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Long-range super-Planckian heat transfer between nanoemitters in a resonant cavity
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We study radiative heat transfer between two nanoemitters placed inside different types of closed cavities
by means of a fluctuational-electrodynamics approach. We highlight a very sharp dependence of this transfer on
cavity width and connect this to the matching between the material-induced resonance and the resonant modes of
the cavity. In resonant configurations, this allows for an energy-flux amplification of several orders of magnitude
with respect to the one exchanged between two emitters in vacuum as well as between two blackbodies, even
at separation distances much larger than the thermal wavelength. On the other hand, variations of the cavity
width by a few percent allow a reduction of the flux by several orders of magnitude and even a transition to
inhibition compared to the vacuum scenario. Our results pave the way to the design of thermal waveguides for
the long-distance transport of super-Planckian heat flux and selective heat transfer in many-body systems.
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I. INTRODUCTION

Two bodies kept at different temperatures and separated by
vacuum exchange heat radiatively via the transfer of thermal
photons. While this energy flux is limited at far separation dis-
tances by Stefan-Boltzmann’s law [1], the pioneering works of
Rytov [2] and Polder and Van Hove [3] showed that this limit
can be overcome in the so-called near field, i.e., when the sep-
aration distance is small compared to the thermal wavelength
(around 10 microns at ambient temperature). This amplifi-
cation can be remarkable for materials supporting resonant
modes of the electromagnetic field [4] (in particular polar
materials supporting phonon-polaritonic resonances in the in-
frared region of the spectrum) or a continuum of hyperbolic
modes [5] (in composite materials made with a combination of
dielectric and metals). Since the first theoretical investigations
in the 1970s, several experiments have verified the predicted
near-field heat flux amplification (see Refs. [6–9] and refer-
ences therein). Moreover, several applications have been put
forward exploiting this strong flux increase in the near field,
ranging from thermal management [10] to solid-state cool-
ing [11,12], heat-assisted data recording and storage [13–16],
infrared sensing and spectroscopy [17,18], energy-conversion
devices [19–23], and thermotronics [24,25].

The possibility to transport this energy from a thermal
source at distances larger than its thermal wavelength re-
mains today a challenging problem which could find broad
applications in the fields of thermal management and informa-
tion transfer [26–28] (i.e., Förster resonance energy transfer).
Although a first strategy to achieve this transport using hy-
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perbolic waveguides has been proposed in 2016 [29], this
problem remains today largely unexplored.

During the past decade, remarkable attention has been paid
to the study of heat transport between two closely separated
emitters or within a larger set of emitters, the main goal being
to manipulate and tailor the radiative heat exchanges at the
nanoscale [30–50]. Some of these studies have focused on
the transfer between emitters in the proximity of a substrate
[35–44] or a cylindrical waveguide [45]. These works discuss
how the two nanoemitters can couple through the surface
resonance existing at the interface between this external body
and vacuum and how this additional channel contributes to
the transfer by amplifying or inhibiting it. Several works have
considered the impact of confinement on the heat transfer
(HT) between two nanoparticles (NP), by placing them inside
a planar cavity, revealing interesting effects [46–50]. How-
ever, they do not address at all the role played by the cavity
width in the exchanged flux and especially how the presence
of the cavity can make the heat transport strongly super-
Planckian (far above the blackbody limit) at large separation
distance between the emitters.

Investigating the role of confinement is the main objec-
tive of this work, where we study the near-field radiative
HT between two NP placed inside a cavity (both planar and
cylindrical) and highlight the crucial role played by the cavity
width. More specifically, we unveil the major interplay be-
tween cavity resonant modes, whose frequencies are purely
governed by the cavity width and material, and resonances
existing at the interface between each NP and vacuum, giv-
ing the leading contribution to near-field radiative HT in
vacuum. We show that this interplay is at the origin of a
very sharp dependence of HT on cavity width, allowing for
order-of-magnitude variations of HT, as well as transitions
from amplification to inhibition with respect to transfer in
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FIG. 1. Ratio of heat flux H in the presence of boundary condi-
tions and the one H0 in vacuum, for two NP at distance d = 10 μm.
The vertical red dashed lines correspond to the planar-cavity res-
onances w = (2n + 1)cπ/ωspp (n = 0, 1, . . . ), whereas the vertical
blue and magenta dashed lines correspond to the cylindrical-cavity
resonances w = 2x′

1mc/ωspp and w = 2x0mc/ωspp (m = 1, 2, . . . ; see
text for more details), respectively. The orange dot-dashed line rep-
resents the blackbody limit for two NP having a radius of 100 nm.

vacuum, with variations of the cavity width in the micron
range.

