integration
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contours �(m + αn, ϕ) are curves on the complex plane de-
pending on the sign of m + αn and the value of the real-space
polar angle ϕ:

�(m + αn, ϕ) =
{

�+(ϕ), if m + αn � 0,

�−(ϕ), if m + αn < 0.
(12)

The curves �+(ϕ) and �−(ϕ) further depend on the sign of
the radial component vs,k of the group velocity:

vs = 1

h̄

∂Es

∂k
. (13)

If vs,k > 0, the curve �+(ϕ) is ∪-shaped, running from ξ =
−5π/2 + ϕ + i∞ to ξ = −π/2 + ϕ + i∞, with Re(ξ ) > 0,
and the curve �−(ϕ) is ∩-shaped, running from ξ = −3π/2 +
ϕ − i∞ to ξ = π/2 + ϕ − i∞, with Re(ξ ) < 0. However, if
vs,k < 0, the curve �+(ϕ) must be shifted by 2π along the
real axis compared with the previous definition. Furthermore,
if vs,k = 0, the scattering state has no physical meaning, as the
corresponding plane waves have constant zero current density,
indicating that they do not propagate.

By a straightforward generalization of the proofs given in
our previous paper [28], one can show that the wave functions
given by Eq. (11) are indeed proper scattering states satisfy-
ing the necessary requirements (i)–(iii) detailed there. Note
that using the eigenvector basis given by Eq. (9), the non-
Abelian scattering problem is decomposed into N different
Abelian counterparts. Then an arbitrary incoming wave can be
given as a linear combination of the wave functions in Eq. (8):

�gen =
N∑

n=1

cn�s,n,k. (14)

Hence, the same linear combination of the scattering states of
Eq. (11) can be used:

�(+)
gen =

N∑
n=1

cn�
(+)
s,n,k. (15)

D. Differential scattering cross section

As a usual procedure [28], using the asymptotic form of the
scattering states in Eq. (11), we now calculate the differential
cross section. Here, we assume that the incident particles are
coming from the direction of the positive x axis. Then for
given flux parameters αn, we find that the differential cross
section is

σAB,n(ϕ) ≡ dσ

dϕ
(s, n, k; ϕ) = sin2(αnπ )

2πk cos2(ϕ/2)
. (16)

For an arbitrary incoming wave, the different terms in Eq. (15)
are pairwise orthogonal due to the corresponding polarization
vectors wn. Therefore, the cross section becomes a weighted
sum of the terms in Eq. (16) as

σAB,gen(ϕ) ≡ dσ

dϕ
(s, k; ϕ) = �

2πk cos2(ϕ/2)
, (17)

where we introduced the dimensionless cross section factor �

given by

� =
N∑

n=1

|cn|2 sin2(αnπ ). (18)

As an important corollary, these results again show that the
differential cross section is independent of the band index s
and the specific form of the dispersion relation Es provided
that it is isotropic. Note that, for forward scattering, i.e., for
ϕ = π , Eq. (17) is not valid due to the limitations of the saddle
point approximation. This issue is present in the original AB
problem and was also addressed in earlier papers [4,28]. We
should also emphasize that, when the angular distribution
and the polarization are measured simultaneously, the cross
section will be different from that given in Eq. (17) but can
easily be calculated by properly taking into account the cur-
rent contributions. However, the details of this issue are not
considered in this paper.

III. APPLICATIONS

In this section, we present three examples that provide
more insight into the nature of the non-Abelian AB scatter-
ing problem. These examples are relevant in both condensed
matter and particle physics.

A. SU(2) doublet

The first example is the SU(2) doublet. Such a system
can appear in the nonrelativistic model of nucleons [29]
where protons and neutrons are regarded as different isospin
eigenstates of the same particle, analogously to a spin- 1

2 de-
gree of freedom [30–32]. The non-Abelian AB effect in this
system has been studied before by Wu and Yang [9] and
Horváthy [10]. Note that such a system is also relevant in
condensed matter physics, as recently, similar systems were
synthesized by trapping ultracold atoms in optical square lat-
tices [18,25]. The low-energy dynamics of the atomic motion
mimic that of two-dimensional nonrelativistic fermions. In
that case, the internal degree of freedom corresponding to
the isospin emerges as doubly split energy eigenstates of the
cold atoms, and the gauge field is generated, for instance, by
laser-assisted tunneling [24,26].

Using our methods developed in Sec. II, we now reproduce
the results obtained by Horváthy [10]. The Hilbert space cor-
responding to the SU(2) doublet is H = L2(R2,C) ⊗ C2, that
is, there is no internal degree of freedom (D = 1), only a two-
dimensional gauge degree of freedom (N = 2) corresponding
to polarization. The Hamiltonian operator Ĥ : DH → H is a
quadratic polynomial of the momentum operators:

Ĥ = 1

2M

(
p̂2

x + p̂2
y

) ⊗ Î2, (19)

where M is the mass of the particles, and Î2 is the 2 × 2
identity matrix.

For wave number k = k(cos ϑ, sin ϑ ), the energy eigenval-
ues of the Hamiltonian in Eq. (19) are doubly degenerate and
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are given by

E (k, ϑ ) = h̄2k2

2M
. (20)

One can see that the band structure is isotropic, namely, de-
pends only on the magnitude of wave number k = |k|, and
thus, the constant energy curves are circles.

Due to the regularity requirement [28], the momentum
space eigenvectors need to be chosen such that one of its
components is independent of ϑ . In this case, there is only
one possible choice up to a constant multiplier:

u(k, ϑ ) = 1. (21)

From Eqs. (13) and (20), one finds that the group velocity
is

vk (k, ϑ ) = h̄k

M
, vϑ (k, ϑ ) = 0. (22)

The radial component of the group velocity is positive for
all k > 0, implying that the single band of this model is an
electronlike band. Here, we stress that the sign of the radial
group velocity is relevant because it modifies the contours on
the complex plane as detailed after Eq. (13).

The su(2) Lie algebra corresponding to the SU(2) group is
three dimensional, whose standard basis consists of the half-
Pauli matrices:

τ̂1 = 1

2

(
0 1
1 0

)
, τ̂2 = 1

2

(
0 −i
i 0

)
,

τ̂3 = 1

2

(
1 0
0 −1

)
. (23)

The gauge potential of this problem is given according to
Eq. (2), where the SU(2)-flux �̂ or equivalently the dimen-
sionless flux α̂ can be parameterized with a real parameter α

as follows:

α̂ = 2ατ̂3 =
(

α 0
0 −α

)
. (24)

Note that, owing to the self-adjointness of su(2)-generators,
an arbitrary flux can be diagonalized as in Eq. (24), and a
similar statement holds also for the group elements, as pointed
out by Horváthy [10]. The eigenvectors of α̂ take the form:

w1 =
(

1
0

)
, w2 =

(
0
1

)
, (25)

with eigenvalues α and −α, respectively.
We now introduce the probability density of the position

corresponding to an arbitrary state (�1, �2) ∈ H:

� = �∗
1 �1 + �∗

2 �2, (26)

and calculate the probability current density using the general
formula given in our previous work [28]. Then we find

jx = 1

M

2∑
n=1

2∑
l=1

Re[�∗
n (	̂x,nl�l )], (27a)

jy = 1

M

2∑
n=1

2∑
l=1

Re[�∗
n (	̂y,nl�l )], (27b)

(a) (b)

(c) (d)

FIG. 1. Scattering states corresponding to the Aharonov-Bohm
effect for the SU(2) doublet. The probability density � (colors) and
current density j (arrows) are computed for kd0 = 1 (where d0 is
a natural length unit) and (a) α = 0, (b) α = 0.2, (c) α = 0.5, and
(d) α = 0.8.

where 	̂x,nl and 	̂y,nl are the matrix elements of the kinetic
momentum operators.