II. NANOPARTICLES INSIDE PLANAR
AND CYLINDRICAL CAVITIES

In order to highlight the effect of confinement and cavity
resonances on radiative HT we consider in the following two
NP placed at distance d and address several different sur-
roundings, taking as a reference the configuration in vacuum.
We start with NP in proximity of a planar surface. In this
configuration, as shown in [37], HT can be both amplified and
inhibited, depending on the distance between NP and on their
distance from the substrate. We then consider two confined
regimes, in which the NP are placed inside either a planar or a
cylindrical cavity. The former is geometrically defined by its
width w (the distance between the two plates) and the latter by
its radius R, corresponding to a cylindrical-cavity width w =
2R. For simplicity, the NP are always placed in the middle of
the cavity (at equal distance from the two plates forming the
planar cavity and along the axis of the cylindrical one). For a
fair comparison, in the single-plate case the distance between
NP and interface is chosen to be w/2. The four scenarios are
depicted in the inset of Fig. 1.

The HT between the two NP in an arbitrary geometry,
within the dipolar approximation, can be expressed as follows
[30,51]:

H = 32π h̄

c4

∫ ∞

0
dω ω5[�(ω, T1) − �(ω, T2)]

× Im(α1)Im(α2)Tr(GG†), (1)

where c is the speed of light, h̄ and kB are Planck’s
and Boltzmann’s constants, respectively, and �(ω, T ) =
[exp(h̄ω/kBT ) − 1]−1, with T1 = 400 K and T2 = 300 K be-
ing the temperatures of the two NP. The temperature of the
cavity walls is fixed at 300 K, so that the colder NP exchanges
heat only with the other NP. This expression contains the
imaginary part of the polarizability of two NP (i = 1, 2),
for which we take the Clausius-Mossotti expression αi(ω) =
R3

i [εi(ω) − 1]/[εi(ω) + 2], where Ri and εi(ω) are the radius
and the frequency-dependent permittivity, respectively. As-
suming that the two NP are made of silicon carbide (SiC), the
latter is well described by the following Drude-Lorentz model
[52]:

εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
TO + iωγ

, (2)

with ε∞ = 6.7, ωLO = 1.82 × 1014 rad s−1, ωTO = 1.48 ×
1014 rad s−1, and γ = 8.93 × 1011 rad s−1. Equation (1) also
contains the trace of the product of the dyadic Green’s func-
tion G, calculated at the NP coordinates, by its conjugate
transpose G†. The Green’s function G = G0 + GT is written
as the sum of the vacuum Green’s function (known analyti-
cally [51]) and the scattering part GT , describing the effect
of the boundary condition. In the following, we assume that
both the planar and cylindrical boundaries are made of gold,
described by the Drude model [53] εAu(ω) = 1 − ω2

p/[ω(ω +
iωτ )], with ωp = 9 eV and ωτ = 35 meV.

While the expressions of GT for a single plate and for a
planar cavity are given in Refs. [37] and [47], respectively,
we present here its expression inside a cylindrical cavity of
radius R. Starting from the general expression of the Green’s
function given in Ref. [54] and recalling our assumption of
NP placed along the cylinder axis, GT proves to be diagonal
with elements