We now apply Eq. (11) to calculate the scattering states.
The integral that appears in this expression can be simplified
using the Schäfli-Sommerfeld integral formula of the Bessel
functions of the first kind [33], and the final result becomes

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+α|J|m+α|(kr)

× exp [im(ϕ − ϑ + π )]

(
1
0

)
, (28a)

for n = 1, and

�
(+)
2,k (r, ϕ) =

∞∑
m=−∞

(−i)|m−α|J|m−α|(kr)

× exp[im(ϕ − ϑ + π )]

(
0
1

)
, (28b)

for n = 2. Note that, for ϑ = 0, these wave functions agree
with the solutions obtained by Horváthy [10]; thus, this calcu-
lation serves as a checkpoint for our general method presented
in this paper.

We now consider a special scattering state built as a linear
combination of the wave functions in Eq. (28):

�(+) = 1√
2

[�(+)
1,k + �

(+)
2,k ]. (29)

To visualize this wave function, we calculate the probabil-
ity density and the current density using Eqs. (26), (27a),
and (27b). The results of our numerical calculations are shown
in Fig. 1.

As expected, they mostly resemble the plots obtained in
the Abelian case (see, e.g., Ref. [28]) with some differences
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we point out now. The most significant feature is that the
scattering states are reflection symmetric with respect to the
x axis. This is the consequence of the special choice of linear
combination coefficients in Eq. (29). If this was not the case,
then such incidental symmetry would not be present. This is
clearly seen, e.g., from the scattering states of either Eq. (28a)
or (28b). These possess the same probability density and
current density as their Abelian counterparts and are thereby
asymmetric.

Finally, we calculate the cross section factor � defined in
Eq. (18) for the SU(2) doublet and obtain

� = sin2(απ ), (30)

which is independent of the linear combination coefficients
cn used in Eq. (14). This shows that the differential cross
section is completely insensitive to the initial state, much like
in the Abelian case. However, it must be noted that this is only
due to the simple nature of the SU(2) group. In the following
sections, we consider more complicated cases.

B. SU(3) triplet

Our second example is the SU(3) triplet. This model
is used to describe the nonrelativistic dynamics of free
quarks [34,35] which participate in strong interactions via
a three-state degree of freedom coupling to the gluon field,
called color [30–32]. Although free quarks are rarely found in
nature, an analogous system can be engineered using, again,
ultracold atoms trapped in an optical lattice and laser-induced
transitions, but here, the energy eigenstates are triply degen-
erate [16,17]. The non-Abelian AB effect in this system was
proposed by Horváthy [10], but the calculation of the scatter-
ing states was not performed. In the following, we aim to do
so using our method developed in Sec. II.

The Hilbert space corresponding to the SU(3) triplet is
H = L2(R2,C) ⊗ C3, that is, there is no internal degree of
freedom (D = 1), only a three-dimensional gauge degree of
freedom (N = 3) corresponding to polarization. The Hamilto-
nian operator Ĥ : DH → H is given as a quadratic polynomial
of the momentum operators:

Ĥ = 1

2M

(
p̂2

x + p̂2
y

) ⊗ Î3, (31)

where M is the mass of the particles, and Î3 is the 3 × 3
identity matrix. The above expression is formally identical
to Eq. (19), although the two Hamiltonians act on different
Hilbert spaces. Nevertheless, most properties of the SU(3)
triplet Hamiltonian resemble those of the SU(2) doublet
Hamiltonian.

The band structure corresponding to the Hamiltonian in
Eq. (31) consists of a triply degenerate band which in polar
coordinates (k, ϑ ) of the wave number k is given by

E (k, ϑ ) = h̄2k2

2M
. (32)

The system is again isotropic in k space.
The momentum space eigenvectors are identical to that of

Eq. (21):

u(k, ϑ ) = 1. (33)

Similarly, the group velocity field takes the same form as in
Eq. (22):

vk (k, ϑ ) = h̄k

M
, vϑ (k, ϑ ) = 0. (34)

The radial component of the group velocity is positive for
all k > 0, i.e., it is an electronlike band that is relevant to
calculate the AB scattering states in Eq. (11).