GT 11 = GT 22 = i

8π

∫ ∞

0
dkz

[
T MM

1,kz
+ 2

kz

k
T MN

1,kz

+ k2
z

k2
T NN

1,kz

]
cos(kzd ),

GT 33 = i

4π

∫ ∞

0
dkz

q2

k2
T NN

0,kz
cos(kzd ), (3)

expressed in terms of the scattering coefficients for N (elec-
tric) and M (magnetic) polarization modes of the field (for
a nonmagnetic medium). It is easy to show that these coeffi-
cients are the same as those outside a cylinder [54] of radius R,
but with Bessel functions replaced by Hankel functions, and
vice versa, as well as with an additional minus sign for T MN

n,kz

[stemming from equality J ′
n(qR)Hn(qR) − Jn(qR)H ′

n(qR) =
−2i/πqR], and are given by

T MM
n,kz

= −Hn(qR)

Jn(qR)

	1	4 − K2

	1	2 − K2
,

T NN
n,kz

= −Hn(qR)

Jn(qR)

	2	3 − K2

	1	2 − K2
,

T MN
n,kz

= T NM
n,kz

= − 2i

π
√

ε[qRJn(qR)]2

K

	1	2 − K2
.

(4)
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Here, Jn (Hn) is the Bessel (Hankel) function of order n,

	1 = H ′
n(qεR)

qεRHn(qεR)
− 1

ε

J ′
n(qR)

qRJn(qR)
,

	2 = H ′
n(qεR)

qεRHn(qεR)
− J ′

n(qR)

qRJn(qR)
,

	3 = H ′
n(qεR)

qεRHn(qεR)
− 1

ε

H ′
n(qR)

qRHn(qR)
,

	4 = H ′
n(qεR)

qεRHn(qεR)
− H ′

n(qR)

qRHn(qR)
,

(5)

and

K = nkz√
εkR2

(
1

q2
ε

− 1

q2

)
, (6)

where k = ω/c, q = √
k2 − k2

z , and qε = √
εk2 − k2

z is the
wave vector perpendicular to the axis inside the cavity walls.
Note that the integrand of GT 11 (GT 22) in Eq. (3) has a pole
at q = 0 (i.e., kz = k), which is integrable in principal value
[45], whereas the integrand of GT 33 has no poles. It can be
shown that the scattering matrices, and hence the integrands of
GTii (i = 1, 2, 3), have no poles at zeros of Jn(qR) [the Bessel
functions in denominators of T MM

n,kz
, T NN

n,kz
, and T MN

n,kz
in Eq. (4)

cancel with those in 	 j , with j = 1, 2, 3, 4].

III. CAVITY-INDUCED AMPLIFICATION
OF HEAT TRANSFER

We present in Fig. 1 the heat flux H exchanged by the
two SiC NP placed at distance d = 10 μm in the four sce-
narios described above (vacuum, single plate, planar cavity,
and cylindrical cavity) as a function of the cavity width w.
In order to address directly the amplification factor, H is
divided by the heat flux H0 exchanged in vacuum. We start by
noticing that the three nonvacuum configurations result in an
amplified energy flux with respect to vacuum. Nevertheless,
two crucial features differentiate the single-plate configura-
tion with respect to the two cavity (confined) ones. First, the
amplification factor for a single plate (less than 2) is strikingly
overperformed by both cavities, with a flux enhancement go-
ing up to four orders of magnitude. Moreover, while the w

dependence in the case of a single plate is rather flat, the cavity
results clearly have a resonant behavior as a function of the
cavity width, suggesting the existence of a geometry-induced
resonance. We notice that the curve associated with a planar
cavity has a steep behavior when the width tends to very small
values. However, for such small cavity widths the validity of
the dipolar approximation starts to be questioned, at least for
reasonable values of the NP radius. Furthermore, the design
and fabrication of such cavities is rather unpractical, and, as
this amplification effect when w tends to zero is not connected
to the resonant behavior of interest, we do not analyze it in
detail. We also observe that, while the vacuum result is below
the blackbody limit (not surprisingly at d = 10 μm), shown in
Fig. 1 for two NP having radii R1 = R2 = 100 nm, the cavity
scenarios allow one to produce a super-Planckian flux, with
an amplification factor going up to more than two orders of
magnitude for the cylindrical cavity.