The su(3) Lie algebra corresponding to the SU(3) group is
eight dimensional, whose standard basis consists of the Gell-
Mann matrices:

λ̂1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ̂2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ̂3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ̂4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ̂5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ̂6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

λ̂7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ̂8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (35)

The gauge potential of this problem is given according to
Eq. (2), where the SU(3)-flux �̂ or equivalently the dimen-
sionless flux α̂ can be parameterized with real parameters α

and β as follows:

α̂ = αλ̂3 +
√

3βλ̂8 =
⎛
⎝β + α 0 0

0 β − α 0
0 0 −2β

⎞
⎠. (36)

A more generic flux could be transformed into the diagonal
form of Eq. (36) by a change of basis in the C3 space, i.e., with
a global gauge transformation. The eigenvectors of α̂ take the
form:

w1 =
⎛
⎝1

0
0

⎞
⎠, w2 =

⎛
⎝0

1
0

⎞
⎠, w3 =

⎛
⎝0

0
1

⎞
⎠, (37)

with eigenvalues β + α, β − α, and −2β, respectively.
The probability density of the particle position correspond-

ing to an arbitrary state (�1, �2, �3) ∈ H can be written as

� = �∗
1 �1 + �∗

2 �2 + �∗
3 �3. (38)

Applying the results of the general probability current formula
of our previous paper [28], we find

jx = 1

M

3∑
n=1

3∑
l=1

Re[�∗
n (	̂x,nl�l )], (39a)

jy = 1

M

3∑
n=1

3∑
l=1

Re[�∗
n (	̂y,nl�l )]. (39b)
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We are now ready to perform the contour integral in Eq. (11).
Using the Schäfli-Sommerfeld integral formula of the Bessel
functions of the first kind [33], we obtain

�
(+)
1,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+β+α|J|m+β+α|(kr)

× exp [im(ϕ − ϑ + π )]

⎛
⎝1

0
0

⎞
⎠, (40a)

for n = 1, and

�
(+)
2,k (r, ϕ) =

∞∑
m=−∞

(−i)|m+β−α|J|m+β−,α|(kr)

× exp[im(ϕ − ϑ + π )]

⎛
⎝0

1
0

⎞
⎠, (40b)

for n = 2, and

�
(+)
3,k (r, ϕ) =

∞∑
m=−∞

(−i)|m−2β|J|m−2β|(kr)

× exp [im(ϕ − ϑ + π )]

⎛
⎝0

0
1

⎞
⎠, (40c)

for n = 3.
We now consider a scattering state built as a linear combi-

nation of the wave functions in Eq. (40):

�(+) = 1√
3

[�(+)
1,k + �

(+)
2,k + �

(+)
3,k ]. (41)

To see the features of this scattering state, we calculate the
corresponding probability density and current density using
Eqs. (38), (39a), and (39b). The results of our numerical
calculations are shown in Fig. 2.

As expected, they mostly resemble the plots acquired in
the Abelian case and for the SU(2) doublet; let us now point
out the differences. Depending on the values of α and β, the
reflection symmetry with respect to the x axis is either present
or not. Examples of the former can be seen in Figs. 2(c) or
2(f), whereas examples of the latter are in Figs. 2(b) or 2(g).

Another interesting feature is seen in Fig. 2(h), namely,
for α = β = 0.5, no scattering is observed, like in the case of
integer α in the Abelian AB effect. This is, of course, not at all
surprising since, with these parameters, all three eigenvalues
of the SU(3)-flux α̂ in Eq. (36) are integers, leading to the
absence of scattering in all components.

Finally, we calculate the cross section factor � defined
in Eq. (18) for a general incoming plane wave according to
Eq. (14) using the states in Eqs. (40), and we obtain

� = |c1|2 sin2 [(β + α)π ] + |c2|2 sin2 [(β − α)π ]

+ |c3|2 sin2 [2βπ ], (42)

which now depends on the linear combination coefficients cn.
A few examples of � for incident waves with different cn

values are shown in Fig. 3.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 2. Scattering states corresponding to the Aharonov-Bohm
effect for the SU(3) triplet. The probability density � (represented
by the colors) and current density j (represented by the arrows) are
computed for kd0 = 1 (where d0 is a natural length unit) and (a) α =
β = 0, (b) α = 0, β = 1

3 , (c) α = 0, β = 0.5, (d) α = 0.2, β = 1
3 ,

(e) α = 0.3, β = 1
6 , (f) α = 0.5, β = 0, (g) α = 0.5, β = 1

6 , and (h)
α = 0.5, β = 0.5.

We now discuss the details of these results. The most sym-
metric case is shown in Fig. 3(a), where the three polarizations
are present with equal weight. One can see that the hexagonal
structure in the magnitude of � is distorted as the coefficients
cn are changed, as shown in Figs. 3(b)–3(d). Irrespective of
weights cn, the differential cross section shows periodicity
with period 1 in both α and β, and it vanishes at α, β ∈ R,
like in the Abelian case. However, there is also a nontrivial
zero value of the cross section factor � at α = β = 0.5, in
agreement with Fig. 2(h). Finally, we should mention that the
maximal value of � generally does not reach unity, which is
best seen in Fig. 3(a) but can be observed in other cases as
well.

155402-6



DIFFERENTIAL SCATTERING CROSS SECTION OF THE … PHYSICAL REVIEW B 108, 155402 (2023)

(a) (b)

(c) (d)

FIG. 3. Dimensionless cross section factor for the SU(3) triplet
as a function of α and β for (a) c1 : c2 : c3 = 1 : 1 : 1, (b) c1 : c2 :
c3 = 1 : 2 : 3, (c) c1 : c2 : c3 = 2 : 3 : 1, and (d) c1 : c2 : c3 = 3 : 1 :
2. The relation |c1|2 + |c2|2 + |c3|2 = 1 is always satisfied.

C. U(2) doublet

The third example we consider here is the U(2) doublet.
From our point of view, this is equivalent to its locally iso-
morphic counterpart, the SU(2)×U(1) doublet, appearing in
a model of K+ and K0 kaons where they are regarded as
different isospin-hypercharge eigenstates of the same par-
ticle [30–32]. For the sake of simplicity and brevity, we
use the ultrarelativistic limit, i.e., the masses of kaons are
neglected in our model. However, we should note that the
generic relativistic regime can also be treated in our theory. An
analogous system can be engineered using, again, ultracold
atoms [21,22] trapped in an optical honeycomb lattice mim-
icking monolayer graphene [14]. In the low-energy regime
of this system, the dispersion relation resembles that of a
massless relativistic particle. In what follows, we apply our
methods developed in Sec. II to study the nature of the scat-
tering wave functions and the differential cross section.

The Hilbert space corresponding to the U(2) doublet is
H = L2(R2,C) ⊗ C4, that is, there is a two-dimensional in-
ternal degree of freedom (D = 2) and a two-dimensional
gauge degree of freedom (N = 2) corresponding to polariza-
tion. The Hamiltonian operator Ĥ : DH → H is given as a
linear polynomial of the momentum operators:

Ĥ = v( p̂x ⊗ Î2 ⊗ σ̂x + p̂y ⊗ Î2 ⊗ σ̂y), (43)

where v is an effective velocity parameter, and

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
(44)

are the Pauli matrices.
The band structure corresponding to the Hamiltonian in

Eq. (43) consists of two doubly degenerate bands with band
index s ∈ {−1, 1} which in k-space polar coordinates are

given by

Es(k, ϑ ) = svh̄k. (45)

As before, the dispersion relation is isotropic.
The momentum space eigenvectors need to be chosen such

that one of their components is independent of ϑ . This is
related to the regularity of the wave function at the origin,
as discussed in detail in our previous work [28]. Thus, for
simplicity, we choose the following eigenvector:

us(k, ϑ ) = 1√
2

(
1

seiϑ

)
. (46)

Then from Eqs. (13) and (45), the group velocity is given
by

vs,k (k, ϑ ) = sv, vs,ϑ (k, ϑ ) = 0. (47)

Now, it is clear that the radial group velocity for all k is
either positive or negative depending on the band index s. This
implies that the band with s = 1 is electronlike, whereas the
band with s = −1 is holelike.