To get more insight into this resonant behavior, we start by
recalling that the HT between two NP in vacuum is spectrally
dominated by the surface phonon polariton supported by each
NP. This resonance occurs at the frequency ωspp � 1.75 ×
1014 rad s−1 such that εSiC(ωspp) � −2. We now focus on the
cavities and discuss their resonant frequencies. The simplest
scenario in which these frequencies can be identified is the
one when their walls are perfectly conducting. In this configu-
ration, it is well known that imposing the boundary conditions
results in an eigenvalue problem giving direct access to the
cutoff frequencies [55]. In the simplest case of a planar cavity
occupying the region [−w/2,w/2], the z dependence of the
field modes has the form cos(kzz), yielding the cutoff frequen-
cies 
pl,n = ncπ/w for n = 1, 2, . . . . Based on this analysis
we may expect a matching condition of 
pl,n = ωspp between
cavity-induced resonance and the phonon-polariton NP reso-
nance. Nevertheless, we should notice that, for even values of
n, the field vanishes in the center of the cavity, making these
modes unable to carry energy between the two NP. We thus
expect that the thicknesses w resulting in a resonant amplifi-
cation have the form w = (2n + 1)cπ/ωspp for n = 0, 1, . . . .
This is indeed confirmed by the vertical red dashed lines in
Fig. 1. The reasoning for a cylindrical cavity is analogous and
starts from the observation [see Eq. (3)] that only M modes
with n = 1 and N modes with n = 0, 1 can in principle con-
tribute to the flux amplification. As discussed in [55], N (M)
modes of order n have cutoff frequencies of the form xnmc/R
(x′

nmc/R), with xnm (x′
nm) being the mth zero of Jn(x) [J ′

n(x)].
One should note that for an N mode the z component of the
electric field is proportional to Jn(x) and thus for n = 1, being
J1(0) = 0, the z components of both electric and the magnetic
fields vanish in the cavity axis. For this reason, only two sets
of modes (N with n = 0 and M with n = 1) are expected to
participate, giving the resonant conditions R = x0mc/ωspp and
R = x′

1mc/ωspp. These resonant radii are represented by the
vertical magenta and blue dashed lines in Fig. 1 and are in
very good agreement with the resonances of the NP heat flux.
We remark that the smallest resonant radius for a cylindrical
cavity is given by R = x′

11c/ωspp � 3.13 μm.
While these resonances explain most of Fig. 1, there is a

difference between planar and cylindrical cavities. The curve
associated with a planar cavity shows amplification when the
width tends to very small values, a behavior whose inves-
tigation we leave for future work. In striking contrast, the
cylindrical cavity displays pronounced inhibition for small w:
H changes by six orders of magnitude when changing w by as
little as two microns. We attribute this difference to different
shapes of the cavities and to different degrees of confinement
(two directions are allowed for a planar cavity, whereas one
direction is allowed for a cylindrical one). This shows that
such cavity modes lead to strongly selective transfer.

A complementary view can be obtained by looking at the
spectral heat flux H (ω) (of which the flux H is the inte-
gral over frequency) for different cavity widths. The result is
shown in Fig. 2, where the spectral flux associated with the
first resonant radius R = 3.13 μm is compared to the one for a
nonresonant radius R = 5.4 μm. We observe that both spectra
peak around ωspp. This is not surprising since this resonance
stems from purely material properties of NP and represents the
surface resonant mode existing at the interface between each
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FIG. 2. Spectral flux H (ω) for two NP, normalized by their vol-
umes Vi, at distance d = 10 μm inside a cylindrical cavity of radius
3.13 μm (magenta) and 5.4 μm (black). The vertical blue and red
lines correspond to the R-dependent resonances ω = x′

1mc/R and
ω = x0mc/R (m = 1, 2, . . . ; see text for more details), respectively.

NP and vacuum. The difference lies, on the contrary, in the
additional cavity-induced resonances. Also in this case, their
positions are very well predicted by the expressions x0mc/R
and x′

1mc/R, which depend on the radius. This curve confirms
that the strong flux amplification we obtain at R = 3.13 μm
results from the matching between the first cavity-induced res-
onance (independent of the NP) and the one at ωspp associated
with NP material properties.