The u(2) Lie algebra corresponding to the U(2) group is
four dimensional, whose standard basis consists of the half-
Pauli and half-identity matrices:

τ̂1 = 1

2

(
0 1
1 0

)
, τ̂2 = 1

2

(
0 −i
i 0

)
,

τ̂3 = 1

2

(
1 0
0 −1

)
, τ̂4 = 1

2

(
1 0
0 1

)
. (48)

The gauge potential of this problem is given according to
Eq. (2), where the U(2)-flux �̂ or equivalently the dimension-
less flux α̂ can be parameterized with real parameters α and β

as follows:

α̂ = 2ατ̂3 + 2βτ̂4 =
(

β + α 0
0 β − α

)
, (49)

and the eigenvectors of α̂ are

w1 =
(

1
0

)
, w2 =

(
0
1

)
, (50)

with eigenvalues β + α and β − α, respectively. A more
generic flux could be transformed into the diagonal form of
Eq. (49) by a change of basis in the C2 space, i.e., a global
gauge transformation.

Then the probability density of the particle position corre-
sponding to an arbitrary state � = (�1, �2, �3, �4) ∈ H can
be written as

� = �∗
1 �1 + �∗

2 �2 + �∗
3 �3 + �∗

4 �4. (51)

Now, using the results of the general probability current for-
mula in our previous paper [28], we find

jx = 2v Re(�∗
1 �2 + �∗

3 �4), (52a)

jy = 2v Im(�∗
1 �2 + �∗

3 �4). (52b)

Performing the contour integral in Eq. (11) using, again, the
Schäfli-Sommerfeld integral formula of the Bessel functions
of the first kind [33], we obtain the following scattering wave
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functions:

�
(+)
1,1,k(r, ϕ) =

∞∑
m=−∞

(−i)|m+β+α| exp[im(ϕ − ϑ + π )]√
2

⎛
⎜⎜⎜⎜⎜⎝

J|m+β+α|(kr)

iε(m + β + α)J|m+β+α|+ε(m+β+α)(kr)eiϕ

0

0

⎞
⎟⎟⎟⎟⎟⎠, (53a)

for s = 1, n = 1,

�
(+)
−1,1,k(r, ϕ) =

∞∑
m=−∞

i|m+β+α| exp [im(ϕ − ϑ + π )]√
2

⎛
⎜⎜⎜⎜⎝

J|m+β+α|(kr)

−iε(m + β + α)J|m+β+α|+ε(m+β+α)(kr)eiϕ

0

0

⎞
⎟⎟⎟⎟⎠, (53b)

for s = −1, n = 1,

�
(+)
1,2,k(r, ϕ) =

∞∑
m=−∞

(−i)|m+β−α| exp [im(ϕ − ϑ + π )]√
2

⎛
⎜⎜⎜⎜⎝

0

0

J|m+β−α|(kr)

iε(m + β − α)J|m+β−α|+ε(m+β−α)(kr)eiϕ

⎞
⎟⎟⎟⎟⎠, (53c)

for s = 1, n = 2, and

�
(+)
−1,2,k(r, ϕ) =

∞∑
m=−∞

i|m+β−α| exp [im(ϕ − ϑ + π )]√
2

⎛
⎜⎜⎜⎜⎝

0

0

J|m+β−α|(kr)

−iε(m + β − α)J|m+β−α|+ε(m+β−α)(kr)eiϕ

⎞
⎟⎟⎟⎟⎠, (53d)

for s = −1, n = 2. This result is another nontrivial application
of our general method.

Now, we consider a special wave function built as a linear
combination of Eqs. (53a) and (53c):

�(+) = 1√
2

[�(+)
1,1,k + �

(+)
1,2,k]. (54)

Now, again using Eqs. (51) and (52), we calculate the proba-
bility density and current density, respectively, and the results
are shown in Fig. 4. As we expected, these are like the wave
functions of the Abelian case and the SU(2) doublet. However,
a few differences should be pointed out. First, in Fig. 4(h), for
parameters α = β = 0.5, no scattering is observed, as with
the SU(3) triplet discussed in Sec. III B. This is clear because,
for these parameters, the eigenvalues of the dimensionless
U(2)-flux α̂ in Eq. (49) are integers resulting in the absence
of scattering in all components.

Finally, we calculate the cross section factor � defined in
Eq. (17) for the U(2) doublet and obtain

� = |c1|2 sin2 [(β + α)π ] + |c2|2 sin2 [(β − α)π ], (55)

which is again dependent on the linear combination coeffi-
cients cn. A few examples regarding different incident waves
are shown in Fig. 5.

The following general features of � can be observed as
the coefficients cn of the incoming waves are changed. The
tetragonal structure in the magnitude of � shown in Fig. 5(a)
will be distorted as the ratio of c1/c2 is changed, as clearly

seen in Figs. 5(b) and 5(c). Again, irrespective of c1 and c2,
the differential cross section shows a periodicity with period 1
in both α and β, and it vanishes at α, β ∈ R and α = β =
0.5, as with the SU(3) triplet. Moreover, the maximal value of
the cross section factor � is always unity if α + β and α − β

are half-integers. Actually, this feature is rather different from
the case of the SU(3) triplet. Finally, an interesting feature
can be observed by comparing Figs. 5(b) and 5(c): Those are
reflections of each other as a result of the symmetric partition
of weights, that is, c1/c2 = 2 or c2/c1 = 2.

IV. CONCLUSIONS

To conclude, for the non-Abelian AB effect in isotropic
multiband systems, we have two central results: first, the
contour integral representation of the scattering states and,
second, the differential scattering cross section, given in
Eqs. (11) and (17), respectively. The form of the scattering
states is a natural extension of that established for the Abelian
AB problem in our recent work [28].

Like in the Abelian case, our proposed wave functions
satisfy the necessary boundary and regularity. Moreover, us-
ing the asymptotic form of the non-Abelian scattering states
given by Eq. (11), we obtained the differential scattering
cross section which has the following main features. First, the
angular dependence of the cross section is the same as that
obtained by Aharonov and Bohm [1]. Second, in contrast to
the Abelian case, we found that the cross section now depends
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. Scattering states corresponding to the Aharonov-Bohm
effect for the U(2) doublet. The probability density � (represented
by the colors) and current density j (represented by the arrows) are
computed for kd0 = 1 (where d0 is a natural length unit) and (a) α =
β = 0, (b) α = 0, β = 0.25, (c) α = 0, β = 0.5, (d) α = 0.2, β =
0.3, (e) α = 0.3, β = 0.2, (f) α = 0.5, β = 0, (g) α = 0.5, β = 0.25,
and (h) α = 0.5, β = 0.5.

on the polarization of the incoming plane wave considering
the so-called cross section factor � given by Eq. (18).

To show how versatile our theory is, in Sec. III, we car-
ried out the complex contour integrals in Eq. (11) for three
nontrivial isotropic multiband systems relevant to condensed
matter and particle physics. For each case, we obtained the
explicit form of the scattering states, and to have a deeper

(a)

(c)

(b)

FIG. 5. Dimensionless cross section factor for the U(2) doublet
as a function of α and β for (a) c1 : c2 = 1 : 1, (b) c1 : c2 = 1 : 2, and
(c) c1 : c2 = 2 : 1. The relation |c1|2 + |c2|2 = 1 is always satisfied.

insight into their nature, we plotted their probability and cur-
rent distributions for different incoming waves. We pointed
out the similarities and differences between these wave func-
tions and those of the Abelian case.

Our first example, the SU(2) doublet, serves as a test prob-
lem since it has already been studied by Wu and Yang [9] and
Horváthy [10]. Indeed, our general approach gives the same
scattering states as those derived by Horváthy [10]. Then in
Secs. III B and III C, we calculated the wave functions for
two further systems: the SU(3) triplet and the U(2) doublet,
respectively. Furthermore, we calculated the cross section fac-
tor � for different incoming polarizations in these systems.
The results show a periodic structure as a function of the flux
parameters. Our general theory can easily be applied to other
non-Abelian isotropic multiband systems. We believe that our
work broadens the scope of the exactly solvable AB scattering
problems.
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