As a final aspect, in Fig. 3 we address the dependence of
the highlighted flux amplification mechanism on the distance

FIG. 3. Ratio of heat flux H in the presence of boundary con-
ditions and the one H0 in vacuum as a function of the NP distance
d in three different scenarios (see legend). The orange dot-dashed
line represents the d-dependent blackbody limit for two NP having
a radius of 100 nm, shown above d = 1 μm in order to be coherent
with the dipolar approximation.

d between the two NP. Naturally, in the graphs, we choose the
optimal values of w for each case, i.e., w = 5.39 μm for the
planar cavity (the first resonance in Fig. 1) and R = w/2 =
3.13 μm for the cylinder. For fair comparison, the associated
single-plate scenario is studied at a distance z = 2.7 μm. We
first notice that the three curves share a common qualita-
tive behavior, with a flux amplification starting from 1 (no
amplification), increasing up to a maximum value, and then
decreasing and switching to a flux inhibition. The first aspect,
namely the absence of amplification for small distances d
is expected, since in this regime, namely when d is much
smaller than the cavity width, the NP are strongly coupled
to each other, making the presence of a boundary condition
irrelevant. On the contrary, moving to larger distances makes
the amplification effect manifest and we stress that the maxi-
mum value strongly depends on the geometry under scrutiny
and reaches a remarkable value of more than four orders
of magnitude (�5 × 104) in the case of a cylindrical cavity,
reached around d � 87 μm. An interesting way of restating
this result is that the cylindrical cavity is able to export to
87 μm, a distance clearly in the far-field regime, the same flux
two NP would exchange in vacuum at a distance of 1.2 μm, in
the near-field regime. We also notice that, while the vacuum
value is below the blackbody limit for distances d � 2 μm,
the cavities allow for a super-Planckian flux with an amplifi-
cation factor going beyond three orders of magnitude, which
stays above the blackbody limit up to distances of some mm.
Finally, we remark that while the three geometries imply
rather different maximum flux-amplification factors, the de-
cay length of the effect they induce (the distance at which
amplification turns into inhibition) also strongly depends on
the geometry. Interestingly, even if for the three geometries
we observe amplification up to relatively high values of the
distance, this decay length actually goes in the opposite order
with respect to the maximum amplification factor. In order
to understand this behavior we can recall the image of heat
flux between the two NP conveyed at larger distance by the
surface mode existing at the cavity walls. As a consequence,
we expect the decay length of amplification observed in Fig. 3
to be compatible with the one of these surface modes at the
flux resonance ωspp. This can be checked by seeking for the
resonance (pole) of the reflection coefficient in each geometry
at ω = ωspp: this gives us a parallel wave vector k such that
δ = 1/Im(k) represents an estimate of the decay length of the
surface mode along the interface. This gives δ � 7 × 104 μm
for a single plate, δ � 5 × 103 μm for a planar cavity, and
δ � 35 μm for a cylindrical one. These results confirm the
trend observed in Fig. 3 and give a quantitative estimate
of the distance at which the flux amplification reaches its
maximum.

IV. CONCLUSIONS

In conclusion, we have shown that confinement of two
nanoemitters inside a closed cavity can induce a strong
amplification or inhibition of the radiative heat flux they
exchange. By analyzing two different closed geometries (a
planar and a cylindrical cavity) and comparing the results to
exchanges in vacuum and the simpler case of a planar inter-
face, we have shown that this amplification stems from the
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matching between the spectral resonance associated with ma-
terial properties (depending only on the nature of materials
and on the shape of the emitter) and cavity-induced reso-
nances (depending only on the cavity geometry) and which
may be used to selectively tune NP transfer. We have also
shown that the characteristic distance at which the effect takes
place depends on the geometry, providing a simple tool to
choose the most convenient geometry depending on the de-
sired distance. Our results pave the way to easier strategies
to export and tune near-field super-Planckian radiative heat
flux to distances larger than the thermal wavelength. In future
work, they could be extended to other more complex geome-
tries (curved cavity, splitter,...) and the impact on many-body

heat transport inside a cavity could also be addressed [48,49],
also addressing the role of selectivity. Finally, the role played
by multipolar orders in the heat transport between nanoemit-
ters in strongly confined systems could also be investigated.
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